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Weekly Timetable

Lecture A
Wed 15-16, Thu/Fri 13-14
RC-2 Multifunctional Hall

Lecture B
Wed 16-17, Thu/Fri 14-15
RC-2 Multifunctional Hall

Discussion with TA’s
There will be informal weekly discussion groups on Thu at
different timeslots.

Details will be announced later.

Homework

Homework is assigned on Thursdays and must be handed
in in the following week before the discussion session. Late
homework will not be accepted.
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Textbook

[BDM17] William E. Boyce, Richard C. DiPrima, Douglas B.
Meade, Elementary Differential Equations and
Boundary Value Problems, 11th global edition,
Wiley, 2017.



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Administrative
Things

Teaching Calendar (tentative)

Adapted for Math 285

Week | Topics [BDM17] Sections
1 |Introduction to ODE’s Ch. 1

2-4 |1st Order ODE’s Ch. 2

5,6 |2nd-Order ODE’s Ch. 3

7,8 |Higher Order ODE’s Ch. 4

9,10 |Series Solutions Ch.5

11 |Laplace Transform Ch.6
12,13|1st Order ODE Systems Ch.7

14 |PDFE’s Ch. 10

Course material
Textbook + Lecture Slides + Exercises

The Weekly schedule is only approximately true.
The lecture won't follow the textbook strictly.
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Examination Regulations

Calculation of the final score
45 % final exam (3 hours, closed book)
15% 1 midterm exam (1 hour, closed book)
25 % homework
15% lab project
5% extra credit for presenting solutions of
exercises
Exam dates will be announced in due course.

The lab projects will be assigned after the midterm, and
details will be fixed at this time.
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Course Website

As usual, lecture slides, homework assignments, and other
accompanying material will be made available through
Blackboard https://learn.intl.zju.edu.cn

Further details regarding homework submission, TA office
hours, etc., will be announced later.


https://learn.intl.zju.edu.cn
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Some Advice Before We Start

¢ Attend each class!
e Solve (well, at least try hard to solve) each exercise!

e Don't hesitate to ask (stupid) questions!
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As in Fall 2023, lecture attendance will be checked
electronically, and multiple unauthorized absence can be
penalized through score deduction or by other means.

Ba

Students can be exempted from class attendance, but only
for very important reasons and with prior authorization.

Attending discussion sessions in full is not required.
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Thomas Informally, an ordinary differential equation (or ODE, for
Honold short) is an equation for a one-variable function f(t) and its
derivatives f'(t), f’(t), etc.
This is in contrast to partial differential equations (or PDE,
for short), which involve multi-variable functions f(xq, ..., Xp)
. . . . 2
and their partial derivatives g—){i, %aij, etc.
Definition (Ordinary Differential Equation, ODE)
An ODE of order n has the form
F(taY>y/7y/,>"'ay(n)) =0, (*)

where F has domain D C R x R x --- x R™ and depends
N—

n+1
on the last variable (otherwise the order is < n).
A solution to (x) is a function (curve) f: | — R™, defined on
an interval / C R, which is n times differentiable and
satisfies  F(t,f(t), f'(t), f"(t),..., f(”)(t)) =0 foralltel
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Definition (Initial Value Problem, IVP)

Suppose that an ODE as above is given and fy € R,
Yo,---,Yn € R™ are such that F(t,Yo,...,¥Yn) =0. A
solution to the initial value problem

Fit,y.y.y',....yM =0, y(t)=y; for0<i<n

is any function (curve) f: I — R™ solving (x) on the previous
slide and satisfying f(fy) = yo, f'(fo) = Y1, ..., f)(f) = yn.

Notes

e |t is custom to use “no-name notation” y = y(t) if m=1
(resp., y = y(t) if m > 1) for solutions of ODE’s.

¢ Denoting the “independent” variable by f reflects the
virtually zillions of applications in Physics, where y(t)
models the state of a physical system at time t. Be
prepared, however, that many texts on ODE’s use x in
place of t, i.e., y(x) or y(x) for the solution function of
an ODE.
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Notes cont'd
e While our definition of ODE’s and IVP’s is the most general,

the following explicit form of an n-th order ODE occurs most
frequently:

vy = G(t,y,y,....,y" ).
A corresponding implicit form is F(t,y,y’,...,y(") = 0 with
F(t,¥o,---,¥n)=Y¥Yn— G(t,¥Yo,---,¥Yn-1).
An IVP in explicit form needs to specify only y()(t,) = y; for
0 < i< n-1,since the last condition

y(n)(to) =Yn= G(t07y07y1 g ayl'l—1)
= G(t07y(t0)a y/(t0)7 s ay(n_1)(t0))
is a particular case of the explicit ODE.

Sometimes it is easy to find solutions (or a family of
solutions) to a given ODE, and the question arises whether
there are further solutions. Since, trivially, restricting a
solution y: I — R to a subinterval J C / yields another
solution, we are only interested in maximal solutions, i.e.,
those which do not arise by (proper) restriction from another
solution.
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Ten Examples

©® v/ = a(t); more generally, y' = a(t)
F(t, yo,y1) = a(t) — y1 resp. F(t,¥o,y1) = a(t) — Y1
® y' = y; more generally,y =y
F(t,¥0,¥1) = y1 — Yo resp. F(t,¥0,¥1) = Y1 — Yo
® y' = ay with a € R; more generally, y' = Ay with A € R™"
F(t.¥0,y1) = y1 — ayo resp. F(t,¥o,¥1) = Y1 — Ayo
® y' = ay + bwith a,b € R; more generally, y = Ay + b
F(t.Yo.y1)=Y1— a0 —b
O y' = 2ty; more generally, y' = 2ty
F(t. ¥0.y1) = y1 — 2tyo

0y =y>
F(tYo. 1) =y1 — Y&
Q)=

F(t, ¥0,¥1) = Y1 — /Yol
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O (X Vi2x—e)dx—(eX YV +2y)dy=0
F(t, X0, Yo, X1, y1) = (X0 = Y0 4 2xg — e)xq — (%0 = Y0 1 2yp) 4
e Oy =-xly
F(x,Yo,y1) =y1 + X/ Yo
® y” + y = 0 (or, in explicit form, y” = —y)
F(t,¥0.¥1,¥2) = y2 + Yo (resp., G(t, o, ¥1) = = Yo)

The first nine examples have order 1. The last example has
order 2.

Examples 8 and 10 are implicit ODE’s. The remaining
examples are explicit ODE'’s.
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Reading assignment for Week 1
[BDM17], Chapter 1
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© y' = a(t): Assuming that t — a(t) is continuous, the
general solution is y(t) = [ a(t) dt (by the Fundamental
e Theorem of Calculus)

Solutions

The solution of the IVP y' = a(t), y(ty) = yo is
(t) =Y+ fi dT
The solution of the IVP y’ = a(t), y(t) = y(© is

Y+ f,; ay(r)dr
y(t) = ;
0
v+ ft

where a(t) = (as(t), ..., am(t))T.
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Equations ® y’ = y: Asolution is y(t) = ¢!, or more generally y(t) = ce!
Thomas with ¢ € R (all with maximal domain R).

Honold

Using this family of solutions, we can solve any IVP

y' =y Ay(th) = yo: Just solve cel = y, for ¢, i.e., ¢ = ype P
and y(t) = yoe!~b.

Are there other (maximal) solutions?

No there aren’t: A solution has the form y(t) = ce! iff

t — y(t)e~!is constant. We have

(e = y'(e + y(t)(—e ) = ((/'(1) - y(B)e " =0,

sincey =y’. = y(t)e"! = ¢ € Ris indeed a constant.

These results imply that through any point (&, yo) in the
plane R? there passes exactly one solution of y’ = y. In
other words, the graphs of the family of functions y(t) = cef,
¢ € R (with domain R) partition the plane.

It also follows that the general solution of y' =y is
y(t) = (ciel, ..., cme!) = elc withc = (¢1,...,cm) € R or,
linking it to the corresponding IVP, y(t) = e!~byy with yo € R™.
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Figure: The solutions y(t) = ce! for various constants ¢
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Solutions cont’d

® y’ = ay: This is almost the same as Equation 2. The
solutions are y(t) = ce®, ¢ € R, and the corresponding IVP
has a unique solution for each (t, yo). That there are no more
solutions is proved in the same way, working with t — y(t)e=2.

For the vectorized form a keen guess is that the solution has
the form y(t) = elc with ¢ € R”. This is in fact true, as we
will see later. For now let us only note that in order to make
sense of this eA’ should be an n x n matrix as well.

O y' = ay + b: If y; and y, are solutions of y’ = ay + b then
¥1 — Yo is a solution of the associated homogeneous linear
ODE y’ = ay, since

dya(t)  dya(t)

Cn() oty = L0 VD g 0) 15— ap(r) - b

= a(y(t) — ya(1)).

A particular solution of y’ = ay + bis y(t) = —b/a, and
hence the general solution is y(t) = —b/a+ ce®, ¢ € R (with
domain R). From this we see as before that every IVP

y' =ay + bAy(h) = ¥, has a unique solution.
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@ y’ = 2ty: The solutions are y(t) = ce’, c € R, and the
d observed general picture continues to prevail. In particular,
S we can use the function t — y(t)e~* to show that there are
o no more solutions. (If y(t) is a solution, this function must
again be constant.) You should also compare this with the
solution to Exercise H64 in Homework 12 of Calculus IIl.

Clearly something more general works behind the scene in
the examples discussed so far. All these are instances of
1st-order linear ODE’s, and we shall present a unified
treatment of this class of ODE’s later.
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0@ y = y?: ltis not hard to guess a solution. One solution is

y(t) = —1/t, since (—1/t) =1/t> = (—1/t).

An even more obvious one is y(f) = 0.

Since y’ = G(y) with G not depending on t (such ODE’s are
called autonomous), we can make a translation in the
argument t to obtain further solutions:

d%y(t —0)=y/(t-0)=y(t-0)%,

i.e., t— y(t— c)is a solution for any ¢ € R (provided that
y(t)is). In the case under consideration this gives the family
of solutions

Since we can solve C%to = Yo uniquely for c if (o, o) is not
on the t-axis (i.e., yo # 0), the solutions found so far
(including y = 0) partition the plane R2, and any IVP
y' = y2 A y(th) = ¥ has a unique solution within this family.
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@ (cont'd)

In contrast with the preceding examples, y(t) =1/(c—t)is
not defined for all t € R. In fact, according to our definition of
“solution of an ODE” we rather have two maximal solutions
corresponding to a fixed c,

yi(t)=1/(c-1t), te(—o0,0),
y2(t): 1/(C_t)7 te (Ca +OO)'

Unique solvabilty of the corresponding IVP is not affected by
this change of viewpoint. (The solutions y;(t) are obtained
for initial values y(t) > 0, the solutions y»(f) for y(f) < 0.)
Now we show that there are no further (maximal) solutions.
Firstly, suppose y: I — R is a solution with y(t) £ 0 for t € I.
Then y’(t)/y?(t) = 1 on I. Fixing some t, € / and integrating,
we get

t y(t) 1 y(t) 1 1
t—ty= y(TldT:/ dZ:{_} -
v Y(7) y(to) M M1 yt) y(t)  y(t)
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@ (cont'd)

This holds for t € / and can be solved for y(t):

L _ with ¢ =ty + y ()"

yit) = b+y(l) ' —t c—t

Hence I is contained in either (—oo, ¢) or (¢, +00), and y(t)
coincides with one of the corresponding solutions y4(t) or
yo(t)on 1.

Secondly suppose there exists &, t; € / such that y(&) # 0,
y(t) = 0. We may assume t; < ty (the case that y(t)
“branches from y = 07, the other case being similar) and
y(t) > 0for t € (4, 1] (since y(t) is continuous, it has a
largest zero in /, which we can choose as f).

On one hand we now have lim;;, y(t) = y(#) = 0. On the
other hand, the first case applies to t € (t, fp] and yields

1 1

t) = >
v h+y()' =t~ o+ y()" —t

>0 forte (t1,t0].

This contradiction shows that the second case does not occur.
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Figure: The solutions y(t) = 1/(c — t) for various constants ¢
(including o0), with the one for ¢ = 0 and its asymptote colored
blue
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Thomas No-name notation y(t) for solutions of ODE’s can easily cause
el confusion, when more than one solution is considered, e.g., when

we say “all solutions are horizontal shifts of a particular solution”.
At least in such cases we should follow good mathematical
d practice and specify solutions, which are mathematical functions,
e in full—like this:

Solutions

Three particular maximal solutions of y’ = y? are

fi: (—00,0) = R, t— —1/t,
fo: (0,400) = R, t— —1/t,
f3: R—>R, t—0.

Every further solution arises from one of these solutions by a
horizontal shift and/or restriction to a subinterval, i.e., it is zero or
has the form

g l-R t——-1/(t—c)

for some ¢ € R and some interval / contained in either (—oo, c) or
(¢, +00).



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Solutions contd
@y = «/|y\ Again y = 0 is an obvious solution, and further

solutions may be guessed: Since y(t) = t? satisfies
y'(t)=2t=2,/y on [0, +00), we can scale this “approximate
solution” by an appropriate constant, viz. 4, to obtain the real
solution y(t) = 112, t € [0,+00). Note that both y(t) = 0 and
y(t) = ;12 solve the IVP y' = \/]y], y(0) =

Since y’ = /[y is autonomous, y(t) = 1 (t — ¢)?,

t € [c, +00), is a solution for any ¢ € R, and so is
y(t)=—1(t—c)? te (—oo,cl.

Since on the t-axis all solutions have horizontal tangents

(y =0=y" = /|y| = 0), we can “glue together” the
different types of solutions and obtain the following
2-parameter family of solutions with domain R :

*%(1’*01)2 if t < ey,
y(t): 0 if c1 <t < ey,
%(t — 02)2 if t > co.

Here —oco < ¢1 < ¢ < +o0; equality in either of these
indicates that the corresponding section is omitted.
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@ (cont'd)
B It can be shown that these are all maximal solutions.
Brief sketch: For solutions not meeting the t-axis use a

Solutions

similar argument as for y’ = y2. A solution meeting the t-axis
must meet it in an interval, since it can only flow in from
below and branch off above, hence never return. Since the
solutions are continuous, the interval must be closed.
Denote it by [c1, ¢;] and show that the solution is as stated
on the previous slide.
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[éicf;s;?ig:il 9 ( X—y +2X — e) dx —(eX -y + 2y) dy =0
Thomas By a solution of M(x, y)dx + (x y) dy =0 we mean a
Honold smooth plane curve ~(t) = (x(t), y(t)), t € I, satisfying
M(x(t), y(1)X () + N(x(t), ¥(1)y'(t) =0 forall t & I
s oo equivalently,
Solutions M ('7( t)) > ,
~'(t)=0 foralltel

Geometrically this says that the tangents to ~ at every
regular point should be orthogonal to the vector field (M, N)
(the vector field corresponding to w = Mdx +Ndy) at this
point.

In the case under consideration w is exact, w = df for
f(x,y) =e* Y + x? —ex — y2, and hence the parametrized
contours eX ¥ + x? —ex — y? = ¢, ¢ € R, of f provide
solutions to (e* 4+ 2x —e)dx — (e¥* ¥ +2y)dy = 0.
Accordingly, ODE’s of the special form f, dx +f,dy = 0 are
said to be exact.
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® The Implicit Function Theorem gives that every IVP

(Y +2x —e)dx — (e ¥ +2y)dy =0,

_ ae/2 e/2
() = (r0.30) # (5 -5 )

(the unique critical point of f) has a solution. The point curve

oce/2 e/2

v(t) = (3 ,—T), as well as any other point curve

~(t) = (X0, Vo), trivially satisfies the ODE but isn’t counted as
a solution, since it is not smooth.

Solutions are highly non-unique, since we can choose the
parametrization of the contours freely.

Further, the Implicit Function Theorem gives that at every
point (xo, o) With f,(Xo, yo) = —(e°7Y° +2yp) # 0 the
corresponding contour admits locally a parametrization y(x),
which must be a solution of the ODE

/_dl:_fl eV +2x —e

Y= ax f, e V+2y
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Figure: Solutions of (e*Y +2x —e)dx — (e ¥ +2y)dy =0in
implicit form (red), and the gradient field of

f(x,y) =X + x? — ex — y? normalized to unit length (blue)
The critical point (e*g/z, —"Zz> ~ (—0.59, —1.95) is on two
intersecting solution curves.
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mroductionte. ~ R€mark on the plot

[éicfmgias' If you look carefully at the two solution curves through the critical
Thomas point po = (X0, o), you can see that they have been approximated
Honold by line segments, the reason being that the contour plot function

of SageMath doesn’t draw the correct picture near pg.

The tangent directions at pg of the two curves can be found from
the Taylor approximation

f(po + h) = f(po) + 1h"H,(po)h + o(|h[?) for h — 0.

From this one sees using Morse’s Lemma that the contour of f
through pg is, after translation of py into the origin, locally
well-approximated by the 0-contour of the Hesse quadratic form

q(h) = hTH(po)h = (%2 + 2)h2 — 2¢°/2hy hy + (e®/2 — 2) 3
— (92— 2)(hp — hy) (h2 42 gm)

which is the union of two lines (expressing the fact that pg is a
saddle point of f). The said tangent directions are the directions

. . /2
of these lines, i.e., have slopes 1 and :Z/ng ~ 3.11.
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Solutions cont’d
Oy =-—x/y

This ODE can be written as y’y + x = 0 and integrated to

yield y; + X; =C= % € R. The solutions are therefore the
half-circle parametrizations

y(x)=+Vr2—x2, xe(-r,r) (withr>0).

Every IVP y' = —x/y A y(X0) = Yo # 0 has a unique solution,
as is easily seen.

Alternatively, we can rewrite

p_dy

y_dx_—§ as xdx+ydy =0,

which is exact with anti-derivative f(x, y) = # This gives
whole-circles centered as (0, 0), which are the contours of f,
as implicit solutions. The exceptional role of the x-axis,
visible in the original explicit ODE, has gone away.
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Solutions cont’d
®y' +y=0

Two particular solutions of y”" = —y are y4(t) = cost and

y2(t) = sin t (with domain R). For A, B € R, since

(Acost+ Bsint)” = A(cost)” + B(sint)” = —Acost — Bsint
= —(Acost+ Bsint),

we obtain further solutions y(t) = Acost + Bsint (also with
domain R).

Since y(0) = Acos0 + Bsin0 = A,

¥'(0) = —Asin0 + Bcos 0 = B, there is exactly one solution
ofany IVP y”" = -y Ay(0)=AAy'(0)=B (A BeR).
Similarly, one can show that the IVP

y'=-y. yl)=yo, y'(tt)=y1 (lo, Y0, y1 €R).

has exactly one solution of the said form

y(t) = Acost+ Bsint (Exercise). This means that the graphs
of the maps t — (y(t), y'(t)), or traces of the curves

t (ty(t),y'(t), with y(t) = Acost + Bsint, A, B € R,
partition the space R3. (Can you imagine that?).
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Solutions cont'd
® (con’t)

Now we show that every solution y(t) of y” = —y has the
form Acost + Bsint.

A trick that will do the job is considering the function

t— y(t)? + y'(t)2. Since

v

P +y2) =2y +2yy" =2y (y+y") =0,

this function must be constant for any solution of y” = —y.

Now let y(t) be any solution and set A = y(0), B = y’(0).
We have already a solution in our family with these initial
values, viz. z(t) = Acos t + Bsin t. The difference

d(t) = y(t) — z(t) is then also a solution and satisfies
d(0) = d’(0) = 0. Since d? + d'? is constant, we have

d(t) + d'(t)> = d(0)> + d'(0)2 = 02 + 0% = 0.

This obviously implies d(t) =0, i.e.,
y(t)=2z(t) = Acost + Bsint.
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Exercise

We have considered the ODE y’ = —x/y as an example.
Actually there are four ODE’s y' = +x/y and y' = +y/x,
which look very similar. Draw direction fields for the other
three ODE’s and determine their solutions in both implicit
and explicit form (if possible).

Exercise
Let &y, o, y1 € R. Show that the IVP

!

y'=-y. y(b) =y Y (b)=w

has a unique solution.
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Supplementary Remarks on the
Material in [BDM17], Chapter 1

Direction fields

Letf: D — R, D C R2, be a function

Solving the 1st-order ODE y’ = f(t, y) amounts to finding a
function y = y(t), defined on some interval / C R, and such that
forallt e/

@ (t,y(1) € D

@ the slope of the graph of y at the point (¢, y(t)) equals
f(t,y(t)). Alternatively, the tangent direction to the graph at
(t,y(t)) is represented by the vector (1, f(t, y(t))).

We can illustrate this by attaching to sample points (t,y) € D a
small line segment with direction (1, f(t, y)) (or a positive multiple
of this vector). This is called a slope field or direction field of

y' = f(t,y). Solving y’ = f(t, y) graphically then amounts to
finding a function y = y(t) such that the tangent direction of the
graph of y at every sample point encountered is given by the
corresponding line segment.
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Mathematical Modelling with
ODE’s and PDE’s

Differential equations are ubiquitous in Physics and Engineering,
because fundamental laws of Physics can be expressed in terms
of differential equations, and hence physicists and engineers
need to solve such equations in order to describe the quantities
involved in a physical process or system.

