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Abstract

This lab report aims to investigate the maximal solutions and their domains for two initial value problems
(IVPs) using both numerical and analytical methods. The specific problems are as follows:

(IVP1) y′ = y2 − t2, y(0) = 1

(IVP2) y′ = y3 − t2y, y(0) = 1

1 Introduction

This experiment focuses on solving two initial value problems (IVPs) using various numerical methods, including
Euler, Improved Euler, and Runge-Kutta methods. We analyzed the performance of these methods by comparing
their solutions for the given IVPs at different step sizes. Particular attention was paid to the behavior of the
solutions near vertical asymptotes and accurately determining their positions at t = ai, t = bi, i = 1, 2.

Moreover, we explored alternative approaches to solving these problems. These included symmetry consid-
erations, power series representations of the solutions, and simplifications of the differential equations through
appropriate substitutions. The feasibility and accuracy of these alternative methods were also thoroughly exam-
ined. The results showed significant differences in the accuracy and efficiency of the various methods, with numerical
methods proving to be highly reliable for complex initial value problems.

This report provides a detailed documentation of the computational processes and results obtained from each
method. It also presents precise calculations for the vertical asymptotes of the solution graphs. These findings
contribute to a better understanding and solution of similar differential equation initial value problems.

2 Analysis Problem

2.1 Runge-Kutta method

2.1.1 Method

Runge-Kutta methods are a class of iterative methods widely used for numerically solving ordinary differential
equations (ODEs). Due to their high accuracy and applicability, especially the fourth-order Runge-Kutta method
(RK4), they have been widely used in science and engineering.
Consider the initial value problem:

y′(t) = f(t, y(t)), y(t0) = y0

The fourth-order Runge-Kutta method is used to compute the numerical solution from tn to tn+1 = tn + h:
1. Compute the four slopes:

k1 = f(tn, yn)

k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
k3 = f

(
tn +

h

2
, yn +

h

2
k2

)
k4 = f (tn + h, yn + hk3)

2. Update the value at the next time step:

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)
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2.1.2 Results Display

1.For
y′ = y2 − t2

We detected a very large number at t = 1.0376, y = 6.800532522924118×1018. We find that there is a breakpoint

Figure 1: Result using RK4 method for the first function

at the right end of the domain of definition with this function that should be very close to and slightly larger than
t = 1.0376, while after simulation, there should be no restriction at the left end of the domain of definition and the
function at the left end is very close to y = −x. 2.For

y′ = y3 − yt2

We detected 2 very large numbers for this function, respectively at t = 0.5112, y = 3.797940674255831× 1041, and

Figure 2: Result using RK4 method for the second function

at t = −159.8557, y = 1.250766724427035 × 1024. So that there is a breakpoint at the right end of the domain of
definition with this function that should be very close to and slightly larger than t = 0.5112. For the oscillations
that appear on the left side, we speculate that they may be due to the effects of special functions such as the gamma
function.

2.1.3 Error Analysis

The Taylor expansion of the exact solution at tn is:

y(tn+1) = y(tn + h) = yn + hy′n +
h2

2!
y′′n +

h3

3!
y′′′n +

h4

4!
y′′′′n +O(h5)
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Using y′ = f(t, y), y′′ = ft + fyy
′, etc., we can expand the derivatives as follows:

y′ = f(t, y)

y′′ =
∂f

∂t
+

∂f

∂y
f

y′′′ =
∂2f

∂t2
+ 2

∂2f

∂t∂y
f +

∂2f

∂y2
f2 +

∂f

∂y

(
∂f

∂t
+

∂f

∂y
f

)
and so on.

We also expand the numerical solution:

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)

where k1, k2, k3, k4 are:

k1 = f(tn, yn)

k2 = f

(
tn +

h

2
, yn +

h

2
f(tn, yn)

)
≈ f(tn, yn) +

h

2

(
∂f

∂t
+

∂f

∂y
f

)
(tn,yn)

+O(h2)

k3 = f

(
tn +

h

2
, yn +

h

2
k2

)
≈ f(tn, yn) +

h

2

(
∂f

∂t
+

∂f

∂y
k2

)
(tn,yn)

+O(h2)

k4 = f(tn + h, yn + hk3) ≈ f(tn, yn) + h

(
∂f

∂t
+

∂f

∂y
k3

)
(tn,yn)