We consider, without actually solving the differential equations, a
few examples.
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Modeling with Initial Value
Problems

Falling objects

v(t) denotes the speed of the falling object;

initial condition v(0) = 0 (object is released at time t = 0);
Newton’s 2nd Law F(t) = ma(t) = mdv/dtf and assumptions on
the drag force Fp due to air resistance give the following models:

d . .
di‘; — mg Fp=0 (no air resistance)
d .
m di‘t{ — mg — kv Fp=kiv (very small objects)
m %‘; =mg— ko V2 Fp = koV? (most common case)

The first model is realistic only for short distances, the second for
very small objects like dust particels, and the third applies in all
other cases (assuming that air density and gravitational
acceleration are approximately the same as on the surface of the

earth).
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Modeling with Initial Value
Problems Contd

Oscillating pendulum

6(t) denotes the angle between the rod at time t makes with the
vertical direction and L the length of the rod;
initial condition #(0) = 6y (angle when the pendulum is released);
Newton’s 2nd Law gives the following ODE for 6(t):

d20

mL Froi —mgsin 0
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Predator-Prey Models

x(t), y(t) denote the population sizes of two species. We
assume that the second species (the predator) preys on the
first species (the prey), while the prey lives on a different
source of food;

initial population size x(0) = xp, ¥(0) = yo;

reasonable assumptions on the reproduction rates of the
two species and their interaction lead to the following
system of ODE’s:

dt o
dy .
Gy with constants a, o, ¢,y > 0.

These are known as the Lotka-Volterra equations.
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Modeling with Boundary Value
Problems

Heat Conduction

u(x, t) denotes the temperature in a thin solid bar of length
L at distance x from one end and at time ¢t > 0.

The temperature variation is subject to

o? U (X, 1) = up(x,t) for0<x <L, t>0.
(Heat conduction equation)
Boundary conditions:

u(x,0)="f(x), u(0,t)=Ty, u(Lt)=T,.

These express the requirements that the initial (¢t = 0)
temperature distribution in the bar is some known function
f(x), and the ends of the bar are kept at constant
temperatures Ty resp. To.
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Modeling with Boundary Value
Problems Contd

Vibrating String

u(x, t) denotes the vertical displacement of an elastic string
of length L from its horizontal equilibrium position at
distance x from one end and at time t > 0.

The string’s vibration is subject to

& U (X, 1) = ug(x,t) for0<x<L,t>0.
(Wave equation)
Boundary conditions:

u(x,0) = f(x), wu(0,t)=u(L,t)=0.

These express the requirements that the string is released
at time t = 0 from some known position f(x) (i.e., a plucked
guitar string) and is fixed at both ends.
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Further Notes on Modeling with
ODE’s and PDE’s

As in the case of falling objects, it is often not clear which
mathematical model is appropriate. Solving the model
equations and making predictions based on the results must
be checked against real-world data.

Even when using a well-established model there is the
problem of estimating numerically the corresponding
physical parameters involved. If the model is very sensitive
in this regard, small inaccuracies in the input data may lead
to completely false predictions by the model.

ODE’s and PDE’s used in modeling have at least one
undetermined parameter, because physical quantities are
relative to the unit of measurement used. For example, the
ODE v/(t) = g describing a falling object over a short time
has the parameter g, which can take different real values
depending on the choice of units, e.g., g = 9.81[m/s?] vs.
g = 127000 [km/h?].
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Equations
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The Linear Case
Definition
An (explicit) first-order linear ODE has the form

y' =a(t)y + b(t).

If b(t) = 0, the linear ODE is called homogeneous; if
b(t) # 0 for at least one t, it is called inhomogeneous.

Compare this with the theory of linear recurring sequences.
Theorem (homogeneous case)
If a(t) is continuous, the general solution of y' = a(t)y is
given by
t t
y(t) = celo @99 _ y()elo @9 R,
The domain of y(t) is that of a(t). (If the domain T of a(t) is

not an interval, there exists a solution of the stated form on
every connected component of T.)
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Proof.
The chain rule and the Fundamental Theorem of Calculus give

t d t t
i (ceffé ) ds) =celo®%. 2 [ a(s)ds = celo 9. a(1),
dt dt J,,

showing that t — celo %% is a solution of y’ = a(t)y.

Now let y(t) be any solution and consider the function

f(t) = y(t)e=A, where A(t) is an antiderivative of a(t), say
t

A(t) = [, a(s)ds.

F(t) = y' (e "D y(t)e O (=a(t)) = (y'(H)—a(t)y(t))e D =0

— f(t) = cis constant, and hence y(t) = ceA() as claimed.
(The choice of A(t) does not matter, since the additive constant K
involved in the choice turns into a positive constant e X, which is
“eaten up” by c.) O
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The Complex Case
A Brief Introduction

The Inhomogeneous Case
Solved by variation of parameters
Variation of parameters

Idea: The homogeneous ODE y’ = a(t)y is solved by

y(t) = ce”D, In order to solve y’ = a(t)y + b(t), make ¢ = c(t)
variable; that is we set y,(t) = c(t)eA) = ¢(t)yn(t), where yn(t)
denotes a solution of the homogeneous ODE.

¥ = (cyn) = C'yatcyp = C'yntcayn, = a(cyn)+b < ¢ = by,

Theorem
Suppose a(t) and b(t) are continuous.

© A particular solution of y' = a(t)y + b(t) is

t t
Yo(t) =0 [ b(s)e ™ ds, where A(t) = / a(s)ds.
fg tO

® The general solution of y' = a(t)y + b(t) is

y(t) = ce®D 4y (1) = y(t)eD + yp(t), ceR.
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The remark about the domain of solutions made in the
homogeneous case applies, except that now the maximal domain
is the intersection of the domains of a(t) and b(t).

Proof.

(1) should be clear from the preceding consideration. Continuity

of b(t) is needed for & t; b(s)e=A(®) ds = b(t)e~A; cf. the proof

of the Fundamental Theorem of Calculus.

(2) One needs to show that the difference t — y;(t) — y2(t) of two

solutions of y’ = a(t)y + b(t) is a solution of y’ = a(t)y, which is

straightforward. = y(t) = y(t) — yp(t) +yp(1). O
————

solves y' = a(t)y
Further Notes

e W.l.o.g. we could have assumed that { = 0. This assumption
is justified, since the “time shift” z(t) = y(t — &) transforms
the IVP y' = a(t)y + b(t) A y(0) = yo into
Z'(t)=a(t — b)z(t) + b(t — ) A z(ty) = yo, Which is also
1st-order linear with slightly changed coefficient functions.

® The preceding considerations apply, more generally, to
functions a(t), b(t) with finitely many discontinuities of the
first kind (i.e., the one-sided limits exist but are different).
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Further Notes (cont'd)
e (contd)

In this case the preceding formula gives all continuous
functions y: | — R that satisfy y'(t) = a(f)y(t) + b(t) at
every point t at which a(t) and b(t) are continuous.
This follows from a more general version of the Fundamental
Theorem of Calculus, which states that F(t f f(s
satisfies F’(t) = f(t) at every t at which fIS contlnuous and
has one-sided derivatives equal to limg f(S), limg; f(S) at
discontinuities of f of the first kind.
The following alternative representation of yp( t)is
sometimes useful: Since A(t) f a(r)dr, we have
t

yp(t) = b( 1eAD-AS) ds = | G(s, t)b(s)ds

fo fo

with G(s, t) = exp ( JLa(r) dT).
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ronet In this case a(t) = 2, b(t) = 3 are constant, and the general
solution is
First-Order Linear y(t) = —% + Cezt7 ceR,

Equations
The Co

because the associated homogeneous ODE y’ = 2y is
solved by y(t) = ce? and y’ = 2y + 3 has the constant
solution y,(t) = —3.

Solving y(t) = —% + ce?b for ¢ gives the solution of any
corresponding IVP:

= (y(to)+ e — | y(t) = (y(to) + §)e?—0) — 2|

We can also solve it by variation of parameters:

t

t
yp(t) ZCZt/t e_2s-3d8 — eZt |:_2e—2$:| _ _%_’_
o

fo

which is the constant —% plus a solution of y’ = 2y.
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© (contd)
Note that any solution y(t) with y(ty) # —% grows
exponentially for t — +oc.

@y =-2y+3
Here the general solution is

y(t) = (y(fo) — %)e_Q(t—fo) + % ’

and every solution (regardless of the initial value y(f))
converges for t — +oo towards the constant
(equilibrium, steady-state) solution y(t) = 3
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Fionold The associated homogeneous ODE remains the same,
and a particular solution is

yp(t) =e 2! / te?!dt

=e 2 <_12te2t — ;/eztdt> = %t— %.

= The general solution is

First-Order Linear
Equations

y(t)y=%t—1+ce® (ceR)
=5t — 3+ (y(to) — 3to +§) e 270,

For t — +o00 every solution quickly approaches the
particular solution y,(t) = 5t — 1.
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Oy=-ty+1
The associated homogeneous ODE y’ = —ty has the
solution y(t) = ce~**/2, c € R.
A particular solution of y' = —ty +1is

t
yo(t) =e /2 / e/2ds,
b

and the general solution of y/ = —ty + 1 is

t
y(t) = e /2 <c+/ e5°/2 ds) , c=y(t)eh/2.
)
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@y=-ty+t
The associated homogeneous ODE remains unchanged, so
that we only need to find one particular solution.
Using variation of parameters we get

t
Yo(t) = eftz/z/ seS/2ds = e /2 [esz/z}i
ty 0

— ot/ (et2/2 _ et§/2) —1_ etg/Ze—t2/27
so that the general solution is
y(t)=1—eb/2e /2 L ce /2 =11 e /2 (¢,¢/ €R).
Surprise?

Not really, because y’ = —ty + t = —t(y — 1) has the
solution y(t) = 1.
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O 1y +2y = 4 (cf. [BDM17))

This is an example of an implicit 1st-order linear ODE.
First we rewrite it in explicit form:

2

Note that this splits the original domain R (for f) into the two
subintervals /; = (—o0,0) and = (0, +00). In what follows
we consider only /» and choose f, = 1.

The usual method yields

It follows that another particular solution is y,(t) = t2, and
the general solution is

y(t) =1+ Cfort>0, with parameter ¢ € R.
t2
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@ (cont'd) Note that exactly one of these solutions, viz.

y(t) = t2, is defined also for t = 0.

The solutions on /; are the mirror images w.r.t. to the y-axis
of the solutions on /;, and y(t) = t? is the only solution of the
original ODE ty’ + 2y = 4f2 that is defined in a neighborhood
of t =0.

In other words, the IVP ty’ + 2y = 4t2 A y(0) = y, has a
solution precisely for yo = 0 (and this solution is defined on
all of R).

Plotting solutions:

Rewriting y = t? 4 ¢/t? as 2y — t* = ¢, we see that the
integral curves (solution curves) of ty’ + 2y = 41> are the
contours of F(t,y) = t2y — t*.

—> We can use the contour plot facilities, e.g., of SageMath
to plot the solutions.
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Sequences
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Figure: Graphs of y,(t) = t? + ¢/t? for various values of ¢
(including the branches for t < 0)
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Note on the picture

The empty regions in the plot (due to laziness of your professor)
are misleading. Since we can solve & + ¢/t = yy for ¢ provided
only that f, # 0, there passes a solution curve through any point
of the (t, y)-plane that is not on the y-axis.

Afternote

Our derivation of the general solution of y' = (—2/t)y + 4t
illustrates another important point: For solving an inhomogeneous
linear 1st-order ODE it suffices to compute 1 nonzero solution
yn(t) of the associated homogeneous ODE and 1 solution y,(t) of
the given inhomogeneous ODE, because the general solution is
then y(t) = yp(f) + cyn(t), ¢ € R. For the determination of yn(t),
Yp(t) one may integrate from any f € /.

However, it is not necessarily true that varying t, over all of / yields
all solutions y,(t). (In the homogeneous case it never does.) In

our example this produces (1/t?) fté s?-4sds= 12 —t3/t?,
missing all solutions t2 + ¢/t? with ¢ > 0.

The correct way to obtain all solutions by integration is to fix f
and add an arbitrary constant to the factor ¢(t) in y,(t) = c(t)e’®,

i.e., yp(t) = (1/t%) (co + ffs2 : 4sds), co € R.
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@ mv' = mg — kv (2nd model for a falling object)

This ODE has the form v/ = av + bwitha= —k/m, b= g.
The general solution is v(t) = mg/k + ce ¥/™ ¢ c R.
Suppose the object is released at time t = 0.
= v(0)=0=c=-mg/k

— v(t) = % (1 —e*’“/’”) foro<t<T,
where T is the time when the object hits the ground.
The “limiting velocity” is v, = mg/k.
Suppose the object is released at height x; above ground.
For the distance traveled by the object we obtain by
integrating and using x(0) =0

2
x(t) = mg( + 5 ‘k’/m)+C, c=-"9

k K2
— T can be found by (numerically) solving the equation
mg e—KT/mY _ mPg
K (T+% kM) e =%
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Integrating Factors
There is an alternative way to solve y’ = a(t)y + b(t) using a
so-called integrating factor. We can rewrite the ODE as

y'(1) — a(t)y(t) = b(1).

This equation can be multiplied by any function m(t) with domain
/1o yield the equivalent form

m(t)y'(t) — a(t)m(t)y(t) = m(1)b(t), (*)
provided that m(t) # O forall t € /.
The goal is to choose m(t) in such a way that the left-hand side
can be integrated to yleld y(t) (— integrating factor).
Here m(t) = e=AU = [ a(t)dt, does the job, since
m'(t) = —a(t)m(t) and hence the left-hand side of (x) is
m(b)y'(t) +m' (8)y (1) = & (m(t)y (1))

e A0y (1) — a(t)e A Dy(t) = % (e~ Oy(1)).

= e A0y(0) = [ At = y(0) = HO [ AOb(t)a
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The Linear Algebra Aspect

The set of real-valued functions on a given domain / (i.e., maps
f: | — R) is often denoted by R'. It forms a vector space over R
with respect to the “point-wise” operations

(f+9)(t)=1(t) +g(t) forf,geR/
(cf)(t)y=cf(t) forfeR! ceR.

The general definition of subspaces of an abstract vector space
specializes to:

Definition
A set of functions S C R/ is called a subspaceif S # () and S is

closed w.r.t. the vector space operations, i.e., f,g € S implies
f+ge Sandf e Simplies cf € Sforall c € R.

Linear independence, generating set (spanning set), basis, and
dimension of subspaces of R’ are defined in the same way as for
R"” (and are special cases of the corresponding definitions for
abstract vector spaces).
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Thomas (and thus in particular an infinite set).
ono
Remark
The most important difference between R” and R’ is that R/ is
et Order Linear infinite-dimensional (i.e., does not have a finite basis). For / = R

"oemece - this can be inferred from the following exercise.

Exercise
Let f,(t) = e for A € R. Show that {fy; A\ € R} is linearly
independent in R,

Hint: Suppose there exists r € Z+ and distinct numbers
A, ..., Ar,C1,...,Cr € R such that

creMt+ e+ + ceM =0 forallteR.

Assuming A < A2 < --- < A\, and ¢, # 0, divide this equation by
eMtand let t — +oo to obtain a contradiction.
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Proposition

Assume that t — a(t) is continuous on I. Then the solution set S
of y' = a(t)y forms a 1-dimensional subspace of R' and, for any
choice of ty € 1, is generated by the function | — R,

t— exp (ft ds)

Note that we assume that all solutions have maximal domain /.

Proof.

We have S # (), since the all-zero function / -+ R, t — Ois a
solution of y’ = a(t)y. Further, it is easy to verify that sums and
scalar multiples of solutions of y’ = a(t)y are again solutions.
— S'is a subspace of R".

The fact that S is 1-dimensional is less trivial; it follows from our
theorem on solutions of homogeneous linear 1st-order ODE’s,
which says that every solution is a scalar multiple of

[ — exp (ft ds) O
Note

In a way it is surprising that dim(S) = 1, because S is defined by
a single linear differential equation. Looking at the case of R”,
where solution spaces of single (nontrivial) linear equations have
dimension n — 1, one would rather expect dim(S) = oo — 1 = o0
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[éicfmgias' ® The theorem also gives that the solution set of an
Thomas inhomogeneous ODE y’ = a(t)y + b(t) forms a line in the
hicrold corresponding space R/, which does not pass through the

origin (the all-zero function / — R). As in our Linear Algebra
il crash course you may check that any affine combination
s t— Ayi(t) + (1 = A)yz(t), A € R, of two solutions 1, y» of
; o y' = a(t)y + b(t) is again a solution.

* In Example 10 of the introduction we found that the solutions
of y” 4+ y = 0 on R form a 2-dimensional subspace of R¥
with basis sin t, cos t. (We had proved that every solution has
the form Acos t + Bsint, i.e., is in the span of {cos t,sin t},
and it only remains to observe that cos t, sin f are not
constant multiples of each other.)

The evaluation map S — R?, y — (y(0), y’(0)), which sends

a solution to the corresponding initial values at t = 0, is a
linear bijection with inverse map R2 — S, (A, B) — Acost + Bsin .

e Linear Algebra will play a much more prominent role when
we analyze higher-order linear ODE’s and 1st-order ODE
systems later.
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Thomas © a(t) = aand b(t) = b are constants.

Honeld In this case we have

at ! —as at 1 —as : b at —at
First-Order Linear yp(t) =€ be ds = be ——Z¢€ = ;¢ (1 —¢ )
Equations 0 a 0 a
Th e b at
= —(e? —1
S = 1)
and hence as solution of the IVP y' = ay + b A y(f) = yo the

function

b
— a(t—t) , ¥ (La(t—t) _
y(1) = y(to)e™! =) + = (e-0) — 1)

Setting y(f) = —b/a gives the particular solution
Yp(t) = —b/a noted earlier.

For a < 0 we have lim;_, 1 ¥(t) = —b/a = ¥, say, and

V(1) = Yoo + (Yo — Yoo )e 70 o = y(1o) |.

In other words, every solution y(t) approaches the
steady-state y., exponentially fast.
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Honoia @® a(t) = a, b(t) = e,
In this case we have

First-Order Linear

t
quafions N yp(t) _ eat/ C(C_a)s ds
o

t
at 1 (c—a)s _ eCt_patt(c—a) .
e [—C_ae W e if c # a,

(t —to)e if c=a.

and hence

Y(fp)ed!=0) 4 edb . (f — f)e@(l=b) jf ¢ = a.

y(t) = {y ()e16) 4 o0 TR e a

In the second case (a type of resonance) the solution may
grow initially (i.e., for t | t) even if a < 0. This happens
precisely for y'(ty) = ay(fo) +e® > 0, i.e., y(f) < —Led.

T a
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O a(t)=a, b(t) = {

Special Cases (cont’d)

0 ift<T,

b ift>T.

Assuming that {y = T, we have y,(t) = 0fort < T and

t 1 t b
__ .at —as _ at| ' _.—as _ a(t—T) _
Yo(t) =¢ /T be~ % ds = be [ o ]T = (e 1)

for t > T. This gives the general solution as

(1) = y(T)edt=T) fort<T,
YOZ\meat-D 4 8 (21— 1) fort>T.

We can verify that

. y(T+h) —y(T) _ - Y(T+h) —y(T)
AL R

in accordance with the preceding note about discontinuities
of b(t). The solutions y(t) simply arise by continuously
gluing a solution of y'(t) = ay(t) for t < T with the
corresponding solution of y'(t) = ay(t)+ bfort > T.

=ay(T)+b,
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O at) — a b(1) = {*OO

Special Cases (cont’d)
ift=T,
0 ift#T.

In the special case t = 0 this function is called delta function
and denoted by 4(t), so that in general b(t) = §(t — T).

46(t) is not an ordinary function but represents a so-called
distribution, which acts by integration on functions. The
precise definition is

/R f(93(2)dt = lim /R £(£)5n (1),

where 05(t) = 5> x characteristic function of [—h, h]. If f is
continuous at t = 0, this definition gives [, f(#)d(t)dt = f(0)
and in particular [, 6(t)dt = 1.
Substituting (¢t — T) into the solution formula gives y,(t) = 0
fort < T and, assuming fp < T,
t

Vo) =e | §(T —s)e ®ds=ee @ =ed!=T) fort>T.

)
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Special Cases (cont’d)

O (contd)
The general solution of y'(t) = ay(t) + é(t — T) is then

(t) . y(to)ea(tft") if t < T,
YOZ) yitp)eat=0) 4 ea=1 it > T,

We have limg7 y(t) = y(tp)ed!=0),

lime 7 y(t) = y(T) = y(tp)e®=0) +-1, y'(t) = ay(t) for t £ T,
and y(t) arises from gluing together solutions of y’ = ay on
(=00, T) and (T, +oo) which differ by a unitstepatt = T.
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A Brief Introduction to
Complex Numbers

For a more gentle introduction see [Ste16], Appendix H
A complex number is a point in the Euclidean plane R?. Complex
numbers are added and multiplied according to the rules

(a,b)+(c,d):=(a+c,b+d), (Vector addition)
(a,b)(c,d) := (ac — bd, ad + bc). (Well, just fancy)
In particular we have
(a,0)+ (c,0) = (a+c,0), (a,0)(c,0) =(ac,0) fora,ceR
(the numbers on the real axis are multiplied as usual), and
(0,1)* = (0,1)(0,1) = (~1,0)

(the square of the “imaginary unit” i = (0, 1) is the point on the
real axis corresponding to —1).

Making the identification (a,0) £ a, we obtain
(a,b) = (a,0) + (0,b) = (a,0) + (b,0)(0,1) = a+ bi, %= 1.
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The complex numbers form a field, i.e., their
addition/multiplication follows the usual laws of arithmetic. Thus it
suffices to memorize only i = —1: Any complex number z has
the form z = a+ bi for some unique real numbers a, b, and

z+w=(a+bi)+(c+di)=a+c+ (b+d),
zw = (a+ bi)(c + di) = ac + adi+ bci + bd i
= ac — bd + (ad + bc)i. (Using i? = —1)

Complex variables are commonly denoted by z, w, ... (cp. with

X, y,... for real variables), and the field of complex numbers is
denoted by C. (But keep in mind that a + bi is just the point (a, b),
i.e., Cis just R? equipped with a fancy multiplication.)

The key property that distinguishes fields from commutative rings
such as Z is that every element z # 0 has a “multiplicative inverse w”
satisfying zw = 1. One writes z=' or 1/z for w and z; / z, for z 251.

For a complex number z = a+ bi # 0 (i.e., at least one of a, b is
nonzero) the multiplicative inverse is easily obtained by
rationalizing the denominator:

1 1 a— bi a— bi a -b

z a+bi (a+bifa—bi) @&+b2 2 @ZiE"
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The analogy with R? goes further: The absolute value |z| of a
complex number z is its Euclidean length, i.e.,

|z| = |a+ bi| := Va2 + b2

It satisfies |z + w| < |z| + |w] (triangle inequality for the Euclidean
length/distance) and |zw| = |z| |w|. For the latter check that

(& + b?)(c® + d?) = (ac — bd)? + (ad + bc)?.

The complex conjugate of z=a+ bic CiszZ=a— bi.
Geometrically, the map z = (a, b) — Z = (a, —b) is reflection at
the x-axis (“real axis”). Algebraically, it satisfies z+w =Z + w,
ZwW = Zw, i.e., forms an automorphism of C.

The coordinates a, b of z = (a,b) = a+ bi € C are called real
part resp. imaginary part of z, notation a = Re(z), b = Im(2).
Since C = R? as a set, we can do analysis in C as you have
learned in Calculus Ill. For example, a sequence (z,) of complex
numbers converges to z € C if for every ¢ > 0 there exists an

N € N such that |z, — z| < e for all n > N. Writing z, = a, + by 1,
z=a+ bi(an, bn, a,b € R), the convergence z, — z is equivalent
to a, — a A b, — b (coordinate-wise convergence).




Math 285 A series >~ 7, z, of complex numbers converges (i.e., the
inieduction© associated sequence s, = zy + Z2 + - - - + Z,, of partial sums

Equations converges), provided it converges absolutely, i.e., the >~ ; |z,
Thomas (an ordinary series of real numbers) converges. This follows by
Honold applying the absolute convergence test for real series [Ste21,

Ch. 11.5, Th. 3] to }_ 2o Re(zn), > pep Im(2s). The details are left

as an exercise. (One should note that there is nothing special
about complex numbers here. The analogous statement holds for

1e Complex Case

A Brief Introduction series of pOintS in Rn)

to Complex
Numbers

Polar Form for complex numbers

Using polar coordinates in R? we can write every nonzero
complex number z in the form

Z=(rcos¢,rsing) =rcos¢+ rsingi = r(cos¢ +isin¢).

Here r = |z| and ¢ € [0,27) are uniquely determined by z.The
complex exponential function exp: C — C is defined by the same
power series as in the real case (and extends x — e* to C):

OOZn

e’ == exp(2) := Z o

n=0
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Polar Form for complex numbers cont’d

That the exponential series converges for all z € C, can be proved
using the absolute convergence test mentioned above.

The functional equation e?*" = e?e" holds for all z, w € C. This
can be proved by rearranging the double series representing e“e”
according to z'w/ with  + j fixed and using the Binomial Theorem;
cf. exercise.

Finally, extracting real and imaginary part of el = Y"° (i$)"/n!
and using the known Taylor series of cos, sin, one arrives at
Euler’s Identity

e? = cosp +ising, ¢ € R.

Combining this with polar coordinates in R?, we see that every
z € C\ {0} admits a unique representation

z =r(cos¢ +ising) = re'® with r = |z| > 0, ¢ € [0, 27).

This is the so-called polar form of z. The angle ¢ is called the
argument of z, notation ¢ = Arg(z). Analytically, forz=x+ yi
we have ¢ = arctan(y/x) if x > 0, ¢ = arctan(y/x) + 7 if x <0,
and ¢ = +7/2ifx=0Ay 2 0.
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The Analogy with

Linear Recurring

Sequences

Figure: The polar form z = re'® of z = a + bi

r,¢ are computed from a,bas r = |z| = Va2 + b2,
¢ = arctan(b/a).
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The polar form easily shows the geometric meaning of complex
multiplication. For z = re'®, w = se'” in polar form, we have

Zw = rse%el? = rsel(®+?)

(using the functional equation for z — ¢#). This is the polar form of
zw, except that ¢ + v is not necessarily reduced modulo 2.
From it we see that multiplication by z is composed of a rotation
with angle ¢ = Arg(z) (the map w > e'*w and a scaling map (the
map w — |Z| w.

For example, multiplication by the imaginary uniti =e
rotates every w € C\ {0} around the origin by 90°, and
multiplication by 1 +i = v/2¢'™/* rotates w € C \ {0} by 45° and
scales it by the factor v/2.

Roots of Unity

A complex number z is said to be an n-th root of unity if 2" = 1.
Writing this equation in polar form, z" = r"ei"® = 1e°¢, shows that
the n-th roots of unity are precisely the n numbers e2™/" with

k € {0,1,...,n—1}. These form the vertices of the regular n-gon
centered at 0 and with one vertex at 1, which is inscribed into the
unit circle. Writing ¢, = ¢®™/", the n-th roots of unity are

1a<n7<§7"'a<n_1'

ir/2 jUSt
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e

Complex

First-Order Linear

44..3 - ,45

Figure: The 6th roots of unity in C form a regular hexagon
inscribed into the unit circle |z| = 1

One can also verify directly that ( = % satisfies
(2= =HiV8 (8 _q 4= =13 (5 1=iV3 ang (6 =1,




Math 285
Introduction to
Differential
Equations

Thomas
Honold

The Complex Case
A Brief Introduction

to Complex
Numbers

The Fundamental Theorem of Algebra

That the polynomial X" — 1 has n distinct roots in C and hence
splits in C[X] (the polynomial ring in one indeterminate over C)
into linear factors, viz.

n—1

X' 1= H (X7627rik/n>’

k=0
is a special case of the so-called Fundamental Theorem of Algebra:

Every polynomial p(X) = po + p1X + --- + pgX? with
coefficients p; € C and degree d > 1 (i.e., pg # 0) has
at least one root in C.

Since p(c) = 0 implies p(X) = (X — ¢)q(X) for some polynomial
q(X)of degree d — 1, it follows by induction that p(X) splits into
linear factors in C[X].

No easy proof of the Fundamental Theorem of Algebra is known. A
rather elementary, but still quite intricate proof due to ARGAND (1814) is
within the scope of a Calculus Il course. One assumes, by contradiction,
that p(X) has no rootin C. Then f: C — C, z Ipsiz)\ is well defined, and
one can easily show that f attains a maximum at some point z, € C.

Algebraic properties of C are then used to derive a contradiction from this.
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Thomas © Show zw =Zw and |zw| = |z||w| for z, w € C.

Honold

® Show zZ = |z|2 for z € C, and give a geometric
interpretation of the inversion map C \ {0} — C\ {0},

1 z
ZHE—E.

T lex Case
A Brief Introduction
to Complex

oo
s Conl ©® Show that a series Y z, of complex numbers converges if it
c n=0

o0
converges absolutely, i.e., > |z,| converges in R.
n=0

@ The complex exponential function is defined by

~z"

zZ .__ . — 1

e’ == exp(2) := Eo”! forz=x+iy e C.
n=

Show that this series converges for all z € C.

@ Evaluate Y- ()" and graph the first few partial sums of
n=0

this series in the complex plane (i.e., in R?).
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Exercises on Complex Numbers
Contd

@ Prove Euler’s identity ¢'® + cos ¢ + isin ¢.
Hint: 2 =1, = —i,1* =1, i°> =i, etc.

@ Prove the functional equation for the complex exponential
function: e?t% = e?e" for z, w € C.

Hint: For two absolutely convergent series > ¢, > d; the

k=0 1=0
identity
(Z Ck> (Z d/) = Z (Codn +C1Oh_1+---+ Cndo) holds.
k=0 /=0 n=0

® For z = x + iy show that Re(e?) = e* cos y, Im(e?) = e*sin y.

© Show that the range of the complex exponential function is
C\ {0} and that e?*2™ = ¢? for z € C.
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Exercises on Complex Numbers
Contd

@ Suppose ¢ = a+ib € C is nonzero. Show without recourse
to Euler’s Identity (cf. previous exercise) that the equation
2% = ¢ has exactly two solutions in C.

Hint: For z = x + iy the equation z? = c is equivalent to
x? — y2 = an2xy = b. Express x? + y? in terms of a, b.

® Show (e.g., by completing the square) that a quadratic
equation Az + Bz+C =0, A,B,C c C, A+ 0, has (exactly)
2 solutions in C if B> — 4AC # 0 and 1 solution if
B? —4AC = 0.

@ Euler’s Identity and the functional equation for z ~ e (cf.
previous exercise) imply that the solutions of z7 =1in C
(n-th roots of unity) have the form e?7ik/7 = ¢k with
k€ {0,1,...,n—1}, ¢, = ®™/", and form the vertices of a
regular n-gon inscribed in the unit circle. Using the result of
a), determine (4 in the form u + iv and sketch the solutions
of z%* = 1 that are contained in the 1st quadrant of the plane.
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Complex 1st-Order Linear ODE’s

Definition
An (explicit) first-order linear ODE with (non-constant) complex
coefficients has the form

Z'(t) = a(t)z(t) + b(t) witha,b: D— C.

A solution of such a complex ODE is a complex-valued function
z(t) = x(t) +1iy(t), defined on an interval / C D and satisfying
Z(t) = xX'(t) +1iy/(t) = a(t)z(t) + b(t) forall t € 1.
Writing a(t) = ai(t) +iax(t), b(t) = by(t) + ibo(t), the complex
ODE is equivalent to

X'(t) = ar()x(t) — ax(t)y (1) + bi (1),

y'(t) = ax(t)x(t) + ar (t)y(t) + ba(t);

in matrix form:

(o) - (G =) Gin) + (5i6)
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RIS The general solution of Z/(t) = a(t)z(t) + b(f) is
3 z(t) = zoe®® + z,(t) with zy € C and A, z,: | — C defined by
o o

Thomas
Honold

t t
All) = / a(s)ds, zy(t) =" [ b(s)e ) ds.
o "

The proof given in the real case carries over—essentially

because differentiation/integration of complex-valued functions of
a real variable is done component-wise and the formula

Complex LAl = A'(t)eA() also holds for complex-valued functions A(t).

iy The chosen normalization of A(t), zp(t) implies A(t) = Z,(%) =0,
showing that z(t) = zoeA(!) + z,(t) is the unique solution of the
corresponding IVP Z/(f) = a(t)z(t) + b(t) A z(t) = zo.
Complexification of real ODE’s
In order to solve a real ODE y'(t) = a(t)y(t) + b(t), write
b(t) = Im B(t) and solve the complex ODE Z'(t) = a(t)z(t) + B(t).

Z/(t) = X'(t) +iy/(t) = a(t) (x(t) + iy(t)) + Re B(t) +ilm B(t)

= a(t)x(t) + Re B(t) +i(a(t)y(t) + b(t)),

= y(t) = Im z(t) will then be a solution of y’(t) = a(t)y(t) + b(t).
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Even though it adds additional complexity, complexification can be
useful since complex functions are sometimes easier to
evaluate/differentiate/integrate than real functions. As an

example, recall the computation of f02” cos(mt) cos(nt) dt by using
e'¥ in place of cos x.

Example

We solve y’ = ay + sin(wt) with a,w € R.

Complexifying this ODE leads to z’ = az + el“!, which is a
complex analogue of y’ = ay + e (with ¢ = iw).

Now we could recall the corresponding formula derived by

variation of parameters, but it is also instructive to solve the
complex ODE ad hoc.

Since (e!) = iwe“!, it is reasonable to guess that there exists a
particular solution of the form z(t) = Ael“! with A € C.

1
iw—a

Z(t) = Aiwe“! = a(Ae“)+el! = Aiw=aA+1 <= A=

iwt . —ad— 1w

= Tw c = m(cos(wt) +l Sln(wt))
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— y(t) =Im Z(t) = —m COS(OJt) — m sm(wl‘)

Thomas
Honold

This function is indeed a solution of y’ = ay + sin(wt), as the
following double-check shows:

2
¥ ’ w . aw
)= 0—— t) — D——= cos(wt
v = gz sinlt) = g cos(et)
quations 2
' . a . aw
= sm(wt) — m sm(wl‘) — m cos(wt)

Tr
Lir

= sin(wt) + ay(1)

Notes
e Of course we can also complexify using y(t) = Re z(t).
e Using the polar form A = Rel?, the solution of the preceding

example can also be expressed as
}/(t) —Im (Reidveiwt) —Im (Rei(wl‘+¢)> = Rsin(wt—|— ¢)
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Since
—a—iw| | 1 | 1A
@+uw?| |—atiw| |-a+tiw] Va@+w?

our previously found particular solution of y' = ay + sin(wt) admits
the two alternative representations

w a .
y(t) = 7m COS((.L)t) — m Sln(wt)

1 .
= \/ﬁ sm(wl‘ + (b)

with
b= arctan(w/a) ifa<0,
~ arctan(w/a) + 7 ifa>0.

In fact any linear combination Acos(wt) + Bsin(wt) (A, B € R) can
be brought into such a form (with cos or sin), since

Acos(wt) + Bsin(wt) = Re((A — iB)ei“’t) =Im((B+ iA)ei‘”t)‘
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Pure Mathematicians would ...
cf. the previous set of exercises

start with the series representation e? = expz =2 %
z € C, of the exponential function.

Derive the functional equation exp(z + w) = (exp z)(exp W)
(z,w € C) from this using the binomial theorem in the form
(z+w)” E w"—k

k=0 kl (n Kl
Define cos(x) = Re(e'*) and sin(x) = Im(e™¥), making Euler’s
Identity a trivial fact.

Derive the powers series representations

i( 1)k X2k . i( 1)k X2k+1
COsS X = — —, sin X = A
27 (2k)! 27 2k 1))

by separating exp(ix) =

n=0 n!
Derive all the well-known properties of cos, sin from their
power series representations and the functional equation for
the exponential function. As an example, we have
cos? X + sin® x = |ei’"2 =X =e¥.eTX =1,
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m = 2 x smallest positive zero of x — cos x.

That this zero is well-defined, follows from continuity of cos
(which requires its own proof, of course) and the
intermediate value theorem on account of cos(0) = 1 > 0,

22 24
cos(2) =1 f—+z—< 1-24+16/24=-1/3<0,
where we have used the alternating series test for
convergence and the corresponding limit estimation. As a
by-product, we obtain 0 < 7/2 < 2 or 0 < w < 4 (a rather
weak estimate, which can be easily improved using, e.g.,
Newton’s Iteration).

* Use cos(m/2) = 0, sin(7/2)? + cos(n/2)? = 1 and
sin’ X = cos x > 0 for x € [0, 7/2) to conclude that
sin(m/2) =1, e™/2 = cos(n/2) + isin(7/2) = i, and
e?t" 1 e?e” to conclude further that e?+17/2 = eZei™/2 = je?,
e?Hi™ = —e? and e#*?™ = ¢Z (hence e™ = —1, ™ = 1).
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Exercise

Suppose A: | — C, t — Aq(t) +iAx(t) is differentiable (i.e.,
Ai = ReAand A, = Im A are differentiable). Show that / — C,
t — A js differentiable as well, and

Complex
First-Order Linear

Equations d A(t / A t
n — M0 = A(1)eA
" T (t)e

Hint: Start with
AN = A+ A() — eAi(DeiAe(t) — eA1(D) cos Ay(t) +ie™ (D sin Ax(t).
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The Analogy with Linear
Recurring Sequences

We consider only the case y’ = ay + b with constant coefficients
a, b, since for the discussion of linear recurring sequences in
Discrete Mathematics the same assumption was made.

The discrete analog of y’ = ay + b is the 1st-order linear
recurrence relation x,,1 = ax, + b (equivalently, x, = ax,_1 + b).

Three ways to solve x, = ax,_1 + b
@ Direct solution.

X1 = axo + b,
xo = a(axg + b) + b= &xy + (1 + a)b,
xs=a(@x +(1+a)b)+b=ax+(1+a+a)b,

Xp=a%+(1+a+---+a "
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Thomas The associated homogeneous linear recurrence relation

Honold .
one X, = axp_1 has the solution x, = ca”, c € R.

A particular solution x,(,p) can be found by trying a constant
x,(,”) = x and solving the resulting equation x = ax + b.
b

e Cony This gives x = =, and the general solution is therefore

X, =ca"+ % (ceR), providedthata##1.

The Analogy with
Linear Recurring
Sequences

If a= 1 (the “resonance case”), we have x, = nb + xo.

® Use variation of parameters.
Setting x, = ¢(n)a” = c,a", we have

Xp=Cchad"=a-c,1@'+b < c,—ch1=ba".
This gives

n n
Ch=) ba*+c and x,=coa"+ > ba"k.
k=1 k=1
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Exercise

Verify that Methods 1 and 2 for solving x, = ax,_1 + b actually
yield the same solution (although this is not directly visible in the
formulas).

Hint: In the formula derived in Method 2, determine ¢ in terms of
X0-
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Separable Equations
Definition
An (explicit) first-order ODE y’ = f(x, y) is said to be separable if
f(x,y) factors as f(x, y) = fi(x)&(y)
We assume that the domains /, J of fi, resp., f, are open intervals
and that £ has no zero in J. Then N(y) = 1/f(y) is well-defined
and has no zero in J as well.
Writing M = f;, we can rewrite y’ = fi(x)f:(y) as

, _dy  M(x)

“ i~ N or M(x)dx—N(y)dy =0.

Theorem
Suppose M: | — R and N: J — R are continuous and N has no
zeroind. Let(xo,y0) € I x J, and define Hy: | - R, Ho: J — R by

/ MEME.  Haly) - /ny(n)dn.

0
Let further I' C | be an interval with xo € I' and Hi(I') C Ho(J).
Then there exists a unique solution y: I' — R of the IVP
y' = M(X)/N(y) A y(X) = Yo, viz. y(x) = Hy ' (Hs(x)) forx € I.
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Remark

The subsequent proof (cf. the notes thereafter) shows that for
sufficiently small 6 > 0 the interval /' = (xo — 4, Xo + ¢) has the
required property and hence that the IVP

y' = M(x)/N(y) A y(xo) = yo has locally near (xo, o) a (unique)
solution.

Proof of the theorem.

Since N is continuous and has no zero in J, we have either N > 0
or N < 0 on J and hence that H. is either strictly increasing or
strictly decreasing on J. In particular, Hz: J — Hx(J) is bijective
and y: I' > R, x — Hy ' (Hi(x)) is well-defined.

_ Hix) M(x)
Hy(H, (Fh(x)) ~ N(y(x)’

y'(x) = (Hy ") (Hi(x)) - Hi(x)

i.e., y(x) satisfies y’ = M(x)/N(y)

Hi(x0) = 0 = Ha(y0) = y(X0) = Hy ' (H1(x0)) = yo

It remains to show that any solution y: I’ — R of the IVP must
satisfy Ha(y(x)) = Hi(x) for x € I'.
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Proof cont'd.
To this end we write the ODE in the form y’(x)N(y(x)) = M(x)
and integrate:

/y@ ))dé = /M £)de = Hi(x)

Making the substitution n = y (&), dn = y’(£)d¢ on the left-hand
side gives

y(x) y(x)
/ Nwm:/ N(n)dn = Ha(y(x),
y

(x0) Yo

as desired.

Notes

® The proof has shown that H.(J) is an open interval
containing 0 = Ha()o). Since Hy is continuous and
Hi(xo) = 0, there exists 6 > 0 such that H;(x) € Ha(J) for
Xp — 0 < X < Xp + 0, justifying the remark made before the
proof.
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Notes cont’d , )
e |fthe integrals in  Ha(y) :/ N(n)dn:/ M(&)d¢ = Hy(x)
Yo Xo
can be evaluated, we obtain y = y(x) in impicit form
Ho(y) = Hi(x). The condition H; (/') C Ho(J) guarantees
that this equation has a solution y € J for each x € I'. If we
are lucky, we may be able to solve for y and obtain an explicit
formula for y(x).
¢ The notation used in [BDM17], Ch. 2.2 is the same except
that N, H. are replaced by —N, —H, to put the implicit ODE
into the more symmetric form M(x)dx +N(y)dy = 0.

Example

We determine all solutions of the ODE y’ = dy/dt = t y?, which is
separable with fi(t) = t, f(y) = y2.

One solution is the steady-state solution y = 0.

For f; there is no restriction, and hence / = R in the theorem.
Since f(y) = 0 is not allowed in the theorem, we split the domain
of £, into the intervals J; = (=0, 0), J» = (0, +00). This
corresponds to initial values y(f) < 0 and y(f) > 0, respectively.
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Separable 1 t
First-Order . 1.2 12 o
R
1 2
= y() =

1/yo—3(2—8) 2/po+8—1

The non-constant solutions of y’ = t y? are therefore
y(t) = yc(t) = 2/(C — t3), C € R. The solution y¢

e is defined for all t € R if C < 0 or, equivalently,
—2/12 < y5 <0 (yo < 0for tp = 0);

* is defined only on the finite interval (—v/C,/C) if
C > 0 A|b| < V/C or, equivalently, yo > 0;

e is defined only on (—oco, —v/C)if C >0 Aty < —/C or,
equivalently, ty < 0 A yo < —2/12;

* is defined only on (v/C,+0) if C>0 Aty > v/C or,
equivalently, ty > 0 A yp < —2/12.
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31 / I
Q
~ S
2 1 L v
1.
y=0
S
S
2o
[}
‘\°°\y(t>:f2/t2
g NN L N S L N
-3 -2 -1 0 1 2 3

Figure: Solution curves yc(t) =2/(C —t2) of y = ty?
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Simplified Variant (but keep the derivation in mind!)