+O(h2)

Substitute these expansions into the numerical solution formula:

yn+1 = yn +
h

6

[
f(tn, yn) + 2

(
f(tn, yn) +

h

2

(
∂f

∂t
+

∂f

∂y
f

))
+ 2

(
f(tn, yn) +

h

2

(
∂f

∂t
+

∂f

∂y
k2

))
+ f(tn, yn) + h

(
∂f

∂t
+

∂f

∂y
k3

)]
Performing convergence analysis on the higher-order terms, we obtain:

yn+1 − y(tn+1) = O(h5)

This shows that the local truncation error is O(h5).
For Global Truncation Error, While the local truncation error (LTE) at each step is O(h5), the global truncation
error (GTE) considers the accumulation of these errors over many steps.

For N =
tf−t0

h steps, the global truncation error is given by summing up the local errors:

GTE =

N−1∑
n=0

O(h5)

Since there are N =
tf−t0

h steps, the GTE can be approximated as:

GTE = N · O(h5) =
tf − t0

h
· O(h5) = O(h4)

Therefore, the global truncation error for the fourth-order Runge-Kutta method is O(h4).Therefore, the fourth-
order Runge-Kutta method is highly accurate and very effective for numerically solving ordinary differential equa-
tions.
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2.2 Picard-Lindelof Iteration

2.2.1 Method

The Picard method is an iterative approach for numerically solving initial value problems of ordinary differential
equations. The core idea is to view the solution as a process of successive approximations, constructing a series of
functions that converge to the true solution.

For the initial value problem:
dy

dt
= f(t, y), y(t0) = y0

The basic iterative formula of the Picard method is:

yn+1(t) = y0 +

∫ t

t0

f(τ, yn(τ)) dτ

By repeatedly iterating this formula, we obtain a series of functions yn(t) that progressively approximate the
true solution.

Steps of the Picard Method

1. Initial Condition: Set y0(t) = y0 as the initial condition.

2. Iteration Process:

yn+1(t) = y0 +

∫ t

t0

f(τ, yn(τ)) dτ

By iterating this process multiple times, the sequence of functions {yn(t)} converges to the true solution of
the equation.

2.2.2 Results Display

Solving Two Differential Equations with the Picard Method

Equation dy
dt = y2 − t2 For this equation, the Picard method’s iterative formula is:

yn+1(t) = y0 +

∫ t

t0

(yn(τ))
2 − τ2 dτ

In each iteration, the integral of the previous iteration function yn(t) is calculated. Due to the integral and
squared term, this process may introduce significant errors, requiring multiple iterations to reduce the error.

Equation dy
dt = y3 − t2y For this equation, the Picard method’s iterative formula is:

yn+1(t) = y0 +

∫ t

t0

(yn(τ))
3 − τ2yn(τ) dτ

Due to the y3 term, this problem can be more challenging, especially when y values are large, potentially causing
steep slopes, increased computational instability, and error. In this case, the choice of iteration count and time step
becomes crucial.
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Figure 3: IVP 1 Figure 4: IVP 2

2.2.3 Error Analysis

The error analysis of the Picard method can be explained through the following points:

Initial Error Since the Picard method starts iterating from an initial approximation y0, the choice of the initial
approximation significantly affects the accuracy of the final solution.

Iteration Error Each iteration introduces an error, and these errors accumulate over the iterations, affecting the
final solution’s accuracy. The more iterations performed, the theoretically more accurate the solution becomes, but
practical computation is limited by resources and rounding errors.

Convergence The convergence of the Picard method depends on the properties of the function f(t, y). For a
Lipschitz continuous function f(t, y), the Picard method guarantees convergence. If f(t, y) does not satisfy the
Lipschitz condition, the method may not converge or may converge very slowly.

Global Error The global error refers to the accumulated error from the initial condition y0 to time t. It is
usually difficult to calculate precisely but can be reduced by decreasing the time step dt and increasing the number
of iterations.

By understanding these principles and error control measures, the Picard method can be effectively used to
solve different types of initial value problems for ordinary differential equations and control the associated errors.