It is often easier to use indefinite integration to determine the
general solution of a separable 1st-order ODE as a 1-parameter
family and then adapt the constant to satisfy a given initial
condition:

Y (ON(y(1) = M(t)
N /y’(t)N(y(t)) dt:/M(t)dt+C, CeR

— /N(y)dy:/M(t)dt+C, CeR, y=y()

Memorizing the ODE as dy / dt = M(t)/N(y) and formally
rewriting it as N(y)dy = N(t)dt, we can directly short-circuit to
the previous line:

N(y)dy = M(t)dt
— /N(y)dy: /M(t)dH—C

In our present example: dy/y = tdt — 71/y =t?/2+ C,
leading againto y = c+12/2 720 7= C, =, C' eR.
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Example
We determine the solution of the IVP mv’ = mg — kv? A v(0)
(best of the three models for a falling object).
Separating the variables gives
V/

—(k/m) V2

:/ k/m /Otd’T_t

Since | 1%, = artanh(x) + C, using the substitution

x = \/k/(mg)n and tanh(y) = £=, = 1 — 22—, we obtain

=1

mg gk mg 2
()= /7 tanh (fﬁ) -\ (1 - m) |

for0 <t < T (the time when the object hits the ground).

Setting vo. = 4/ %2 (limiting velocity), this can also be written as

2

=0
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Example (cont'd)

Reasonable values for a skydiver (S) and a parachutist (P) with
round canopy are V., = 50m/s and v, = 5m/s, respectively,
which gives

vs(t) = 50 (1 - 604,2+1> [m/s],
vp(t) =5 (1 - 64,2+1> [m/s],

when time is measured in seconds.
This agrees well with experimentally found data.

Remark
Here, in contrast with the 2nd model, we can compute T in closed
form: Denoting by s(t) the distance traveled at time t, we have

. m gk
s(t) = i log cosh (t\/ m) ,

_ |/ m sk/m
t(s) =, /—gk arcosh (e ) )

and T = t(sp) if the object is released at height sp.
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Exercise

a)

Show that in the 3rd model for a falling object released at
height sy the terminal velocity vr of the object at time of
impact is given by

vVr = % -V 1— 672ks°/m.

Hint: Consider the velocity as a function v(s) of the distance
s traveled. Show that y(s) = v(s)? satisfies the ODE
my’ =2mg — 2ky.

The limiting velocity of a falling basketball (m = 620 g) has
been estimated at 20 m/s. Using this data, graph vr as a
function of sy. For which heights sy does the basketball
reach 50 %, 90 %, and 99 % of its limiting velocity?
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Example
We solve y’ = y?, which is autonomous and hence separable with
fi(t) =1, (y) = y?, using the simplified solution method.

There is the constant solution y = 0.
Otherwise we can rewrite dy /dt = y? as dy /y? = dt and obtain

Yy

- / ~ [at=[1at=tsc
1

C,C cR.

1
— Y et o—v
This recovers the already known general solution.

But don't forget: The informal computation is justified by rewriting
it in terms of y(t) and using the subsitution = y(t):

Yyt _
o AR R

y(t)?
0 4t = /dt:t+C
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Example (cont'd)

This tells us that the solutions y: / — R of y’ = y? with y(t) # 0
for all t € I are precisely the functions whose graph is contained in
a contour of F(t,y) = —1/y —t,i.e., satisfy F(t,y(t)) = C for
some C € R.

It doesn’t tell us whether such functions actually exist.

However, in this particular case we can solve for y to show that
precisely the functions y(t) = 1/(C — t), C € R (defined on an
appropriate interval /) have this property.

In the case of a general separable ODE we can't solve for y and
must invoke the theorem on separable ODE’s to conclude the
local existence and uniqueness of solutions for any prescribed
initial value y(f) # 0. (The Implicit Function Theorem also yield
this, cf. subsequent remark.)
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Example

The ODE y’ = 4/]y| can of course also be solved by the new
method:

A solution y: | — R with y(t) # 0 for all t € | must satisfy either
y>0on/ory<QOonl.

y > 0:In this case y’ = ,/y and we get

(t+ C)?
4 3

ﬂ:1dt = 2y=t+C <= y=

VY

Because of the middle equation, we must have t > —C, i.e.,
/'€ (=C,+00).

y < 0:Here y’ =,/—y and we get

CeR.

(t+C)?
4

i:1d1‘ —= 2/-y=t+C = y=-

Va4
and t < —C,i.e., I C (—o0,—C).
The guaranteed uniqueness of solutions applies only to the

regions y > 0 and y < 0 in the (¢, y)-plane and doesn’t exlude the
observed branching of solutions on the t-axis.

, CeR,



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Separable
First-Order
Equations

General Remarks on y' = fi(x)f(y)
Extracted from the previous examples
We assume that fi: | — R, : J — R are continuous functions on
open intervals I, J C R. Thus / x J is an open rectangle with
possibly infinite sides.
© The zeros of £ (if any) partition J into open subintervals on
which f, has no zeros. If J' is such a subinterval then on the
rectangle / x J' we have local existence and uniqueness of
solutions of IVP’s ¥y’ = f1(x)f(y) A y(X) = Yo at any point
(X0, Y0) € I x J'.
@® Rewriting y’ = fi(x)f(y) as ¥y’ = M(x)/N(y) and denoting
by F: I x J— R an antiderivative of M(x)dx —N(y)dy (i.e.,
OF /J0x = M A OF /oy = —N), the solutions y(x) with graph
Gy C I x J" are given in implicit form as F(x,y) = C, C € R.
The function F in (2) can be chosen as
y

Foxy) = | " M()as - /y N, (o.yo) € 1% J'.

0

In particular the differential 1-form M(x)dx —N(y)dy is exact
on I x J' (which also follows form M, = Ny = 0 and the shape of / x J).
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@ For any zero y, of f, there is the steady-state solution
Y(x) = yo on [. Together with (1) this shows that all IVP’s
Y = h(0)k(y) Ay(x)=yo Wwith (xo0,y0) € | x J are
solvable.
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Linear Versus Separable
1st-Order ODE’s

Note the following important differences between the two cases.

@ Domains of y’ = a(x)y + b(x) are of the form I/ x R; domains
of y’ = fi(x)&(y) are of the form / x J, where J may be a
proper subinterval of R.

@® Solutions of y’ = a(x)y + b(x) can be extended to / (i.e.,
maximal solutions have domain /); solutions of
y' = fi(x)£(y) may be defined only on proper subintervals
I" C 1, which depend on the solution and are not visible in the
ODE.

@ Solutions of IVP’s y’ = a(x)y + b(x) A y(Xo) = Yo are unique
in the sense thatif y;: 1 = R, yo: b — R, solve the IVP then
y1(x) = yo(x) for all x € 1 N k; solutions of IVP’s
y' = fH(x)E(y) A y(Xo) = ¥o are unique only at points (xo, ¥o)
with (o) # 0, and only if their ranges don’t contain zeros of
fo.



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Separable
First-Order
Equations

The Logistic Equation

Definition

The ODE y’ = ay — by? with constants a, b > 0 is called
logistic equation.

The logistic equation was introduced by the Belgian
mathematician P. VERHULST (1804—-1849) in 1837 as a
mathematical model for population growth. It provides a
more accurate model of population growth than the
exponential model y’ = ay, adding a term —by?, which
accounts for the competition between individuals if
resources are limited.

The logistic equation has the form y’ = f;(t)fz(y) with

fi(t) =1, f(y) = ay — by?, and hence is separable (even
autonomous).

Since ay — by? = y(a — by) the steady-state solutions are
y=0andy=a/b.


http://www-history.mcs.st-andrews.ac.uk/Biographies/Verhulst.html
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We determine the general solution by the usual method. Since

1 _1/a b/a

yla-by) 'y a-by’

e.g., by the method of partial fractions, we obtain

1 b
/;+a_bydy_/adt+0

Inly|—Inla—by|=at+C

y | _
In a_by’—at+C
y __Lat+C
iia—by =e
iy:ea”c(a—by)
aeat+C a
y:

+1+ bealtC ~ te-Ce-al 4 p’

Setting d = +e~C, we obtain the solution

a
Y= geari b

deR.

d = 0 gives the steady-state y = a/b (and d = o gives y = 0).
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F(t,y):ln‘% —t=C
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Asymptotic behaviour

Observation
For every d € R we have
[ —— [ a——
oo de@+b b tsededt+b

Caution
This does not imply that all solutions y(t) to the logistic equation
exist at any time t and have the indicated limits for t — +oc.

The precise asymptotics are given on the next slide.

Since y’ = ay — by? is autonomous, horizontal shifts t — y(t — t)
of solutions y(t) are again solutions and we can assume w.l.0.g.
that y(t) is defined at f{, = 0. As usual, we set y(0) = yp.

In terms of y,, the parameter d is given by

a . a
m_yo, ie., d_%—b.

The solution with d = —b is not defined at t = 0.
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Asymptotic behaviour contd

© Solutions y(t) with d > 0 or, equivalently, 0 < yp < a/b exist
at any time t (i.e., have maximal domain R) and for t — +o0o
have the limits indicated on the previous slide.

® Solutions y(t) with d < 0 have two branches and a vertical
asymptote at t, = (In(—d) — Inb)/a, which is the solution of
de@ +b=0.
(2.1) If —=b < d < 0, we have t,, < 0 and the branch defined
at t = 0 has domain (t., +o0); moreover,
limge = +00, limis40o y(t) =a/b.
All solutions satisfying yp > a/b arise in this way (with
d=a/y,— b).
(2.2) If d < —b, we have t,, > 0 and the branch defined at
t = 0 has domain (—oo, -, ); moreover,
lime o y(t) =0, Iimmoc y(t) = —0Q.
All solutions satisfying yo < 0 arise in this way (with
d=a/y,— b).
The remaining solutions defined at t = 0 are the two steady-
state solutions y(t) =0 (d = oo) and y(t) = a/b (d = 0).
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= The solutions (single branches!) defined at f = 0 are in
1-1 correspondence with d € R\ {—b} U {oo}.

But there are further solutions (the 2nd branches of the
solutions for d < 0, d # —b, and both branches for d = —b).

Up to horizontal shifts, there are only 3 essentially different
solutions:

y(t) = b(1je—at)’ teR,
Yo(t) = b(-]_ae—at)’ t € (—o0,0),
ya(t) = b(1_ae_at), t € (0, +00).

We also see that the corresponding graphs (“integral
curves”) depend only on the quotient a/b.
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The Cased >0

For applications to population growth only Cases 1 and 2 are
interesting. Information about the solution graphs can easily be
obtained from the logistic equation:

y' =ay —by?=y(a—by),
y" =ay' —2byy' = y'(a—2by)

© Solutions y(t) with 0 < y(0) < a/b are strictly increasing
(since they satisfy 0 < y(t) < a/bforall t € R).
Denotlng by t, the unique solution of de‘af b, i.e.

= (Ind —Inb)/a, we have y(ty) = m = a/2b and

further that y(t) is convex in [—oo, 4] (since 0 < y(t) < a/2b
in this interval) and concave in [th, +o0]. In particular y(t)
has a (unique) inflection point in (t,, a/2b).

® Solutions y(t) with y(0) > a/b are strictly decreasing and
convex in their domain [t, +00).

Since the logistic equation is autonomous, in Case 1 every
solution arises from the solution with &, = 0 (i.e., d = b) by a time
shift. This is visible in  y(t) = a/(de~# + b) = a/(be~ =) + p).
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Figure: Three S-curves following the Logistic Law with a/b = 1
andd >0
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Thomas The US Department of Commerce estimated in 1965 the world’s
Honold population at 3.34 billion people, with an annual increase of 2%
N per year. Using the exponential model y’ = ay, this gives
eparable
Equations. () = 3.34 - 109 x 0-02(1~1965)
In this model the population would double every %2 ~ 34.6 years.

The logistic model y’ = ay — by? with the reasonable parameter
a = 0.029 (natural reproduction rate, if unlimited resources are
available) and b, d’ computed from

y'(1965) . 109 _
/(1965) =a-—by(1965) =a— b x 3.34-10° = 0.02,
y(1965) = a a

dle—alt=1985) L p| _ o Y )
i.e.b=2695-10""2, d' =5.988- 1072, gives

0.029-10'2

a
y(t)= 5.988 ¢—0.029((—1965) | 2 595’

b 10.76 - 10°.

¥(2020) = 7.42-10°,
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Uniqueness of Solutions
So far we have proved uniqueness of solutions of initial value
problems y’ = G(t,y) A y(f) = yo in the following two ways:

© Derive the general solution of y’ = G(t, y) and observe that it
is a 1-parameter family of functions y(t) depending on a
constant C; plug in yc(f) = yo to determine C, and hence
the solution, uniquely.

@ If the solution to ¥’ = G(t, y) involves more than one
parameter, show additionally that an initial condition
y(f) = yo cannot be satisfied by solutions corresponding to
different parameters.

Way (1) applies to 1st-order linear ODE’s (homogeneous or
inhomogeneous) and to separable ODE’s without steady-state
solutions.

Way (2) applies to separable ODE’s with steady-state solutions,
suchasy =y?, y' =ty? y' = ay — by?.

“Different parameters” refers to both continuous 1-parameter
families of solutions and “exceptional” steady-state solutions.

Neither way applies to y' = /|y|.
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Uniqueness of Solutions Cont’d

Example

The logistic equation y’ = ay — by? has the solutions y..(t) = 0
and y4(t) = =33, d € R. We assume that the solutions are
maximal, i.e., the domains are R ford > 0 and R\ {{.,.} ford < 0.
For d < 0 we count the two branches yj(t) as different solutions,
according to our requirement that domains of ODE solutions
should be intervals.

For {p € R and y, # 0 we can solve m = yp uniquely for d,
showing that (&, yo) is on precisely one solution curve (graph)
¥a(t), d € R. Moreover, since 5=%+5 # 0, these solution curves
don't intersect the steady-state solution y..(t) = 0. This implies
that the solution curves yy(t), d € RU {0}, partition the

(t, y)-plane, which is equivalent to the unique solvability of all
IVP’s y’ = ay — by? A y(ty) = yo within the given class of functions.
However, this doesn’t exclude the existence of further solutions.
In fact there are no further solutions, and a rigorous proof is given
on the next slide.
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Example (cont'd)

The theorem on separable ODE’s implies that there can’t be two
distinct solutions through a point (%, o) with yo ¢ {0, a/b}, and
hence all solutions not intersecting the lines y =0, y = a/b are
known.

Now suppose there is a non-constant solution y(t) satisfying
y(k) = 0, say, for some #) € R. (The case y(fy) = a/b is done in
the same way.)

W.l.o.g. we can assume that 0 < y(t) < a/bforfy < t < th + 9,
where ¢ is some positive number. (By symmetry, we can assume
that there exists # > { satisfying y(t;) > 0. Since y(t) is
continuous, there exists a largest zero t* of y(t) in [f, #1]. Then
y(t) > O0for t* < t < t;, and hence our assumption is satisfied if
we replace fp by t* and set § = t; — t*.)

Now, by continuity, we must have lim;;, y(t) = 0, but none of the
solutions that are defined for t € (%, & + 0) and attain small
positive values there (these must be of the form y4(t) with d > 0)
has this property, since y4(t) = g=25 — de,f,oer #0fort| t.
This contradiction completes the proof.
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Example

The equation y = /|y| has the steady-state solution y(t) = 0 and
the two 1-parameter families

Yo (t) = —3(t—c), t e (—o0, C),
Ya(t)=3(t—c)?, te (c,+),

as solutions, where ¢ € R is arbitrary.

Collectively, these solutions partition the (t, y)-plane, so that
every point (f, yo) € R? is on exactly one solution curve of this
kind. (This follows, e.g., from the theorem on separable ODE’s.)
However, there are further (maximal) solutions obtained by
glueing together y=(t) at t = ¢ (and other combinations as well),
which leads to non-uniqueness of solutions of all IVP’s

¥y = /IyI A y(t) = ¥o. (The indicated combination shows this
only for the points (¢, 0) on the t-axis, through which we have the
solution combined from yci(t) and also the steady-state solution

y(t)=0.)
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Remark

The general Existence and Uniqueness Theorem for
solutions of 1st-order ODE’s (to be proved later) will explain
the observed fundamental difference between the two
examples and give a more conceptual proof of the
uniqueness of solutions of all IVP’s

y' = ay — by? A y(ty) = yo (and, similarly, of the uniqueness
of solutions of all IVP’s corresponding to the harvesting
equation discussed subsequently).
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The Harvesting Equation

Suppose a population follows the logistic law of growth but
additionally individuals are removed (“harvested”) at a
constant rate h > 0.
Definition
The ODE y’ = ay — by? — h (a, b, h > 0) is called harvesting
equation.
Changes

e For h < a°/4b the quadratic —by? + ay — h = 0, whose

discriminant is A = a® — 4bh, still has two zeros, viz.

yi1=(a—Va —4bh)/2b, y,= (a+Va®—4bh)/2b,

which satisfy 0 < y; < y» and provide two steady-state
solutions.

e For h = a2 /4b the quadratic has a double root, which
provides one steady-state solution y = a/2b.

* h> a?/4b the quadratic has no real zeros, and the
harvesting equation has no steady-state solutions.
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For a more detailed analysis we transform the harvesting
equation into canonical form.

Lemma

We can transform the harvesting equation by means of a
substitution y(t) = uz(mt) + v withu,v,m € R and u, m > 0 into
one of the three canonical forms

2

3

Z=-2241, Z=-22 Z=-22-1.

Proof.
Writing s = mt we have y'(t) = mu z’'(mt) = mu z'(s) and hence,
using the usual shorthands

S y' _ —b(uz+ v)2+a(uz+v)—h
mu mu
bu , a-2bv —bv? +av—h
=——Z2 4 z+ .
mu

With m = bu, v = a/2b this becomes

—a &

2 +4Z _h a — 4bh A

4 "2 o _ 2, < T 2, =
T bu? Z Tt e TR



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Separable
First-Order
Equations

Proof cont’d.
If A >0 (A < 0)then u=+/A/(2b) (resp., u = vV—A/(2b)) gives
Z'=—-2% 41 (resp., 2/ = —z% — 1). O

Notes

e Substitutions of the form y(t) = uz(mt) + v (u,v,m e R,
u, v > 0) arise from changing the units of measurement on
both the f-axis and the y-axis and an additional vertical shift
of the graph of t — y(t). They do not change the overall
shape of the solution graphs.

¢ Substitutions of this form do not change the number of
steady-state solutions, and hence the corresponding
canonical form is also determined by the number of zeros of
—by? +ay —h=0.

* The logistic equation y’ = ay — by? has canonical form
7' = —z? 4+ 1 (regardless of the particular choice of a, b > 0).
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Analysis of the Canonical Forms
In the following we will test “stability” of solutions y(t) of the
harvesting equation—a concept that describes their asymptotic
behaviour for t — +o0.

Definition (Stability)

A steady-state solution y = y, of an autonomous first-order ODE
y' =1(y) (i.e., f(yo) = 0) is said to be (asymptotically) stable if
there exists § > 0 such that every solution y(f) of y’ = f(y) with
initial value y(0) € [yo — 9, yo + 0] is defined for sufficiently large ¢
and satisfies lim;—, .« y(f) = yo, and unstable otherwise.

QzZ=-22+1.
This is the logistic equation (without harvesting), with steady

states z = +1.
Our previous analysis shows that
1 if —1
lim z(s) = _ n2==h
s—+00 undefined if zp < —1.

Thus z =1 is stable and z = —1 is unstable.
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Figure: Solution curves of 2/ =1 — 22



Math 285
Introduction to

Differential AnaIySIS Of the Canonlcal

Equations

Thomas FOI’mS Cont,d

Honold

S bl
Fﬁgte-‘grd:r 9 z' = 722.
SERRLE The standard solution method gives

1 1 2 d s
f——:/——g:/da:s—so,
z 2y J; ¢ S

i.e., z(s) =1/(s— C) with C = sp — 1/ 2.

This tells us:

Solutions z(s) with z(sp) = zy > 0 (equivalently, s, > C)
exist forever and satisfy lims_, ;- 2(s) = 0.

Solutions z(s) with z(sp) = zp < 0 (equivalently, s, < C)
exist only on (—oo, C) and satisfy limgc 2(8) = —o0.

In other words, the steady-state solution z = 0 is one-sided
stable (stable from above).
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Figure: Solution curves of 2/ = —z2
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z dC /S
arctan Zp — arctan z = - = do =8—5p,
0 /ZO <2 + 1 So °

i.e., z(s) = tan(C — s) with C = sy + arctan 2.

This tells us:

Solutions z(s) with z(sy) = zp exist only on

(C—m/2,C+ n/2) and satisty limgyc /2 Z(S) = —o0.

The solutions with z; > 0 have C > sy and hence exist for a
period larger than 7 /2, while those with z; < 0 have C < sy
and exist for a period less than 7/2.

Since there are no steady-state solutions, the question of
stability does not arise.
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Figure: Solution curves of z/ = —1 — 22
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Remark

It is instructive to represent the solution curves (except the
steady-state solutions) in the preceding examples as function t(y)
resp. s(z). This makes sense for any autonomous ODE and
(provided the ODE can be integrated in closed form) often yields
a simpler formula for the solution curves which better explains
their shape.