2.3 Series method

2.3.1 Method

The series method is a powerful mathematical tool used to find analytic solutions to differential equations. This
method assumes that the solution y(x) of the differential equation can be expressed in the form of a power series:

y(x) =

∞∑
n=0

an(x− x0)
n

where x0 is the center of the power series expansion, and an are the coefficients to be determined.
To find the coefficients an, the key steps of the series method include:

1. Computing Derivatives in Power Series Form:
Calculate the derivatives of y(x), such as y′(x) and y′′(x), and express them in the power series form. For
example, the first derivative of y(x) is given by:

y′(x) =

∞∑
n=1

nan(x− x0)
n−1
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2. Substituting into the Original Differential Equation:
Substitute the power series expressions of y(x) and its derivatives into the original differential equation. By
aligning the powers on both sides of the equation, a recursive relation or direct formula for the coefficients an
is obtained.

3. Using Initial or Boundary Conditions to Determine Coefficients:
Use the given initial or boundary conditions to determine the specific values of the coefficients an, ensuring
the uniqueness and correctness of the solution.

Through this method, we can not only find the local solution of the differential equation near a specific point
but also gain a deeper understanding of the nature and behavior of the solution. This is significant for both applied
mathematics and theoretical research.

2.3.2 Results Display

Problem 1 Following the above steps, we obtain the following recursive formula:

∞∑
n=1

nant
n−1 =

∞∑
n=0

(
n∑

k=0

akan−k

)
tn − t2

1. For n = 1
a1 = 1

Since y′(0) = a1 and from the initial condition y′(0) = y(0)2 − 02 = 1

2. For n ≥ 2

(n+ 1)an+1 =

n∑
k=0

akan−k

Conclusion The power series solution to the initial value problem is:

y(t) = 1 + t+ t2 +
2t3

3
+

5t4

6
+

4t5

5
+

23t6

30
+

236t7

315
+

201t8

280
+

218t9

315
+

2803t10

4200
+ . . .

Problem 2 The following recursive formula is obtained through the same algorithm:

∞∑
n=0

(n+ 1)an+1t
n =

∞∑
n=0

bnt
n −

∞∑
n=2

an−2t
n

Matching the coefficients of the power series, we get the recurrence relation:

(n+ 1)an+1 = bn − an−2

where bn is the coefficient of y3(t). The power series solution to the initial value problem is:

y(t) = 1 + t+
3

2
t2 +

13

6
t3 + · · ·

2.3.3 Error Analysis

We found that as the number of terms in the expansion increases, the fitting accuracy of the function im-
proves.However, for the second problem, since the number of expansion terms is relatively small, the solution
only fits well near the initial value.
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Figure 5: Series method for IVP 1

2.4 Euler Method

2.4.1 Mathematical Analysis

The Euler method is an explicit numerical integration method and a first-order method. Its basic idea is to use the
slope at the current point to predict the value at the next point. For a given ordinary differential equation (ODE)
y′ = f(t, y) with initial condition y(t0) = y0, the Euler method’s recurrence formula is:

yn+1 = yn + hf(tn, yn)

where:

• h is the step size;

• tn = t0 + nh is the current time step;

• yn is the numerical solution at tn.

The mathematical foundation of the Euler method derives from the Taylor series expansion of y(t) at tn:

y(tn+1) = y(tn) + hy′(tn) +O(h2)

Neglecting the higher-order termO(h2), the Euler method’s approximation formula is obtained. The local truncation
error is O(h2), and the global truncation error is O(h).

The stability of the Euler method depends on the step size h and the properties of the differential equation.
For stiff equations, the Euler method may require very small step sizes to remain stable, resulting in significantly
increased computational cost.

2.4.2 Result Presentation

2.4.3 Error Analysis

The error analysis of the Euler method focuses on its local and global truncation errors. The local truncation error
is O(h2), while the global truncation error is O(h). As a first-order method, the Euler method’s error accumulates
rapidly, especially when dealing with stiff problems, where the numerical solution may diverge quickly.

For (IVP1), the numerical solution shows a rapid increase as t approaches zero on the positive axis, indicating
potential divergence. On the negative axis, the solution shows a linear downward trend with relatively minor errors.