Exercise

Show that the graph of y(t) = a/(de=% + b) (a,b,d > 0) is
point-symmetric to its inflection point.

Hint: A superb way to solve this exercise is to observe that the
mirror image of a solution curve w.r.t. its inflection point
represents a solution as well and use the uniqueness of solutions
of associated IVP’s.

Remark: For d < 0 graphs have a similar symmetry, but the
meaning of the center of symmetry is different.
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Finally we translate the results on the asymptotic behaviour back
into the original harvesting equation y’ = ay — by? — h
(a, b, h > 0). Recall that for A = & — 4bh > 0 there are the

steady-sate solutions y = y; > with yy = (a — Va2 — 4bh) /2b,
Yo = (a V@ 4bh) /2b, which satisfy 0 < y1 < y».

Analysis of the Harvesting Equation

h < & /4b If the initial population y(t) satisfies y; < y(t) < y2
then the population y(t) increases and
lim;— 100 Y(t) = yo. If y(t) > yo then y(t) decreases
and lim;_, . y(f) = yo. If y(fo) < y1 then y(t)
decreases and y(t) = 0 for some t; > fy, i.e., the
population dies out.

h = a%/4b If y(t)) > a/2b, the population decreases and
lim:—o0 Y (t) = a/2b. If y(t)) < a/2b, the population
decreases and dies out at some time t; > fy.

h > a?/4b Regardless of the initial population, the population
dies out in finite time.
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Exact First-Order Equations

Definition
A first-order ODE of the form

M(x,y)dx+N(x,y)dy =0 (D)

with M, N: D — R, D C R? open, is said to be exact if there exists
a function f: D — R satisfying df = M(x, y) dx +N(x, y) dy or,
equivalently, Vf = (#, f,) = (M, N).

Notes
¢ Criteria for exactness have been developed in Calculus lIl.
Recall that for C'-functions M, N: D — R a necessary
condition for exactness is M, = N, which is also sufficient if
D is simply connected.
® As explained on the next two slides, the “differential-like”
form (D) of a first-order ODE is essentially equivalent to the

explicit form dy M(x, y)
. S )

Y=~ N(x,y)
obtained from (D) by pretending that dx, dy are numbers.
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Solutions of (D)

By a solution curve (“integral curve’, parametrized solution) of (D)
we mean a smooth differentiable curve v: [ — D, t — (x(t), y(t))
satisfying

M(x(t), y()x'(t) + N(x(t), y(t))y'(t) =0 fortel (O)

Geometrically, the tangent to the curve at any point must be
orthogonal (perpendicular) to the vector of the vector field (M, N)
at that point (since (D) is equivalent to (M, N) - v/ = 0).

By an (explicit) solution y = y(x) (resp., x = x(y)) we mean a
function y: I — R (resp., x: J — R) with graph contained in D and
satisfying

M(x,y(x)) + N(x,y(x))y'(x) =0 forx e, resp.,
M(x(y),y)x'(y) + N(x(y),y)) =0 foryeJ.

Notes
® These concepts make sense for any (not necessarily exact)
1st-order ODE in differential-like form.
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Thomas e A point (X0, ¥o) € D is said to be a singular point of the ODE
M(x,y)dx +N(x,y)dy = 0 if M(xo, ¥o) = N(xo, o) = 0.
The orthogonality condition (O) is trivially satisfied in any
singular point.

Exact

First.Order e Suppose (Xp, ¥o) is a non-singular point of

Equations M(x, y)dx +N(x, y)dy = 0 and satisfies N(xp, o) = 0.
= Any solution curve v = (x, y) passing through (xo, ¥o)
must have x’ = 0 at (xo, ¥o)-
This says that v has a vertical tangent at (xo, ¥o) and clearly
forms an obstruction to representing it as a function y(x).
Conversely, if v satisfies (&) = (X0, Yo) and x’(f) = 0 then
¥'(f) # 0 (since solution curves are smooth) and hence
N(Xo, o) = 0.

The last note helps to clarify the correspondence between
solution curves of M(x, y)dx +N(x,y)dy = 0 and solutions of
y' = —M(x,y)/N(x,y); cf. next slide.
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Correspondence

Solution curves of Mdx +Ndy = 0 and explicit solutions
correspond to each other in the following way:

@ Given a solution curve ~, smoothness implies that at each
non-singular point (xo, ¥o) € (/) we can write the curve
locally as graph of a C'-function y(x) or x(y) (or both), and
these functions satisfy

,_dy dy/dt _ M(x,y)
dx dx/dt N(x,y)’ resp.,
,_dx _dx/dt _ N(x,y)
Cdy dy/dt - M(xy)

i.e., are explicit solutions. Note that, e.g., the representation
y(x) implies x’(t) # 0 and hence N(x(t),y(t)) # 0, as
remarked in the previous note.

@® Conversely, given an explicit solution y(x), we can use, e.g.,
x(t) = t as parameter to define a curve y(t) = (t, y(t)), and
this curve + is a solution curve on account of

M(x,y)x" + N(x,y)y' = M(x,y) -1+ N(x,y)y’ = 0.
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Thus, if we remove from D all points (x, y) with N(x, y) = 0, which
form a closed set, and call the resulting domain D', we get a 1-1
correspondence between non-parametric solution curves of

Mdx +Ndy = 0 (or classes of parametric solution curves under
the equivalence relation of smooth reparametrization) and explicit
solutions of y’ = —M(x, y)/N(x, y); and similarly for the case
M(x,y) =0.

Example

In the lecture and an exercise we have considered the four ODE’s
y' = =£x/y, y' = +y/x. Associated differential-like forms are

Q@ vy =-x/y=xdx+ydy =0;
@y =x/y=xdx-ydy=0;
Oy =-y/x2xdy+ydx =0;
Oy =y/x=xdy—ydx=0.

All four differential-like ODE’s have exactly one singular point, viz.
(0,0), and we need to remove either the x-axis (1st and 2nd
ODE) or the y-axis (3rd and 4th ODE) in order to get a 1-1
correspondence of their solution curves with the solutions of the
original explicit ODE. Solution curves are shown on the next slide.
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Theorem

Suppose M(x, y)dx +N(x, y)dy = 0 is exact with antiderivative
(potential function) F. Then the solution curves of

M(x,y)dx +N(x,y)dy = 0 are precisely the parametrized level
sets (contours) F(x,y) = C, C € R, or (sub-)branches thereof.

Proof.

It suffices to show that any solution ~(t) = (x(t), y(t)), t € /, of
M(x,y)dx +N(x, y)dy = 0 is contained in a level set of F.

We have

because ~(t) is a solution of M(x, y)dx +N(x,y)dy = 0.
This shows that t — F(y(t)) is constanton /, i.e., {y(t);t € I} is
contained in a level set of F.
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Example
Consider the ODE

1
(x—y)dx+<y2—x) dy=0

The domain consists of all (x, y) € R? with y # 0 and has two
simply-connected components (upper half plane and lower half
plane).

Since 4;(x —y) = =1 = g (¥ ? — x), the ODE is exact.

= &
An antiderivative, determined as usual by partial integration, is
X2 1
fx,y)=—=—xy ——.
(x.y) =75 —xy y
The general solution in implicit form is therefore

Xy —2y?x—-2-Cy=0, CeR.
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Figure: Solution curves of (x — y)dx +(y~2 — x)dy =0,
represented as contours of F(x,y) = x2/2 —xy —1/y
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Figure: The same with all points highlighted that satisfy
M(x,y) =0 or N(x, y) = 0; removing the red (green) curve leaves

solutions y(x) of y' = % (resp., solutions x(y) of x’ = X;fyz)
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Example
Of the four ODE’s y’ = +x/y, y' = +y/x three are exact, viz.

@ xdx+ydy =dF for F(x,y) = 3(x®+y?);
® xdx—ydy =dF for F(x,y)=1(x®*—y?);
® xdy+ydx =dF for F(x,y)=xy.
This shows that the corresponding solution curves are
@ circles centered at the origin (contours of (x, y) = x2 + y2);

® hyperbolas centered at the origin with asymptotes y = +x
(contours of (x, y) — x% — y?);

® hyperbolas centered at the origin with asymptotes x = 0 and
y = 0 (contours of (x, y) — xy).

The 4th ODE xdy —y dx = 0 (corresponding to the winding
form/field) is not exact.

But it can be multiplied by 1/(xy) to yield the exact (even
separable) ODE y~'dy —x~'dx = 0 (— integrating factors),
which has solution curves In |y| — In|x| = C or, equivalently,
y/x = +e®; compare with the previous plot of these curves.
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Integrating Factors
The ODE  ydx +(x?y — x)dy =0 is not exact, since 3% 1
and 28 = 2xy — 1.
But we can multiply the equation by 1/x2, turning it into the exact
ODE

y 1

pdx+ (y— x) dy=0
with potential f(x, y) = —y/x + y?/2 and general solution
xy? —2y — Cx = 0.
Since the exact ODE has a strictly smaller domain, viz. R? without
the y-axis, we also need to check whether the parametrized
y-axis y(t) = (0, t) is a solution of y dx +(x?y — x)dy = 0, and
indeed it is (x(t) = x'(t) = 0). But it is missing in the implicit solution.
Definition
A function u(x, y) with domain D’ C D is called an integrating
factor (or Euler multiplier) of M(x,y)dx +N(x,y)dy =0, if

© u(x,y) #0forall (x,y) e D;
O u(x,y)M(x,y)dx +u(x,y)N(x,y)dy =0 isexacton D'.
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Lemma
If an ODE Mdx +Ndy = 0 has a general solution of the form
f(x,y) = C then it has an integrating factor.

Proof.
Differentiating f(x,y) = C gives 5L dx +5f dy = 0.

dy M offox

dx N afjay’

which can be rewritten as

ofjox _ ofjoy
M - N - M(X7y)7

This says that uM dx +uNdy = 2¢ dx+3" dy = 0 is exact. O

Remark

We can multiply an integrating factor p by any continuous function
F(f) of the antiderivative f of the resulting exact equation, thereby
obtaining another integrating factor uF(f). (Check that a suitable
antiderivative is G(f), where G’ = F.) Hence integrating factors
are highly non-unique.
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How to Find an Integrating Factor?

The (local) exactness condition for an integrating factor u is
(uM) /0y = O(uN)/0x. This gives

oM ou  ON o
W—’—May uaX—’_NaX or

oM  ON o o
—_—— N-——-M—".
( oy 8x> ox oy
This partial differential equation (PDE) for 1 is not easy to solve in
general, but frequently one can make a particular ,Ansatz” for u
and solve it in this special case.
Example

Suppose & (% — %ﬁ’) = g(x) depends only on x but not on y.

Then Mdx +Ndy = 0 has the integrating factor ;(x) = e/ 9()dx
Reason: In this case the PDE for u(x, y) = u(x) is equivalent to
' (x) = g(x)u(x).
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thomas As a concrete example we reconsider y dx +(x?y — x)dy = 0.
Fonold Here we have
1 /(oM ON\ My —Ne 1-(2xy—1) 2(1-xy) 2
Exact N 6y 8X B N - X2y - X B X(Xy - 1) B X.
First-Order
Equations An integrating factor is therefore

1

N(X) _ ef(—2/x)dx _ e—2|nx _ el

as we have seen before.

Remark

In particular we can solve the PDE for . if all of u, M, — Ny, N
depend only on x. But we only need the weaker condition
“(My — Ny)/N depends only on x”. In the example above both
M, — Ny and N depend on both x and y but (M, — Ny)/N
depends only on x.
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Theorem
The ODE M dx +Ndy = 0 has an integrating factor of the
form

O u(x) if Mg = g(x);
@ u(y) if Mg =g(y);
© n(xy) i N = 90w);
. 2 -
O uy/x) it gk = 9(y/x).
Proof.

In each case the PDE (M, — Ny)u = Npuyx — My, derived for
u(x, y) becomes a homogeneous linear 1st-order ODE for
the one-variable function (s) (note the slight abuse of
notation in the last two cases!), which can be solved using
the standard method. The resulting ODE for u(s) is

w'(s) = g(s)u(s) in Cases (1) and (3), and

' (8) = —g(s)u(s) in Cases (2) and (4).
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Hence (M, — Ny)p = Nuyx — My, becomes

- wn (2) = (2) (-2) -0 (2)

= XMy — Ny) p (%) = —(Ny + Mx) ¢/ (%)

Yy XMy =Ny Y
— a (x) Ny + Mx (x)
xX2(My—Ny) .
It =5~ = 9(y/x) depends only on y/x, we can substitute

s = y/x and obtain the equivalent ODE p/(s) = —g(s)u(s). O
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Final Remarks
* In some texts the case of an integrating factor of the form

wu(x/y) is listed as well. But this reduces to Case (4) if we
consider ji(s) = u(1/s).

The PDE (M, — Ny)1 = Npx — Mpy only guarantees local
exactness of (uM)dx +(uN)dy on D’. To obtain an
anti-derivative, it may be necessary to restrict the domain
further to simply-connected subsets of D’, on which

(uM) dx +(uN) dy then must be exact, and determine
solutions there.

For example, x dy —y dx = 0 has the integrating factor
1/(xy), as we have seen, whose domain R? with the
coordinate axes removed consists of 4 simply connected
regions (the 4 open quadrants). On each quadrant, an
antiderivative of (xy)~'(xdy —y dx) = y~'dy —x~" dx exists
and can be taken as f(x, y) = In|y| — In|x|, amounting to 4
different choices of signs of x, y for the 4 regions.
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Orthogonal Trajectories

Problem

Given a family of smooth (non-parametric) plane curves, does
there exist another such family with the following property: All
angles of intersection between members of the first family and
members of the second family are right angles (90°).

In this situation we say that the members of the second family are
the orthogonal trajectories of the first family (and vice versa).

Observation

If a family of plane curves arises as solution of an explicit
first-order ODE y’ = f(x, y) (M(x,y)dx +N(x,y)dy = 0), its
orthogonal trajectories can be obtained by solving

resp., — N(x,y)dx+M(x,y)dy = 0.

Reason: y' = f(x, y) prescribes the slope m = f(x, yo) for (the
tangent of) a solution passing through (xo, o). It is a general fact
that the lines through (xo, yo) with slopes mand —1/m are
orthogonal.
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Reason (contd): In the second case solution curves are

orthogonal to (",\’,’Efgﬁ; ) which is the direction in (xo, yo)

prescribed for a solution of —N(x, y)dx +M(x,y)dy = 0.
Example

Determine the orthogonal trajectories of the family of parabolas
y=Cx? CcR.

Solution: First we determine a differential equation for y = C x2.

Since y = Cx? < yx2 = C, the parabolas are the contours
of F(x,y) =y x2.

— 2y x3dx+x"2dy =0.

The orthogonal trajectories must then solve

x~2dx 42y x~3dy = 0, which simplifies to x dx +2y dy = 0. This
ODE is exact with solution x2/2 + y? = C,or x> +2y? = C’
(ellipses with center (0,0) and semiaxes a=+/C’, b= /C'/2; C'
must be positive).
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Introduction

The concept of uniform convergence arises from the question
whether the limit function of a sequence or series of functions
inherits properties like continuity or differentiability from the terms
of the sequence/series. For ordinary (point-wise) convergence the
answer is notably false.

Uniform convergence was not discussed in Calculus I/lI/1ll, but is
needed to understand the existence theorem for solutions of
ODE's, the theory of Fourier series, and many other important
topics in Real Analysis.

As background reference for the material on uniform convergence
| recommend the respective chapters in

[Bre07] David Bressoud, A Radical Approach to Real Analysis,
2nd edition, Mathematical Association of America 2007;

[Ru76] Walter Rudin, Principles of Mathematical Analysis, 3rd
edition, McGraw-Hill 1976.

[BreQ7] is very accessible and retraces the historical development
of Calculus in the 19th century and the mathematicians involved
in it. [Ru76] is a good reference also for other important concepts
not covered by Stewart’s book (e.g., the Implicit Function
Theorem), but be warned that it is pretty advanced.
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Inoducion The following 3 slides show plots of 3 sequences of functions to
L be defined and discussed later. These function sequences

freerens converge point-wise but not uniformly, and serve as
counterexamples to the naive belief, prevalent until the beginning
of the 19th century, that point-wise limits of sequences of
continuous/differentiable/integrable functions inherit the
respective property.

Test for
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Figure: g(x) = % forn=1,2,3,5,10,50
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Honold Let / C R be an interval and (f,)2, a sequence of functions f,: / — R.

© (f,) converges point-wise (on ) if for every x € [ the
Invoducton sequence (f(x)), an ordinary sequence of real numbers,
i converges. If this is the case then f(x) = limp_c0 fo(X)
defines a function f: | — R, called “limit function” or
“point-wise limit” of the sequence (f,).

@ (f,) converges uniformly (on ) if it converges point-wise and
the limit function f: | — R has the following property: For
every ¢ > 0 there is a “uniform” response N € N such that
|f(x) — fa(x)| < eforalln> Nandall x € /.

If (1), resp., (2) hold, we also say that (f,) converges to f
point-wise, resp., uniformly.

Notes
e Uniform convergence requires the response N = N, to be
independent of x € /, while point-wise convergence allows
N = N, x to depend on x (and e).
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Uniform
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Integrals (optional

Notes cont’d
e Geometrically speaking, (f,) converges uniformly to f iff for
every e > 0 all except finitely many of the graphs of f, are
contained in the strip of vertical width 2¢ around the graph of
f; see picture.

I T——
1.0 5 .

081 / T - ™ - y=f(z)
069 / - -

04q / /] 7 -

027 /)

—0.2 1

Looking at the preceding plots, you can see that the
sequences (f,) and (hy) fail to have this property for any

e < 1, while (g,) seems to have it. (At least we can see that
the graph of gs is within 0.2 of the graph of the point-wise
limit, viz., the x-axis.)
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Three

Eézfl?;?igtr:asl ¢ The definition generalizes to functions f,: X — R with
arbitrary domain X. Further we can replace the codomain R
iomas by R¥, because the concept of convergence for the
corresponding vectorial sequences fy(x), fi(x), &(X),. .. is
well-defined (cf. Calculus Ill) and |f(x) — f,(x)| < € can be
inrogucton read as an inequality for the Euclidean length of the vector

f(x) — fa(x) € RK. Even more generally, we can take the
codomain of f, as any set M with a distance
function d: M x M — R (replacing, e.g., “|f(x) — f»(x)| < €” by
“d(f(x), f2(x)) < €, i.e., by a (generalized) metric space (M, d).
¢ In the definition of convergence it does not matter whether <
or < is used. Using the latter has the advantage that the
condition “|f(x) — f5(x)| < e for all x € I” can be succintly
stated as sup{|f(x) — fa(x)|; x € I} < e. We can view the
left-hand side of this inequality as a measure for the distance
between the functions f and f,. More precisely, if we define
do(f,g) = sup{|f(x) — g(x)|; x € I} for f, g € R (referred to
as metric of uniform convergence or L°°-metric) then uniform
convergence amounts to ordinary convergence in the
generalized metric space (R/,d..).
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Questions

© /s the limit function f(x) = limp_ fa(X) Of a
point-wise/uniformly convergent sequence of continuous
functions itself continuous?

A suggestive reformulation of this property is obtained by
recalling that a function g is continuous at x iff x,x — x
implies g(xx) — g(x). Applying this to f and f, above gives
that f is continuous iff

lim lim fn(XK):lem f(xk) = f(x) = lim fo(x) = lim lim f(xk).

k—o00 N— o0 n—oo Nn—00 k—o00

@® How about the related problem of interchanging limits with
differentiation? Under which conditions does
f'(x) = (lim f,)'(x) = lim f}(x) hold?

® How about integration in this regard?



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Three Counterexamples
The following examples show that point-wise convergence is not
sufficient for any of the three properties.

Example (continuity)

Consider the sequence of functions f,(x) = x", x € [0, 1]. The
functions f, are continuous and converge point-wise to

) ) 0 if0<x<1,
f(x):nlum fa(x) = lim x" = {1 fx— 1,

but f has a discontinuity at x = 1.

Example (differentiation)

Consider the sequence of functions g(x) = =22, x € [0, 2n].

We have g,(x) — g(x) = 0 (the all-zero function on [0, 27])
point-wise (even uniformly!), and g is differentiable with g’(x) = 0.
But

gh(x) = v/n cos(nx), x € [0, 2],
and lim,_, o g,(x) doesn’t exist for 0 < x < 2.
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Example (integration)
Consider the sequence of functions hj: [0, 1] — R defined by

2n°x if0<x<1/2n,
ha(x) =< 2n—2nx if1/2n<x <1/n,
0 if1/n<x<1.

The graph of h, and the x-axis determine an (isosceles) triangle
with vertices (0, 0), (1/2n, n), (1/n,0), and h, vanishes on
[1/n,1].

It follows that h,(x) — h(x) = 0 (the all-zero function on [0, 1])
point-wise, and that the area under the graph of h, is
1/2-1/n-n=1/2for all n. This gives

1 1
lim / ha(x) dx = % #0= lim hy(x)dx.
0

n—oo o N—oo
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Thomas The purpose of introducing the concept of uniform convergence is
Honold to prevent such “counterexamples”. The answer to all three

questions will be positive, provided we require the sequence of
functions (f,) and/or the sequence of its derivatives (f}) to be
uniformly convergent.

Theorem (continuity)
If all functions f, are continuous at x; € | and (f,) converges
uniformly on I then f(x) = lim f5(x), x € 1, is continuous at x, as

well. In particular, the limit function of a uniformly convergent
sequence of continuous functions is itself continuous.