For (IVP2), the solution exhibits significant oscillations on the negative axis, indicating instability in this region.
This may be due to large numerical errors accumulating from a too-large step size.
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Figure 6: Euler Method (IVP1) Figure 7: Euler Method (IVP2)

2.5 Improved Euler Method

2.5.1 Mathematical Analysis

The improved Euler method (also known as the Heun method or trapezoidal method) enhances accuracy by incor-
porating the trapezoidal integration formula. The basic idea is to use the average slope between the current point
and the predicted point to estimate the next point’s value. For a given ODE y′ = f(t, y) with initial condition
y(t0) = y0, the improved Euler method’s recurrence formula is:

yn+1 = yn +
h

2

[
f(tn, yn) + f(tn+1, y

predict
n+1 )

]
where:

• ypredictn+1 = yn + hf(tn, yn) is the Euler method prediction.

The improved Euler method can be viewed as applying the trapezoidal rule to the integration problem. By
considering the average slope at two adjacent points, the local truncation error is O(h3), and the global truncation
error is O(h2).

2.5.2 Result Presentation

Figure 8: Improved Euler Method (IVP1) Figure 9: Improved Euler Method (IVP2)

2.5.3 Error Analysis

The improved Euler method is a second-order method with a local truncation error of O(h3) and a global truncation
error of O(h2). Compared to the Euler method, the improved Euler method is more stable when dealing with
nonlinear and stiff problems. In this study, the improved Euler method shows higher accuracy and stability at the
same step size, better capturing the solution’s behavior.
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For (IVP1), the improved Euler method produces a smoother solution near zero, and the linear downward trend
on the negative axis is more pronounced, indicating reduced error.

For (IVP2), the improved Euler method still shows some oscillations on the negative axis, but the solution
is more stable, and the error is reduced compared to the Euler method. This demonstrates the improved Euler
method’s advantage in handling complex nonlinear problems.

2.5.4 Conclusion

Compared with Euler Method, the numerical results indicate that the improved Euler method is superior in accuracy
and stability, making it suitable for handling more complex differential equations. However, the choice of numerical
method and step size should be based on the specific characteristics of the problem.

The comparative analysis shows that the improved Euler method can provide more stable and accurate solutions
for problems with strong nonlinear terms. This further validates the importance and effectiveness of the improved
Euler method in numerical computation.

In summary, although the improved Euler method requires slightly more computational effort than the Euler
method, its higher accuracy and stability make it more advantageous in practical applications. Especially when
dealing with complex and stiff problems, the improved Euler method significantly reduces numerical errors, providing
more reliable solutions.

2.6 Theoretical derivation

2.6.1 IVP 1

We found that this equation is a special form of the Riccati Differential Equation. On page 87 of the book Elementary
Differential Equations and Boundary Value Problems (4th ed., New York: Wiley, 1986) by W. E. Boyce and R. C.
DiPrima, we found the relevant solution.

y′ = −t2 + 0 · y + 1 · y2

Here P (t) = −t2, Q(t) = 0, R(t) = 1.

Using the transformation y = −u′

u , where R(t) = 1, we get:

y = −u′

u

Substituting this into the original equation, we get:(
−u′

u

)′

= −t2 +

(
−u′

u

)2

Calculating the derivative, we get:
u′′u− (u′)2

u2
= −t2 +

(u′)2

u2

Simplifying this, we get:
u′′ + t2u = 0

The generalized solution of this equation is:

u(t) = c1D− 1
2
((1 + i)t) + c2D− 1

2
((−1 + i)t)

We then used the computer to complete the subsequent calculations to get the results:

y(t) =

(
1
2 + i

2

)
t
[
BesselJ

(
1
4 ,

it2

2

)
Γ
(
1
4

)
− (1 + i)

√
2BesselJ

(
− 1

4 ,
it2

2

)
Γ
(
3
4

)]×[
(−1− i)t2BesselJ

(
−3

4
,
it2

2

)
Γ

(
1

4

)
+ i

√
2t2BesselJ

(
−5

4
,
it2

2

)
Γ

(
3

4

)
+
√
2BesselJ

(
−1

4
,
it2

2

)
Γ

(
3

4

)
− i

√
2t2BesselJ

(
3

4
,
it2

2

)
Γ

(
3

4

)]
(1)

9



Figure 10: IVP 1 when t < 0 Figure 11: IVP 1 when t > 0

2.6.2 IVP 2

Solve Bernoulli’s equation dy(t)
dt = y(t)3 − t2y(t), such that y(0) = 1:

dy(t)

dt
+ t2y(t) = y(t)3

Divide both sides by y(t)3:

1

y(t)3
dy(t)

dt
+

t2

y(t)2
= 1

Let v(t) = 1
y(t)2 , which gives dv(t)

dt = −2dy(t)
dt

1
y(t)3 :

−2
dv(t)

dt
t2v(t) = −2

Let µ(t) = e−
∫
−2t2 dt = e−

2
3 t

3

:
Multiply both sides by µ(t):

e−
2
3 t

3 dv(t)

dt
− 2t2e−

2
3 t

3

v(t) = −2e−
2
3 t

3

Substitute −2e−
2
3 t

3

t2 = d
dt (e

− 2
3 t

3

):

e−
2
3 t

3 dv(t)

dt
+

d

dt
(e−

2
3 t

3

)v(t) = −2e−
2
3 t

3

Apply the reverse product rule:

d

dt
(e−

2
3 t

3

v(t)) = −2e−
2
3 t

3

Integrate both sides with respect to t:∫
d

dt
(e−

2
3 t

3

v(t)) dt =

∫
−2e−

2
3 t

3

dt

Evaluate the integrals:

e−(2t3)/3v(t) =

(
2
3

)2/3
tΓ
(

1
3 ,

2t3

3

)
3
√
t3

+ c1

, where c1 is an arbitrary constant.

Divide both sides by µ(t) = e−(2t3)/3 :
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v(t) = e(2t
3)/3

( 23)2/3 3
√
3tΓ

(
1
3 ,

2t3

3

)
3
√
t3

+ c1


Solve for y(t) in v(t) = 1

y(t)2 :

y(t) = −
√
3

6
√
t3√

e(2t3)/3
(
( 2

3 )
2/3 3√3tΓ

(
1
3 ,

2t3

3

)
3√
t3

+ 3c1
3
√
t3
)

or

y(t) =

√
3

6
√
t3√

e(2t3)/3
(
( 2

3 )
2/3 3√3tΓ

(
1
3 ,

2t3

3

)
3√
t3

+ 3c1
3
√
t3
)

By substituting the initial value y(0) = 1, we obtain the following results:

y(t) =

√
3 · t1/2√

−
(
e

2t3

3

(
−3t+ 22/3 · 31/3 · Γ

(
1
3

)
− 22/3 · 31/3 · t · Γ

(
1
3 ,

2t3

3

))) (2)

Asymptotes and analysis of stability We found that there was a surge in the function at t ≈ 0.5112, and
we guessed that there might be a non-primitive function in the solution.Since the gamma function appears as a
singularity on the negative semiaxis, in essence the second function on the negative semiaxis is not well-defined.

Figure 12: IVP 2 when t < 0 Figure 13: IVP 2 when t > 0

3 Conclusion

In this lab report, we thoroughly explored the solutions to two initial value problems (IVPs) using both numerical
and analytical methods. Specifically, we applied Euler, Improved Euler, Runge-Kutta, Picard-Lindelof iteration,
and the Series method to solve the IVPs:

(IVP1) y′ = y2 − t2, y(0) = 1

(IVP2) y′ = y3 − t2y, y(0) = 1

We applied several numerical methods, including Euler, Improved Euler, Picard-Lindelof Iteration, and Runge-
Kutta (RK4), to approximate the solutions. Our analysis focused on the behavior of solutions near the vertical
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asymptotes.For (IVP1), the RK4 method provided accurate solutions up to t=1.0376, indicating a vertical asymp-
tote. For (IVP2), the RK4 method identified significant points at t=0.5112, suggesting vertical asymptotes. The
sharp oscillations in the left part also reflect the fact that the solution of the function is a non-simple function and
there may be problems with the domain of definition.

Theoretical analysis was a key part of our investigation. We first tried the Series method and got crude
results.Then, for (IVP1), we identified the equation as a special form of the Riccati Differential Equation. By using
the transformation and solving the resulting second-order differential equation, we derived the exact solution with
the help of computer. For (IVP2), we transformed the equation into a Bernoulli’s equation and used the method
of integrating factors to find the exact solution.

In conclusion, this study emphasizes the significance of combining numerical methods with rigorous theoretical
analysis to solve IVPs effectively. The insights gained from both approaches enhance our understanding and provide
robust tools for tackling similar problems in future research.
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