Proof.

Let ¢ > 0 be given. Then there exists N € N such that

[f(x) — fa(x)| < €/3 for n > N and x € I. Further, since fy.1 is
continuous at xg, there exists 6 > 0 such that

[fng1(X) — fnpe1(X0)] < €/3 for x € Iwith |x — xo| < 6. For such x
we then have

1F(x) — F(x0)| < (%) = fns1 (O] + [v1(X) = vt (Xo)| + [v1(X0) — f(x0)
<ztgtsz=e O
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Theorem (differentiation)

If all functions f, are C'-functions, (f,) converges point-wise on |,
and (f}) converges uniformly on I, then f(x) = limp_o fo(X), X € 1,
is a C'-function as well and satisfies f'(x) = limp_o f}(x).

Proof.
Choosing an arbitary point a € /, the Fundamental Theorem of
Calculus gives

X
fa(x) = fo(a) +/ fr(t)dt forx el
a

Since (f}) converges uniformly to g: / — R, say, we can find an
N € N such that |f/(t) — g(t)| < 1foralln> Nand t € I.
By the preceding theorem, g is continuous, and the inequality
implies

Ifi(t) <1+ |g(t)] forn>Nandtel.
Thus ®(t) = 1 + |g(?)| is an integrable bound for (f}),~n On [a, X],
and we can apply Lebesgue’s Bounded Convergence Theorem to
conclude that limn_. [, f(t)dt = [ g(t)dt. O



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Proof cont'd.
Hence, letting n — oo in the first identity we obtain

f(x)=f(a /g dt forx el

Finally, applying the Fundamental Theorem of Calculus a second
time gives that f is differentiable with f'(x) = g(x) =limf(x). O

Notes
© The proof also shows that

F(X) — fa(x) = (@) — h(a /[g ) — Fi()]dt.

Since f; — g uniformly, given € > 0, we can find a response
N such that

[f(x) —fa(x)] <e(1+|x—a]) foralln>Nandxel

This shows that (f,) converges not only point-wise to f but
uniformly on every bounded subinterval of /. (If /is
unbounded, however, we don’t get uniform convergence of
(fa) on 1, as the example | = R, f,(x) = x/n shows.)
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Differential

Equations ® The key assumption in the Differentiation Theorem is that the
Thomas sequence of derivatives (f}) converges uniformly (and not,
honed as one might think in the first place, the sequence (f,)). For
(f») the weaker assumption of point-wise convergence is
} enough. (In fact it would even be sufficient to require only
S that (f,(a)) converges.) But at least some assumption on
ios Trems (f,) is clearly necessary, because we can add arbitrary

constants to f, without affecting f,.

® One can use a variant of this theorem to prove that analytic
functions of a complex variable, i.e., functions f: D — C
defined on some open disk D =Bg(a) CC (ac€ C, R > 0) by
a convergent power series f(z) = >_r-; an(z — a)", are
holomorphic. For this the following two key observations are
needed: (1) Power series converge uniformly on any closed
disk Bg (@), R’ < R, where R denotes the radius of
convergence. (2) The series >, nan(z — a)"~ ' of
derivatives has the same radius of convergence as the
original series and hence converges uniformly on Bg/(a) as
well.
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If I is a bounded interval, all functions f, are (Lebesgue)

Thomas integrable over | and (f,) converges uniformly on I then the limit

function f(x) = lim,_, o f1(X) is integrable as well, and we have
S f(x) dx = limp_o0 [; fa(X) dx.

Proof.
This follows by using Lebesgue’s Theorem in a similar way as in
the preceding proof:

There exists N € N such that |f(x) — f,(x)| < 1 foralln > N and
x el

= |fo(Xx) — fyp1(x)| <2forn> Nand x € /.

= An integrable bound for (f,)psn is ®(x) := |fvi1(X)|+2. O

Note on the proof

If you wonder where the assumption “/ is bounded” is needed in
the proof: It is hidden in the definition of ®(x): The function fy,
(and hence |fy41]) is integrable by assumption, but the constant
function 2 is integrable only if / is bounded. Therefore, ¢ is
integrable only if / is bounded.
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Differential

Eapetes @ For a sequence of continuous functions on a compact

Thomas intervall I = [a, b] (or any other sequence of functions for

which it is known in advance that the limit function is
integrable) we can alternatively argue as follows:

/abf(x)dx—/bf,,(x)dx =
/ [f(x) — fa(x)| dx

b — a)sup{|f(x) — fa(X)|;

x) — fo(x) dx

Hence, if f, — f uniformly on [a, b] thenf fa(x) dx —>f f(x

® The assumption that / is bounded is essential. Without this
assumption, the conclusion generally fails to hold. For
example, define f,: R — R by f,(x) =1/nif 0 < x < nand
fa(x) = 0 otherwise. Then f, — 0 uniformly, but
Jz fa(x)dx =1+ 0= [, 0dx.
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[éicfaff;?i?r:as' ® Using the integration theorem, we can give a simpler proof of
Thomas the differentiation theorem, which avoids reference to the

Honold

rather deep theory of Lebesgue integration:
In the previous proof the key step is the implication

= fn(a)+/xf,’,(t)dt (neN, xel)

= f(x /g (xel,

where g denotes the uniform limit of the sequence of
derivatives (f}).

Since f, — f point-wise, we have f,(x) — f(x) and fy(a) — f(a).
Since | = [a, x] is bounded, f} is integrable over / (since it is
continuous), and f; — g uniformly, we can apply the
integration theorem to conclude [, fi(t)dt — [ g(t)dt

This provides an alternative proof of the key step.

In fact the special case of the integration theorem considered
in Note 1, valid also for the Riemann integral, is sufficient.
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Weierstrass’s Criterion

A handy test for the uniform convergence of
function series

Theorem (Weierstrass’s Criterion)

Suppose f,: D — R (n=0,1,2,...), are functions with common
domain D and there exist “uniform” bounds M,, € R such that
[fa(x)] < M, for alln € N and x € D. If the series >~y M,

converges inR (i.e., Z;’io M, < o) then the function series
> oo fn converges uniformly.

Proof.

First we show that >~ ; f, converges point-wise.

Fix x € D. Since >_ .-, M, is convergent and |f,(x)| < M, the
comparison test yields that 37, f,(x) is absolutely convergent
and hence convergent.

Thus Y2, f, converges point-wise and has a limit function
F:D—=R,x— Y 2of(x).

That the convergence is uniform is shown on the next slide. First
recall that >° 7 f, refers to the sequence of partial sums
Fn=>3r_of, -, Fo: D— R, x — > 5 _ fi(X).



Intl"\gzt:cﬁg: to PrOOf Cont’d-

Differential We estimate as follows:

quatlons
o o0 oo

Th

IFO) =Rl = D ()] < D0 WG < D M
k=n+1 k=n+1 k=n+1

- Since Y-, M, converges, we can find, for every e > 0, an index

Comeresarpls N such that 3~ . ; Mk < e. Using the above estimate and
e e My > 0then shows |F(x) — Fa(x)| < eforalln> Nand x € D.

e This completes the proof. =

Application to trigonometric series
The function series

oo o0 .

cos(nx) sin(nx)
> X
n=1 n=1

converge uniformly on R (and hence represent continuous
functions of x with domain R).

To prove this, e.g., for the first series, use the estimate
% < L. Since the series 377, 1/n? is convergent,

Weierstrass’s Criterion can be applied with M, = 1/n?.
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Application to Power Series

A (complex) power series > ; an(z — a)" with radius of
convergence R > 0 (including the possibility R = co) represents a
differentiable (holomorphic) function f(z) = >, a,(z — a)” on
the open disk Bg(a) = {z € C; |z — a| < R} (respectively, on C if
R = ~0) and can be differentiated term-wise:

f'(z) = i nas(z —a)" ' = i(n +1)ans1(z —a)".
n=1 n=0

Moreover, the radius of convergence of the derived series is again R.
= We can iterate the argument, showing that f has derivatives
of all orders explicitly given by

f(k)(z):Z:ik”(”*1)"'(n*k+1)an(2—a)”’k
:Z:io('“L1)(”+2)"'(”+k)an+k(2—a)”, keN

These facts are proved on the next slides. The key step is to show
that power series converge uniformly on all strictly smaller disks
Bg/(a), R’ < R (but not necessarily on Bg(a)).
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Power Series contd

For the proof of the key step we choose zy = a+ (R + R)/2, so
that R’ < |z; — al < R. (In the case R = oo, in which R’ may be
any positive radius, we can take z; = a+ 2R’.)

For z € Bg/(a) (in fact |z — a] < R’ suffices) we then have

|an(z — a)"| = |an(z1 — a)"|

—al’ 2R \"
—| =lan(zi —a)"] (M)

= |an(z1 — a)"| 6"

with 0 := 272 < 1.

Since |z; — a| < R, the series Y~ , an(z1 — a)" converges.
Hence we have |an(z; — a)"| < M for some constant M and

|an(z — a)"| < M6" on Bg(a). Since > _p , MO™ = ;M. converges,
we can apply Weierstrass’s Criterion to conclude that

Y oo an(z — a)" converges uniformly on Bg/(a).

Note

If a power series > ; a»(z — a)" converges for some z; € C, it
necessarily converges for all z € C with |z — a| < |21 — & (i.e., in
the open disk with center a and z; on its boundary). For the proof

we can use the same estimate as above with 6 := “;_jl.
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uom Figure: The geometry behind the proof of the key step (assuming
Improper Parameter _ . / |z—a| R’ _ 2R
e a=0):If|[z—a < R then e S Ay = AR < -
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R:=sup{r € R;Y _a,r" converges in C}

Introduction n=0

has the property that >~ a,(z — a)" converges for |z — a| < R

and diverges for |z — a| > R. (For, if |z — a] < R then there exists

oo o r > |z — al for which 3" ° ; a,r" converges, and hence the
observation with z; := a+ r yields that >~ ; a,(z — a)”

converges. Similarly, if the power series would converge for some

zy with |21 — a| > R, it would necessarily converge for all

z=a+ rwith R < r < |z — a|, contradicting the definition of R.)

Thus we have proved that a complex power series has a radius of
convergence in the first place; cf. our Calculus textbook [Ste21],
Theorem 11.8.4. (The proof of Th. 11.8.4 given in Appendix F
generalizes to complex numbers x and is essentially the same as
our argument.)
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Power Series cont'd
The radius of convergence of >~ an(z — a)" is given by the
CAUCHY-HADAMARD formula

1
R:Z’ where L = limsup +/|ap|. (CH)

Here “lim sup” (limit superior) refers to the largest accumulation
point of a sequence (including the possibilities +0o for sequences
which are unbounded from above/below) and coincides with the
ordinary limit if the limit exists. It is necessary to use “lim sup”,
because for lacunary power series (power series with “gaps”)
such as Y32, 2% or Y22, z¥° the ordinary limit lim,_, . {/[ay]
doesn’t exist, but the limit superior is 1 and gives the correct value
R = 1. For a proof of (CH) see HW3, Ex. H19, and for the said
special case see also [Ste21], Ch. 11.8, Ex. 43.

Since /n — 1 for n — oo, its follows that a power series

> 2o an(z — a)" and its derived series >, na,(z — a)"~' have
the same radius of convergence, as asserted earlier. Hence the
derived series converges uniformly for |z — a| < R’ < R as well.


http://www-history.mcs.st-andrews.ac.uk/Biographies/Cauchy.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Hadamard.html

Math 285 Power Series cont'd

Introduction to

Eézfﬁgfigtr:asl A different formula for the radius of convergence can be obtained
from the ratio test for ordinary series: R = limp_,o 22, provided

Thomas [ani1]

Honold that this limit exists; cf. [Ste21], Ch. 11.8, Ex. 44. This formula,
often called ratio test for power series, also fails for lacunary
power series.

Introduction

Sometimes one can apply the ordinary ratio test to the series
obtained by omitting the gaps. For example, in the case of
52, zK° we can set by = z¢* and obtain

Complex Power
Series

[bk1] 2| PR | g2k 0 if|z] <1,
| by | o if|z| > 1,

showing together with the ratio test for ordinary series that
572, 2 has radius of convergence R = 1.

But even in this modified form the ratio test is weaker than the
Cauchy-Hadamard formula, since, e.g., it can’t be applied to

z42224+ 84244854254,

which clearly satisfies v/a, — 1 for n — co and hence has R = 1.
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Power Series cont'd

The term-wise differentiabilty of complex power series can be proved by
generalizing the Differentiation Theorem to complex derivatives.
This requires the concept of complex line integrals and will be
discussed on the next two slides. Here is a direct proof of this fact
(w.l.o.g. we can assume a = 0):

f(z) — f(20) :ia z"n— 2zl
z— 2 ="z -z

— Zan(zn—1 + Zn—ZZO +-. +26771)
n=1

o0
=Y na,zy~" forz - z,
n=1

provided we can interchange the two limits. This is precisely what
the Continuity Theorem asserts. So we have to prove uniform
convergence of the above series in some neighborhood of zy,
which can be done using the Weierstrass criterion and the estimate

_ —1
an(z" 1+ 22z ot 2] 1‘ < nlay| (max{|z|, |zo|})" }
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Power Series cont'd

Given zy with |z|, < R, we set R' := (R + |2])/2. Then

Zy € Bp/(0), and for z € Bg/(0) the series terms are bounded in
absolute value by M, = n|a,| (R')"~". Since R’ < R, the series
>0, M, converges, and hence the above series converges
uniformly on Bg/(0). Thus Bg/(0) provides the desired
neighborhood of zy, and the proof is complete.

Note
The series representlng is not a power series, but like

Yoo anz"and 3" 7, na,,z” = converges uniformly on every disk
Bg (0) with R < R. Whereas uniform convergence of Y~ a,z"
yields only the continuity of f and that of ">, na,z"~" requires
reasoning beyond the ordinary Differentation Theorem to yield the
differentiability of f (see below), the present argument yields both
properties (recall that differentiable functions are automatically
continuous) in the most economic way.

f(Zo)
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Power Series cont'd
Finally, we transfer our proof of the Differentiation Theorem to the
present complex setting. Writing f,(2) = >"¢_, ax(z — a)k, we

have 5
:f,,(a)+/ fr(w)dw

Here f fl(w) dw is the (path-independent) complex line integral
of the (Closed) differential 1-form f(z) dz from ato z, which can
be computed using the straight line path +(t) = a+ {(z — a),
tc[0,1], as fy f(v(t)Y(t)dt.

From the preceding slide we know that (f}) converges uniformly
on [a, z] (the line segment joining a zu z, which is contained in a
suitable disk Bg:(a)) to g(z) = >_7 nan(z — a)"~'. Together with

the estimate
V4
[ w0 - gtwyaw]
a

/az fr(w)dw — /: g(W)dW‘ =

< (max 1)~ gw)]) 12

we(a,z)

thlsshowslumn_,oof fl(w)dw = f g(w)dw und further,
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Power Series contd
letting n — o in the above identity,

f(z) = f(a) + /z g(w)dw for z € Bg(a).

Finally, as in the proof of a theorem in Calculus Il (“independence
of path of f7 w implies exactness of w”) we obtain from this

f(z) — f(20) 1
72_200 *Q(ZO)ZZ_ZO

/ " o(w) - g(zo)dw

for zy, z € Bg(a) with z # z, which for z — z; tends to zero on
account of the continuity of g; cp. the estimate for

2 f(w) — g(w) dw on the previous slide.

This shows that f is differentiable with f' = g.
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Introduction to

[I;icf]fS;?igtriwasl ¢ The Diffentiation Theorem holds more generally for sequences
" of uniformly convergent holomorphic functions f,: D — C,
Honold. D C C; it is even sufficient that every point z € D has a

neighborhood on which the convergence is uniform.

If you think we should rather have required uniform convergence
of the sequence (f})—true, but surprisingly this is equivalent
to uniform convergence of (f,) in the complex case!

e The uniform convergence of power series on proper subdisks
I AR (with the same center) of their open disk Bg(a) of convergence
Comple also implies that power series may be integrated term-wise
along any path « contained in Bg(a). This follows from the
analogue of the Integration Theorem for line integrals in the
plane, which can be deduced from the Integration Theorem
and (assuming the parameter intervall of ~ is [0, 1]) the
explicit formula [ f(z)dz = f01 f(~(1))¥'(t) dt. The factor 4/(t)
doesn’t affect uniform convergence, since it is bounded.

In particular this holds for ordinary integrals of real power
series Y an(x — a)", an, a € R, over compact intervals
[, 5] that are contained in Bg(a); cp. subsequent example.
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Remarks (contd)
¢ As an interesting fact, note that the formula for the

derivatives of a power series, viz.

fR(z) =302 (n+1)...(n+ k)ank(z — a)", implies

fK)(a) = k! a, for k = 0,1,2,..., i.e., a power series is its
own Taylor series, and knowledge of f in an arbitrarily small
neighborhood of a (and hence of its derivatives 7(¥)(a))
determines the coefficients ax = f*)(a)/k! and hence f uniquely.

Power series with coefficients a, € R, center a € R and
radius of convergence R > 0 define an ordinary real function
f:(a—R,a+R) =R, x— Y °,an(x —a)". Since these are
discussed in our Calculus textbook [Ste21], Ch. 11.8-11.10,
| suppose you are at least familiar with this more restricted
view of power series, which doesn’t reveal some important
aspects of the theory, though, for example why are we saying
“radius of convergence”? For understanding Math 285 the
restricted view will be mostly enough, because power series
solutions of ODE's, to be discussed later, will only involve
real power series. Holomorphic functions, complex
differential forms f(z) dz and their properties, and complex
line integrals f7 f(z) dz won't be needed in the sequel.
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In a mathematically rigorous development of Calculus the
trigonometric functions sin, cos are defined by their power series
expansions, which amounts to taking real and imaginary part in
the expansion e* = >~ /(ix)"/n! (thus giving e = cos X +isin X):

2k+1.

cosX:i(iﬂk x2K sinx:ii(ink X
Complex Power (2/()' ’ (2k + 1)!

Series

Both series have radius of convergence R = oo, and therefore
can be differentiated (and integrated) term-wise for every x. This
gives the known relations sin’ = cos, cos’ = —sin; e.g.,

d o (=1 o d (1) .
Ekzzo(zkﬂ)!xﬂ+1 _kz_odx<(2k+1)!X2k+1>
— (DR +1) o o~ (D

= — X —Z X~ = cos X.
£ (2k + 1) £ (2K)!
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Example (contd)

The preceding dicussion holds more generally for complex
arguments (replace x € R by z € C throughout). In the complex
world there is no need to distinhuish between trigonometric and
hyperbolic functions:

cosz = § (e + %) = cosh(iz),

sinz = 1 (e —e™?) = —isinh(iz),

and hence sin, cos are obtained from sinh, cosh by 90° rotations
in the domain/codomain. Thus, e.g., cos(iy) = cosh(—y) = cosh y,
revealing that the complex cosine function on the imaginary axis

looks like the real hyperbolic cosine, and sin(iy) = isinh y, having
a similar geometric interpretation.

Exercise
Using et = eX cos y +ie* sin y, show that the complex cosine
and sine functions have the following explicit representation:

cos Z = cos(X + iy) = cos X cosh y —isin X sinh y,
sin Z = sin(x 4 iy) = sin X cosh y + i cos X sinh y.
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The next example is for the integration theorem, since this is the
one most widely applicable (due to the fact that integration
“smoothes” functions, while differentiation “roughens” them).

Example
The sine integral (function) is defined as

sml‘ , ;

Since the power series defining sin x and sin(x)/x have radius of
convergence oo, the function series in the definition of Si(x)
converges uniformly on every interval [0, x] and hence can be
integrated termwise:

oo n f2n+1 X
Z/ 2n+1 Zo 2n+ {2n+1]0

( 1 )nX2n+1 X3 X5 X7
-3 *~ {5 " 00 saes0 *
(2n+1)l(2n+1) ~ ~ 18 ' 600 35280

Of course, the sine series itself can also be integrated term-wise
over [0, x], producing the power series of 1 — cos x.



Math 285 Power series are very useful in combinatorial enumeration. Here
iieduction©is one of my favorite examples in this regard. (Students of

Equations Discrete Mathematics may have seen it earlier.)
Thomas Example
Find a closed formula for s, = 12 + 22 + - .. + 2. In high school

you may have seen the formula already and been asked to prove
it, but how to discover it in the first place?

Using power series this can be done as follows. Start with the
geometric series and differentiate it term-wise (valid for |x| < 1)

oo
> -

n=0

Complex Power
Series

1 1
n—1 _
:>an dx1—x (1—x)2’

d 1 X
n_ —_ =
:an ~Xax1—x (1—x)2

n=1

From this we see that the operator x(d/ dx) (“first differentiate,
then mutliply by x”) effects the transformation (a,) — (nan) on the
corresponding coefficient sequence of a power series.
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Example (cont'd)
Hence, applying the operator twice we obtain

b's X + x?
Z”X *X*(1 “XE - (1—xp

Further we have
.1 oo o0 o
17)(22,,’2)”: an ZnZXn
n=1 n=0 n=1
12x+(124+22) 2+ (12422 4+ 32)x3 .- +

(o]
=> sux".
n=1

In general, the operator “x ——" effects on the corresponding
coefficient sequence of a power series the transformation

(a0, ay,ao,...)— (@, a0 + a,a + a1 + a, ... ), i.e,, taking the
partial sums of the sequence.



nreamione.  Example (cont'd)

Differential

Equations Putting both computations together, we get
Thomas >
Honold X+ X
X"
Z Sn (1 —x)*

Introduction

This tells us that the so-called generating function of the

sequence (sp) is the rational function (”X) A closed formula for

S S, may then be obtained by expanding (f+’x‘)4 into a power series
Seres and comparing coefficients. This can be done using partial
y fractions or, if you happen to know the power series expansion

(1 =x)"S=3020 ("257N)X", x| < 1, s € N, quickly as follows:

= X+ x2 > (n+3
:}ZSan:M‘:(X+X2)Z< 3 )Xn

n=0 n=0

E(() ()

and hence s, = (”gz) + (n?) — w
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Example (geometry of the complex geometric series)
The geometric series evaluation

oo
Y=t z422+8 4=
n=0

is valid for all complex numbers z with |z| < 1. This follows from

1
142+ +2"=12"and z"*" - 0for n — oc.

1-2

For example, since |5| = 1, | £ | = 32, we have

~/i\" 1 2 4 2
§<2> 1.2 2-i 5 5"
i<1+i>" 1 2

2 1—(1+i)/2  1-i '

n=0

Since complex numbers are just vectors in the plane (which also
can be multiplied), these limits have nice geometric illustrations;
cf. next slide.

For the snakes’ shapes note that multiplication by i/2 amounts to
a 90° rotation and a scaling by 0.5, and similarly for (1 +1)/2.
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Complex vs Real Differentiability

Since complex numbers z = (x, y) = x + yi are just points in the
plane, a function f: D — C, D C C, corresponds to a pair of real
2-variable functions u,v: D — R via

f(z) =f(x,y) =u(x,y)+iv(x,y), resp., u=Ref, v=Imf.

Complex differentiabililty of f in z = (x, y) € D (which must be an
inner point of D), i.e., the existence of the limit

f(z+ h) - 1(2) fix+M,y+h)—f(x,y)

fl(2) = lim 27— 4 i
( ) I.’Z,gg h (h1,hzl)rl1>(0,0) h_1 + h21 ’

has a nice characterization in terms of real (total) differentiability
of u, vin (x,y) and certain conditions on the partial derivatives
Uy, Uy, Vx, Vy in (x, y). For this note that it is equivalent to the
existence of ¢ € C such that limy_,o(f(z + h) — f(z) — ch) /h = 0.
(If applicable, we have f'(z) = c.) Real differentiability of f in
(x,y) in turn means the existence of ay1, a2, a1, @2 € R such
that |imh_>0(U(X + h1,y+ hz) — U(X,y) —ay hy — 312/’72)/ |h‘ =0
and |imh_>0(V(X + h17y+ hz) — V(X,y) — a1 hy — azghg)/ ‘h| =0.
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Theorem
f is complex differentiable in z = (x, y) iff f is real differentiable in
(x,y) (i.e., u,v are differentiable in (x,y)) and

UX(X’y):Vy(Xay)v Uy(X,y):—VX(X,y).

In particular, f is complex differentiable per se (i.e., in every point
of D, which requires D to be open) iff f is real differentiable and
u, v satisfy the so-called Cauchy-Riemann PDE’s

Ux = Vy AUy = —Vy.

Proof.
If f is complex differentiable in z with f'(z) = a+ bi then

f(z+ h) — £(2) = F'(2)h+ o(h) = (a+ bi)(hy + i) + o(h)
= ahy — bh, + (ahy + bhy )i + o(h),

where g(h) = o(h) means g(h)/ |h| — 0 for h — 0.
Extracting real and imaginary part we obtain

U(X+h17}’+h2) - U(X7y) = ah1 _bh2+0(h)7
V(X+h17}/+h2) - V(va) = bh1 +ah2+0(h)7
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Proof cont'd.

. which says that u, v are differentiable in (x, y) with
ux(x,y) =a uy(x,y) = —b, vx(x,¥) = b, vy(x,y) = ain
particular we have ux(x, y) = vy(x,y), uy(x,y) = —vx(X, y).

Conversely, if u, v satisfy the conditions of the theorem, it is
equally easy to see that f is complex differentiable in z with
f/(Z) = UX(Xv}/) + 1 VX(Xay)'

Note

The Cauchy-Riemann PDE’s say that the Jacobi matrix J¢(x, y)
has the special form

J - Ue Uy Uy —W
~\v, v,/ \v u ’
X y X X

i.e., itis at every point (x, y) a scaled rotation matrix.
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Principal Branch of the Complex
The equation Logarithm

w=e? = =e¥Xel =eXcosy +ie siny
is solvable for each nonzero w € C, and the solutions are
Zk = In|w| +i(argw + 2k7), ke€Z,

where arg w € (—m, 7] is the angle of w in polar coordinates.

(To see this, write w = re'® and compare with eXe'.)

Considering the “principal” solution z; as a function of w and
swapping notation, we obtain the principal branch of the complex
logarithm

Inz=1In|z|+iargz=Iny/X2+ y?+iarctan(y/x), X =Rez>D0.

By definition, the logarithm satisfies " = z in its domain, which
can be extended to the “slotted” plane C \ {(x,0); x < 0} (with a
different expression for the imaginary part) without affecting the
truth of the following theorem.
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Theorem
f(z) = Inz is complex differentiable with f'(z) = 1/z.

Proof.
We assume Re z > 0, so that v(x, y) = arctan(y/x) can be used.

f(x,y) = (In VX2 +y?, arctan(y/x)) ,

d X
b= SV
d y
Y=g In /x4 y2 X2+ y?’
_d e L S
Vx = 4y arctan(y/x) = T+ (/X2 Xt y2
1
vy, = 4 arctan(y/x) = /X .

dy 1+ (y/x)? X2 +y2

Evidently the Cauchy-Riemann PDE’s are satisfied, and hence f
is complex differentiable with

X—yi
Xty? |z

27

f'(2) = ux(x,y) +ivk(x,y) = z 1/z. O
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For |z — 1| < 1 we have

|nz:i7(—1g"71(271)n
n=1
N o) N k) N o W

5 T3 T %
This can be seen as follows. The power series has radius of

convergence 1, and hence for |z — 1| < 1 may be differentiated
term-wise to yield

1 1

3

the same derivative as In z.

= In z differs from the power series by an additive constant. The
constant must be zero, since both In z and the power series
vanish at z = 1.
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The following example plays an important role in the theory of
Fourier series.

Example

X n
The power series Z % has radius of convergence R =1 and
n=1
hence defines an analytic (holomorphic) function f(z) on the open
unit disk B1(0) = {z € C; |z| < 1}, whose derivative can be
obtained by termwise differentiation:
Znztt & 1
f/ _ — n—1 — )
(2) Z n ;Z 1-2z

n=1

Together with f(0) = 0 it follows that
f(z)=—In(1—-2)=—In|1 —Zz| —iarg(1 —2) with

In|1 — 2z =Iny/(1 = x)24y2 =In\/1—2x+ |z],

arg(1 — z) = arg(1 — x —iy) = —arctan (1 {X> ,

where we have written z = x + iy; cf. the preceding discussion (or
Calculus lll) for the principal branch of the complex logarithm.
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Example (contd)

Question: What happens on the boundary S' = {z € C;|z| =1} ?
A point z € S' has the form z = ¢ with x € [0,27) (with a
different meaning of x !), and we are asking for the convergence
of the series

f(e”‘)zze cosE7 ) "'iz sin( )
n=1 =

n n
n=1 n=1

From Calculus | we know already that the series diverges for
z=1(x=0),because f(1) =S D=1+ +1+1+.is
just the harmonic series, and converges for z = —1 (x = =),
because f(—1) =300, E = — (1141 -14...)=—In(2)

n

(alternating harmonic series).

20 3
-z Zsin(nm)/n
n=1 2
20
-z Zcos(nm)/n

n=1
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s From the plot it appears that:

® The series of cosines converges for 0 < x < 2« and
e represents a continuous (and maybe differentiable) function
on (0, 27).

e The series of sines converges for all x € R and represents
the 2x-periodic function h defined by

h(x) = (mr—x)/2 for0 < x < 2m,
0 for x =0,

Some Trigononmetric
Series Evaluations

and 2r-periodic extension to R.

Since h(0+) = /2, h(0—) = h(2r—) = —x /2, the function h
has discontinuities at x € 2xZ. The value at any discontinuity
x satisfies h(x) = DHFhC),
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As key step towards the proof of these assertions we now show
that f(z) = > 2, % converges for all z € C with |z| < 1 except for
z =1, and the convergence is uniform on every subset D of
B+4(0) \ {1} that excludes a (small) circle around z = 1.

For this we use a technique called “Abel summation” or “partial
summation” (a discrete analogue of integration by parts). Setting
Sn(2) = > _k_4 2¥, we have for m;n € Nwithm < n

Z Zsk —Sk1 2)

n—1
= _SmeMZ) +Y sk(2) (2( - ij) + S”,(f)

Now suppose that s,(z) is uniformly bounded on D, i.e., there
exists M > 0 such that |s,(z)| < Mforall z€ Dand all n € N.
Then we obtain the estimate

U zk M 2M
D% MZ( k+1>+:m'

k=m




Math 285
Introduction to
Differential
Equations

Thomas
Honold

Introduction

Some Trigononmetric
Series Evaluations

Example (cont'd)
Hence, given ¢ > 0, we have for the partial sums
fn(2) = S_p_, Z¥/k of our series the estimate

n

Kk
doo(fm,f,,):max{ S 27 ;zeD}<e it m,n> N, = [2M/e].

k=m-+1

This shows that the series satisfies the Cauchy-Criterion for
uniform convergence on D and hence that it converges uniformly
on D; cf. subsequent lecture for more details.

It yet remains to derive the bound M. This is easy, however, since

n+1 z

ZZ z—1

Hence, setting D =D, ={z€ C;|z| <1,|z—1| > r} forr > 0, we
have have |s,(z)| < 2/rfor z € D, and n € N, so that we can take
M=2/r.
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You may think of a map of China with Hangzhou at 1 — r and
Shanghai at e'. (Question: Where is Ningbo?)
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Example (cont’d)

Now the continuity theorem gives that f(z) = >, z"/n defines a
continuous function on B¢(0) \ {1}: To prove continuity at a
particular point zy, let r = % |Zo — 1| and use the uniform
convergence on D,.

In particular the series >~ , cos(nx)/nand > -, sin(nx)/n
converge for every x € (0,27) (and the second series trivially
converges also for x = 0).

Knowing that f is continuous in z = ¢ € S' \ {1}, we can
compute f(e'?) from the explicit representation of f in B1(0) as the
limit
f(e'?) = lim f(re'?)
r

=lim |—Iny/1—2rcos¢ + r? + iarctan _fsing
rT1 1—rcos¢

—In/2(1 — cos ¢) + iarctan (Smd)>

1 —cos¢
—1In <2sing) +i7r;¢,
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. where we have used

_q_ 2¢ 29 2?
1—cos¢p=1 (cos 5 sin 2) 2si 5
-9

- 12 cos &
sing ~ 2sinjcosy ¢
7% 7cot§7tan 5

1—cos¢  2sin

As a corollary we have the trigonometric series evaluations

S o (2sin k), 3T _TEX (< x <)

n=1 n=1

In particular, setting x = 7/2 (or z = ¢'¥ = i) this gives
1-3+3-4+=m2, 1-J+l+1x...=7/4
In the next subsection the criterion we have used for proving the

uniform convergence of >"-°, z"/n is stated in more generality. It
is known as “Dirichlet’s test for uniform convergence”.
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(nx
We compute the related series Z L)

n=1

Since |cos(nx)/n?| < 1/n? and 3,7, 1/n? converges, this series
converges uniformly (and absolutely) on R and represents a
continuous, 2x-periodic function g: R — R.

1.5 A
1,
) -z me (nzx)/n?

-10 -5 ~0.5 \>Q a0
- -z Zcos(nw)/n'
n=1

The series of derivatives is

n=1 n=1 n=1

From the preceding example we know that the series of
derivatives converges uniformly on every interval of the form
[6,27 — 6] with 6 > 0 (and ¢ sufficiently small).
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Rl = The differentiation theorem can be applied and gives
quatlons
E]:r?;ﬁjs /(X)—*iM_H forO0< x<?2
g — P e 2 .
n=1
PRy
:>g(x):¥+c for 0 < x < 2,

where C is some constant. (Note that g(0) = g(2r) = n?/4 + C,
so that the 2x-periodic extension to R will be automatically
continuous.)

The constant can be determined by evaluating the integral

Logarithm o

Some Trigononmetic o 9(x)dxintwo ways:

Series Evaluations
An Additional

@ Applying the integration theorem to the series defining g, we obtain

2w 2w S o 27 cos
S )
= [sin(nx)]1?" X sin 2n7r) —sm(O) B
5 s,

n=1 n=1
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® Using the expression g(x) = (x — 7)2/4 + C, we obtain

h 2n
2 9(x) dx [()(—77)3_‘_0)(} 213—1—2770— (—m)?

0 12 . 12 12

3

%+%o

Since this is equal to zero, we conclude C = —72/12, and
finally

o _ 2 2
_yocos(mx) _ (X 47T) - :L for 0 < x < 27.

n=1

As a by-product, setting x = 0, resp., x = 7, we obtain from
this the series evaluations

2

001 o0
PRSI

n=1

n71

a
n

—_
N
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Exercise
a) Assuming that 32, 1, = =* show that 320, CI7 —
without resorting to the evaluation of S, < on the
previous slide.
Hint: Add the two series.
b) Showthat {5 + 2 + & + 7 + - = T
Exercise
Determine the two series
> sin(nx) > cos(nx)
ZT and Z? for x € R,

n=1 n=1

and use the results to evaluate in turn Z
nfo

="
(2n+

dZ
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Riemann’s Zeta function is defined for complex arguments

s = o +it with o = Re(s) > 1 by
(s)=>_ %, where n® = ¢eM(s,
n=1
© Show that the above series converges uniformly on every
closed half plane Hs; = {s € C;Re(s) >1+4, > 0, and
conclude from this that ¢ is continuous.

® Using a variant of the Differentiation Theorem, show in a
similar fashion that ¢ is complex differentiable (in fact
infinitely often) and give a series representation for ¢’(s).

® Using properties of the prime factorization of integers, show

1
)= G0 — 590 — 790 115

@ Show that (2'~¢ — 1)¢(s) has a series representation of the
form Y~ 2, a,n~S, which converges for Re(s) > 0 and
uniformly for Re(s) > ¢ > 0. Conclude that {(s) is holomorphic in
{s € C;Re(s) > 0,5 # 1} and satisfies lims_,1(s — 1)¢(s) = 1.
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According to my experience, many students find it hard to
understand and master the concept of uniform convergence.
Sometimes even basic things go wrong, such as confusing
function sequences and series. The following exercise, which is
derived from an earlier midterm question, addresses this.

Problem
Suppose f,: R — R is defined by

X

W)= e

n=0,1,2,...

© Does the sequence (f,) converge uniformly?
@ Does the series Y, f, converge uniformly?

@ Investigate uniform convergence of the sequence (f,) by
converting it to a series and applying the Weierstrass test.
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(1) First we check point-wise convergence: For x = 0 we have
f2(0) = 0, which trivially converges to 0 for n — oo. For x # 0 we
have 1 + nx?> — +oco and hence Tz — 0for n — oo. (Note that
X is treated as a constant here.)

= f, converges point-wise to the all-zero function R — R, x — 0.

Since limy_, 1 fa(x) = 0 and f, is continuous, the function f,
attains a minimum and a maximum. By symmetry, if the maximum
is at x, > 0 with value M,, the minimum must be at —x, with the
opposite value —M,.) Uniform convergence to the all-zero
function requires precisely that the resulting sequence of maxima
converge to zero, because given € > 0 we need to find a response
N such that

—e<fy(x)<e forn>Nandall x € R,

which is equivalent to M, < e forn > N.

. 2_
Since f/(x) = 1*’(’1’;”)((22)’;")’( = (11+,$(X2 ;=0 < x= i , the

. . . 1
(unique) maximum of f, is f, (%> 2\f Hence, since f -0,
we can conclude that f, — 0 uniformly.
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& + b? > 2ab) to conclude that |f,(x)| <
for the conclusion.

2f’ which is sufficient

(2) Here the answer is “No”, because the function series doesn’t
even converge point-wise (except for x = 0). In order to see this,
rewrite it for x # 0 like this:

[e%S) % 00 1
— X
P D D et
= 1+ nx ‘Setn
<o Since for point-wise convergence 1/ x is treated as a constant,
An Addtonal this shows that the series behaves like the harmonic series and

Example

hence diverges. (More precisely, for n > 1/x2 the n-th summand
: is lower-bounded by 1 1. = L 1:since finitely many summands
of a series don't affect convergence/dlvergence, the series

diverges just like Y07 o1 = L3> 1)
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(3) This is the most advanced part, but please be warned that this
example is artificial and included solely for teaching purposes: In
reality nobody would want to replace the rather straightforward
proof in (1) that f, — 0 uniformly by a complicated proof, which
doesn’t even yield the limit function.

First we make the correspondence between (function) sequences
and (function) series precise: As usual, with a series >, f, we
associate the sequence (F,) of partial sums F, = >/ _, fc, n >0,
and you should recall from Calculus Il that convergence/sum of

> o f means convergence/limit of (Fy).

Conversely, given a sequence (f,)n>0 We can write

fn:fn*fn—1 +fn—1 *fn—2+"'+f1 *fOJFfO
=0+t g1t -t01+ 0
with go = fy and g, = f, — f,_¢ for n > 1. The sequence (f,) is
then the sequence of partial sums of the series >~ gn.

This correspondence between sequences and series is evidently
one-to-one.



ah2ss - Solution contd

Diff tial i — —
CU In our case we obtain go(x) = f(x) = x and
Thomas 3
Honold X X —X
9n(x) =

T1rnx A+ (n—0)x2 " [T+nx®) A+ (n—1)x?)

for n > 1. By construction, the n-th partial sum of the function
series

0 3

”2(1 T x®) (1 + (n—1)x2)

is then equal to fo(X) = 1775-

Now we will prove, using the Weierstrass test, that the function
series, and hence the sequence (f,), converges uniformly on R.
For this we must solve two problems.

An Additional
Example

urther Tests for

Problem 1: The first summand of the series, viz. go(x) = x is
unbounded.

Hence we can apply the Weierstrass test only to the function
series >~ gn. But it is sufficient to show uniform convergence of
this series, because adding finitely many summands to a function
series doesn't affect uniform convergence.
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For the sequence of partial sums this means “add the same
function to every sequence term” and clearly has no effect on
uniform (or point-wise) convergence. (In fact, since we already
know that f, — 0 uniformly, it must be that >, g, converges
uniformly to —x.)

Problem 2: Find a suitable uniform bound M,, for |ga(x)|.

Here we can argue as follows: For small x (maybe “small in
comparison with n”) we don’t lose too much if we use

|1+ nx2| > 1, and similarly for the 2nd factor in the denominator.
W.l.0.g restricting to positive x, this gives

1
nv/n’
provided that x < ﬁ (If you can'’t see the idea behind the last

estimate, note at least that M, = %ﬁ would work in the

Weierstrass test because the series -, %ﬁ =Y
converges.)

X3
+nx2)(1+(n—1)x?)

<x®

IA

9001 =
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It remains to estimate |g,(x)| for x > = . Here we can use

x8 - x3 B 1
(1+nx2)(1+(n—1)x2) ~ nx2(n—1)x2  n(n—1)x
1

(n— 1V

For n = 1 this estimate doesn’t work but, as remarked before, we
may as well consider the series ", g, and prove its uniform
convergence.

In all we have shown

<

forn>2andall x € R.

()| €
MR IG
Applying the Weierstrass test to the series Y, g, with constants
M, = m then finishes the proof. (If you have doubts that the

series >, m converges, observe that (n —1)y/n > ny/n/2
and apply the comparison test with "7, niﬁ as upper bound.)
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Further Tests for Uniform

Convergence
Theorem
Let (f,) be a monotonically decreasing sequence of real-valued
functions on D (i.e., fi(x) > fo(x) > f3(x) > --- forx € D) and (gn)
a sequence of complex-valued functions on D. The function

series >, f,gn converges uniformly on D if one of the following
two criteria is satisfied:

© DIRICHLETs test for uniform convergence
(f.) converges to 0 uniformly on D and the series y_," , gn
(i.e., its partial sums G, = g1 + - - - + gn) is uniformly
bounded on D.

® ABEL’s test for uniform convergence
() is uniformly bounded on D and the series Y " | gn

converges uniformly on D.
The domain D in the theorem is completely arbitrary (i.e., any set).

Dirichlet’s test in particular includes the case where f, is constant,
i.e., (fy) is ordinary sequence of real numbers satisfying f, | 0.
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Before proving the theorem, we state the analogue of Cauchy’s
convergence test for uniformly convergent function sequences/series,
which was behind the scene also in Weierstrass’ test.

Lemma

© A sequence (f,) of (real-/complex-/vector-valued) functions
on D converges uniformly iff for every e > 0 there exists
N € N such that |fn(x) — fa(X)| < € forall m,n > N and all
x € D.

o @ A series Y, f, of functions on D converges uniformly iff for
Akt every e > 0 there exists N € N such that |>"p_ . fi(x)| < e for

Example
Further Tosts for alln>m> N and all x € D.
Uniform -

Convergence
(optional)

The Multivariable

The proof is more or less the same as the earlier proof (discussed
in Calculus Ill) that a sequence of real or complex numbers (or
vectors) converges iff it is a Cauchy sequence, except that now all
responses N must be uniform. We omit the details.
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Proof of the theorem.

In both cases, given € > 0, we must find a response N such that
> kem fk(X)gk(X)| < € for n > m > N. This can be done with the
help of Abel summation:

D KOG() = D h(x) [G(x) = Gr-1(X)]
k=m k=m

= —f(X)Gm1(x) + fo(x) Gn(X) + Z [ (X) — fict-1 (X)] Gi(x)

Case 1 (Dirichlet): By assumption, there exists M > 0 such that
|Gk(x)| < Mforall k e Nand x € D, and since f,(x) | 0 we must
have f,(x) > 0. This allows us to estimate as follows:

)| < fn(X)M + fo(x M+Z[fk — frp1 ()M

= 2M frn(x). (The sum "telescopes".)

Since f, | 0 uniformly, given ¢ > 0, there exists N € N such that
fm(X) < €/(2M) for m > N and x € D, showing that >"°, f,gn
satisfies the assumption of the Cauchy test for uniform convergence.
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Proof cont'd.

Case 2 (Abel): Here the key observation is that in the expression
obtained for 3°)_ . fi(X)gk(x) by Abel summation the coefficient
sum of the functions Gk(x) is

F2(X) = Fon(X) + Fon(X) — Frp1 (X) + -+ + Fo_1(X) — Fo(X) = O.

= We can add subtract G(x) = limy_ - Ga(x) from every summand
without affecting the sum, i.e., we have (suppressing arguments)

n n—1
> hgk = ~fn(Gno1 — G) + (Ga — G) + > _ (fi — fi1)(Gk — G).
k=m k=m

Since G, — G uniformly, given ¢ > 0, there exists N € N such that
|Gr — G| < eforn> N. Forn > m> N+ 1 we then obtain

n n—1
Z fkgk < ‘fm‘ e+ |fn| €+ Z(fk - fk+1)‘5 - (‘fm‘ + |fn‘ + fm - fn) €.
k=m k=m

If M is a uniform bound for f,, i.e., |f,(x)| < M for all n € N and
x € D, then |3 fgk| < 4Me for n > m > N + 1, so that again
the Cauchy test for uniform convergence can be applied. O
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Note

Uniform convergence of the series ", f,gn is not affected by
deleting a finite number of summands from it. This can be helpful
if some of the functions f, or g, are unbounded. For example, if g4
is unbounded and all of g», g3, ... are bounded then all partial
sums G, = g1 + - - - + gn are unbounded as well, and hence
Dirichlet’s test cannot be applied directly, but nevertheless it may
be possible to obtain a uniform bound for G, = g» + - - - + g and
apply it to the series > 2, fogn.

As discussed earlier, Dirichlet’s test gives the uniform
convergence of > . z"/n on the regions D,, 0 < r < 1. Here
fa(2) = 1/n, gn(2) = 2", and the key observation is that

Gn(2) = z+ 22 + --- + z" is uniformly bounded on D,.

As an application of Abel's Test we prove the following

Theorem (Abel’s Limit Theorem)

Suppose >_,~, an(z — a)" has radius of convergence 0 < R < cc.
If the power series converges for a point z; = a+ Re'? on the
boundary of its disk of convergence, it converges uniformly on the
line segment [a,z1] = {a+ re'?;0 < r < R}, and hence
represents a continuous function on [a, z1].
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and explains the name “limit theorem”.

Introduction

Proof.
Writing f(z) = 3,2 an(z — a)", we have

fla+re?) = Za reind —Z—a R

Now define f,(r) = r"/R" = (r/R)", gn(r) = a,R"e™ for n € Ny
and r € [0, R]. Then 0 < f,1(r) < fao(r) < 1 for all n, so that f, has
B the properties required in Abel’s test for uniform convergence.

e The series ) ,_, gn converges uniformly on [0, A], since it
(optional)

The ivaro converges by assumption and doesn’t depend on r.

— Abel’s test can be applied and yields the uniform
convergence of > °  f,g, on [0, A, i.e., the uniform convergence
of Y2 pan(z —a)" on [a, zi]. O
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Example
The binomial series

Z(f,)Z”—ZS(S11)'.'2'.(.8.,,”“)2", s¢{0.1.2,...},

n=0 n=0

has radius of convergence R = 1 (by the ratio test) and
represents the function (1 + z)° = e$'°&('*+2) in B4(0); cf.
Homework 4, Exercise H25. (Here, as usual, log denotes the
principal branch of the complex logarithm. For s =0,1,2,... the
series terminates, and the identity reduces to the ordinary
binomial theorem (1 + z)$ = Y"> o (%) 2".

Claim: For s > —1 the series >_ 7 (%) satisfies the assumptions
of the alternating series test, and hence converges.

Proof: Since s+1 > 0 and

(fw):_n_qu(ni)’

for large n the sequence a, = (£) will be alternating in sign and
|an| < |an—1]-
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()==20-0-9(5%)

Fors>0wehave 0 <1—s/k <1exceptfork=1,2...,|s],
and hence for n > [s] the estimate |({)| < sP/n, where

P = [1:%,(s/k — 1). This shows (%) — 0 for n — oo,
For —1 < s < 0 we have

n—1
s S
=In(=s)—In(n)+> In(1-2
[0 e o=

n—1

Uniform S

Comaos <lIn(=s) = In(n) =) K= — In(n) — SZ K %
k=1

The Multivariable

Introduction

n—1

since Y4_1 1/k = In(n) + O(1) and —s < 1. This shows (%) — 0
for n — oo also in this case and completes the proof of our claim.
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Now Abel’s Limit Theorem gives that z — Y~ (7)z" defines a
continuous function on (-1, 1] for s > 1 and hence represents
z— (1+2z)%alsoforz=1.

:Z(i) =25 fors> —1.
n=0

For s = —1/2 we have (~1/?) = (=1) 122-27-1) and obtain the
. . n 2:4.6---2n
series evaluation

1,13 185 1.3.5.7_ V2
224 246 2468 2

Similarly, one can show that for s > 0 the binomial series
converges at z = —1 and hence represents z — (1 + z)* also for

z=-1.
o0 N S
—_— = f .
:>n§:0( 1) (n> 0 fors>0
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Calculus | or I, when the differential calculus of functions of
several variables is not yet available. For this reason the main
theorems about uniform convergence are usually stated for
one-variable functions, as we have done.

But, of course, these theorems have multivariable generalizations,
which are no less important. We consider only the case of the
Differentiation Theorem.

Theorem (differentiation, multivariable case)
Suppose fx: D — R, D C R" (k € N) are C'-functions, (fx)ken
converges point-wise on D, and the n sequences of partial
derivatives (0fc/0X;)cn, 1 < I < n, converge uniformly on D.
Then f(X) = limk_,o fk(X), X € D, is a C'-function as well and
satisfies

The Multivariable
Case

i of of

—(x) = lim =— <i< ,
ax/(x) kll—>moo 6x,-(x) for1 <i<nandxeD (%)
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Proof.

Recall from Calculus Ill that a function g: D — R is C' iff the
partial derivatives dg/dx; exist on D and are continuous as
multivariable functions.

First consider a sequence of partial derivatives, say (0fx/0X1)cy-
Since x4 — %(M , X2, ..., Xn) is the ordinary derivative of

X1 — fx(Xq, X2, . . ., Xp) and since the uniform convergence of
(0fk/0X1)en ON D implies the uniform convergence of the

one-variable functions x; — g—)’é(m ,X2,...,Xn) on the set of all
x € R for which there exists an (x1, ..., x,) € D such that x = x;,

we can apply the one-variable Differentation Theorem to conclude
that 0f /0x; exists on D and

lim %(x1,...,xn) = ﬁ(x1,...,x,,) for (x1,...,xn) € D.
8X1

This shows that f is partially differentiable and satisfies (x).

The proof is then finished by applying the Continuity Theorem
(whose generalization to n-variable functions is straightforward) to
the sequence (9fx/0x1),cy, Sy, Which yields the continuity of 63—)2
as a multivariable function. O
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Note

Since differentiability is a local property, the conclusions of the
Differentiation Theorem remain valid under the weaker
assumption that every point x € D has a neighborhood Dy on
which the sequences (9fx/0X;),cy, 1 < i < n, converge uniformly.
This is also true for the Continuity Theorem (since continuity is a
local property as well) and for the Integration Theorem (since the
interval of integration is compact and locally uniform convergence
on D implies uniform convergence on every compact subset of D
by the Heine-Borel covering property; cf. Calculus Il1).
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Suppose ¢y, ¢1, Co, . .. is a sequence of real numbers which grows
at most polynomially, i.e., there exists d € Z* such that

ck = O(k9) for k — oo. We show that

f(x,y) = Z cke ™ cos(kx), (x,y) € R x RY,
k=0
solves Laplace’s Equation 9?f/0x? + 92f/9y? = 0.
First let us assume that f is well-defined, is a C2-function, and that
partial differentiation can be done termwise.

f oo
= %(X, y)= Zk:o —kexe ™ sin(kx),
o?f o0 2. Ky
W(X, y)= Zk:o —k“cke™" cos(kx),
g;(x, y)= Z:io —kexe ™ cos(kx),
1
dy?

and clearly g—i’;(x, y)+ g—;ﬁ(Xa y)=0.

(X,y) = Z;:o K2cke™ cos(kx),
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In order to justify the preceding computation, it suffices to show
that all series involved (including that defining f) converge
uniformly on some neighborhood of a given point (X, yo) in the
upper half-plane R x R*. (Be sure to check in detail how this and
the Differentiation Theorem imply all assumptions made.)

We can take the neighborhoods as

Hs = {(x,y) e R%y>6}, ¢>0.
For the coefficients of the series representing 02f/9x? we have
’—kZCke_ky cos(kx)| < K% |ck|e ™™ < M kd+2e—ko

for (x, y) € Hs and k sufficiently large, where M is some constant.

The series 3, k972e % converges, because the rapid growth
of x — e* implies that e %® < k=9=%, and hence k92~ < 1/k2,
for sufficiently large k.

= We can apply Weierstrass’s Criterion to conclude the uniform
convergence of "2 ; —k?cke ™™ cos(kx) on Hs.

The other series are treated similarly.
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Uniform Convergence of

Improper Parameter Integrals
So far we have considered uniform convergence of function
sequences/series, the “discrete case” so-to-speak. The
continuous analog of (function) series are improper (parameter)
integrals, and accordingly it also makes sense to speak of uniform
convergence of parameter integrals:
Definition
Suppose f is a real-valued function with domain D x [0, c0) and
such that [ f(x, t) dt is defined for every R € [0, 0) and x € D.

© /., f(x,t)dt is said to converge point-wise on D if
I|m,;»ﬁC>o fo (x, t) dt exists for every x € D. If this is the case,

F(x) = [° f(x,t)dt == limp_a [y f(X, t)dt defines a
real valued function on D (“limit function’ )

® |, f(x,t)dtis said to converge uniformly on D if it converges
point-wise and for every ¢ > 0 there exists a “uniform” response

Ro € [0, 50) such that |F(x) — g f(x, ) dt| = | [ f(x, ) di] < e
forall R > Ry and all x € D.
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Notes
e The definition is easily extended to improper integrals with
other domains of integration, such as [a, o), (—oo, b],
(=00, 0), (&, b), etc. The subsequent discussion applies
mutatis mutandis to all these cases.

e Uniform convergence makes sense for any limit involving a
further parameter, e.g., under the assumptions of the
definition it makes sense to define “f(x, t) — F(x) uniformly
for t — o0” if limioo f(X, 1) = F(x) for every x € D and in a
proof of this responses Ry = Ry(e) can be found that do not
depend on x.

* The theory we shall now develop overlaps with that of the
Lebesgue integral, but is not contained in it, because it also
applies to improper integrals that don’t converge absolutely,
e.g., [, sin(t)/tdt.

Ouir first goal is to prove analogues of the Continuity and
Differentiation Theorems for proper parameter integrals with
continuous integrands. These are special cases of theorems for
the Lebesgue integral stated earlier in Calculus lll. “Elementary”
proofs that are independent of the Lebesgue theory will be given.
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Lemma (continuity)
Suppose | C R is an interval and f: | x [a, b] — R is a continuous
two-variable function. Then F: | - R, X — fab f(x, t)dt is continuous.

Proof.
Since all functions t — f(x, t), x € I, are continuous, existence of
all (Riemann) integrals involved is trivial. For x, xo € / we have

b
F(x) — F(x) = / [F(x.t) — f(x0. D)] dt,

and, given € > 0, need to find a response § such |f(x,t) — f(xo,t)| < €
forx € [xo — d,% +d]Nlandall t € [a, b]. (For such x we then have
|F(x) — F(x0)| < e(b — a), showing that F is continuous in xo.)
Now we use the uniform continuity of f on compact rectangles

K = [, ] x [a, b] with [, 8] C I. If Xg is an inner point of /, we
can choose a < x < f3, and if xp is the left end point of /, say, we
can choose a = xg < 3.

Given e > 0, there exists 6 > 0 such that |f(x1, &) — f(x2, &)| < €if
(x1,t), (%2, ) € Kand |x; — x2| < 6, |ti — 2| < 6. Specializing to
X1 = X, Xo = Xp, l{ = Io = t shows that this ¢ can serve as the

desired response. O
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Lemma (differentiation)

Suppose | C R is an interval, f: | x [a, b] — R is a continuous
two-variable function, and the partial derivative
fo = 2L I x [a,b] — R exists and is a continuous two-variable

function as well. Then F: | — R, x — |, ab f(x, t) dt is differentiable

with b
- / fo(x, t)dt,
a

i.e., we can differentiate F under the integral sign.

Proof.
For xo € I and h # 0 such that xo + h € | we have

F(xo+h F(xo) /fxo dt_/

’F(xo+h F(xo) /fxo 0] <
X )

f(xo+ h,t) — f(xo, t
Vot 1) (°)fx(xO,t)}dt,

f(xo + h,t) — f(xo, 1)
h

- fX(Xo, t)' dt,

and all integrals involved exist because of the continuity
assumptions on f and f,.
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Honold

f(xo+ h,t) — f(xo, t

( 0 2] ( 0 ) - fX(X07 ’fX gh tat) (X07t)‘

with & between x and xo + h. (Considering x as fixed, there is
no dependence of &k on Xg.)
Now the proof can be finished as in the Continuity Lemma, this
time using the uniform continuity of f, on compact rectangles

= [o, 8] x [a, b] : If 6 = 6(¢) is such that
|fX(X1 R t1) — fX(Xg, tg)l < ¢ for all (X1 , t1), (Xg, tg) € K with
|x1 — X2| < 4, |ty — 2] < 6, the previous estimates imply that

F h)—F b
(o +h) — F(x0) _/ (X0, t) dt| < (b - a)
: h a
Igmp':‘gpm. for all nonzero h € (-4, 5) such that xo + h € /.
Integrals (optional) — ||m m f f XO? dt’ as desired. O

h—0
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Theorem (continuity)

Suppose | C R is aninterval, f: | x [a,c0) — R is a continuous
two-variable function, and | a°° f(x,t)dt converges uniformly on I.
Then F: | — R, x — [ f(x,t)dt is continuous.

Proof.
For n € N define Fp: | — R by Fyp(x) = [Z7" f(x, t) dt. The
functions F, are continuous by the Continuity Lemma, and

converge uniformly to F(x) = [° f(x, t)dt, x € I. (If Ry is such

that | [5° f(x, t)dt| < e for all R > Ry then
|F(x) — Fa(x)| =[5 f(x,t)dt < eforalln> Ry — a, so that we

a+n
] can take N = [Ry — a|] as corresponding response.)

— By the Continuity Theorem for function sequences, F is
oy continuous. O

Convergence of
Improper Parameter
Integrals (optional)
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Theorem (differentiation)

Suppose | C R is an interval, f: | x [a,00) — R is a continuous
two- variab/e function, the partial derivative

fo = 2L: I x [a,00) — R exists and is a continuous two-variable
function as well, f . f(x,t)dt converges point-wise on |, and

[ f(x, t) dt converges uniformly on I. Then F: | — R,

x — [° f(x,t)dt is differentiable with

= / fe(x, t)dt
a

i.e., we can differentiate F under the integral sign.

Proof.

As before we set Fn(x) = [27" f(x, t)dt for x € I, which converges
point-wise on / to F by assumption. The Differentiation Lemma
gives that F, is differentiable with F}(x) = faa+nf (x,t)dt, and the
uniform convergence of [, f,(x, t) dt that (F;) converges
uniformly on /to x — [ f,(x, t) dt. Hence the Differentiation
Theorem for function sequences can be used to finish the

proof. O
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In a way the deepest result used in the foregoing “elementary”
proofs is that continuous functions on compact subsets of R”,
here rectangles K = [, 8] x [a, b] C R2, are uniformly continuous.
In the Calculus Il lecture slides this was shown for the
1-dimensional case K = [a, b] on two different occasions with two
different proofs, one based on the Bolzano-Weierstrass Theorem
and the other on the Heine-Borel covering property.

Exercise
Translate in detail one of the two proofs mentioned above into the
present 2-dimensional setting.

Exercise

Suppose U C R? is open and contains a compact segment
{(0,y);a <y < b} of the y-axis. Show that there exists 6 > 0
such that [-4, d] x [a, b] C U.

A proof of the Continuity Lemma can also be based on this
property.
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Criteria for Uniform Convergence
The tests for uniform convergence of function series have
continuous analogues, which we now discuss. We state these in
the original setting for a function f: D x [0, 00) — R and tacitly
assume that the Riemann integrals fOR f(x, t)dt, and hence also

JSH1£(x, t)] dt, exist for all R € [0,00) and x € D. (In particular this
is the case if D is an interval in R and f is continuous as a
two-variable function.) As usual, the Cauchy test is the basis for
all others.

Cauchy test
Js" f(x, t)dt converges uniformly on D iff for every e > 0 there

exists Ry > 0 such that ‘f,f/ f(x,t) dt‘ <eforal R > R> Ry and

x € D.

Proof.

We only prove “<—=", which is more difficult. Define a sequence of
functions Fj: D%RbyFn = [y f(x.t)dt,n=0,1,2,.

Under the given assumption F,, clearly satlsfles the Cauchy test
for uniform convergence of function sequences, and hence
converges uniformly to a function F: D — R.
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Proof cont'd.
Further, given e > 0, let Ry be the corresponding response as
stated in the Cauchy test. For n > R > Ry we then have

n
/f(x,t)dt‘<e for x € D.
R

Fr(x) — /: f(x,t)dt| =

Letting n — co we obtain ‘F(x) — fOR f(x,t) dt‘ <eforall R> Ry

and x € D, which shows that [, f(x, t) dt converges uniformly on
D to F(x). O

Weierstrass’s Test

Suppose there exists a function ¢: [0, c0) — R such that

[f(x, t)] < ®(1) for all (x,t) € D x [0,00) and [, ®(t)dt converges
in R. Then fo (x, t) dt converges uniformly and (absolutely) on D.
Since necessarily ¢ > 0, this is actually a special case of
Lebesgue’s Dominated Convergence Theorem, but it has a
simple proof based on the Cauchy test: One needs only observe
that )f,f f(x, t)dt’ < f: [f(x, )| dt < f,f ®(t) dt independently of
x € D, and use the (reverse) Cauchy test for the ordinary
improper integral [~ ®(t)dt.
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Honold r(x) — / tXf‘IeftdI.7 X e (0, OO)
0

can be discussed in the present framework without recourse to
Lebesgue integration theory. Since for x < 1 the integral is
improper on both ends, an appropriate definition is

0o 1 00
F(x):/ rlemtdt ::/ tX—‘e—fdt+/ letdt
0 0 1

reducing the discussion to the one-sided improper integrals

1 1
Mo(x)= [ tTeldt=Ilim [ e tdt,
0 rio Jr

@ - 00 R
r(x) = / e tdt = lim / trletdt.
1 J1

Uniform R— oo
Convergence of
Improper Parameter
Integrals (optional)

Provided we are allowed to differentiate k-times under the integral
sign, the corresponding derivatives are
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k -1 _— k 1 -
Thomas rg)(x):/0 (Intye—letdt, ¥ )(x):/1 (Int)y e tdt.

To justify the differentiations, it suffices to show uniform
convergence of these integrals on intervals of the form [a, b] with
pes 0 < a < b. This can be done with the Weierstrass test:

[(In )kl < |In¢| 121, te(0,1], x> a,
[(Int)st*~Te~!| < (Int)kto~"e ", te[1,00) x <b.
The integrals f01 Int|*ta=1dt, [*°(Int)<tb~Te~! dt exist, as is

easily shown using the growth behavior of log, exp. Thus the
Weierstrass can be applied as claimed.

Putting things together, we obtain that I' has derivatives of all
orders, given by

T
Case
Uniform

Convergence of

memrmmee 00 (x) = 109 (x) 4110 (x) = / (Intykt—Te~tdt fork=1,2,...
0
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Example (cont'd)
Recall that we had derived these results using the theory of the
Lebesgue integral. In particular, by applying the Monotone
Convergence Theorem to the sequence of functions f,: R — R
defined by
£0) = {t"“e" if x € [%,n],

0 otherwise

(considering x as fixed), we had established the existence of
JoS " Te!dt as a Lebesgue integral.

The argument used in an essential way the non-negativity of the
integrand t*~'e~!, which implies that (f,) is monotonically
increasing. The Monotone Convergence Theorem then gives

o n
/ t~le~tdt = lim /f,,(t)dt: lim / t*—le~tdt.
0 n—oo Jp n—oo J4/n

For general functions, however, the existence of such very special
limits do not imply the existence of the corresponding “infinite”
(improper Riemann or Lebesgue) integral.
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/ 22 dax = [In(x)?2]7, = In(n)? —In(1/n)2 = 0.
Three 1/!7 X /n
Counterexamples
Three Theorems
Jeesessseston - Thus we also have
Convergence

Complex Power n

Series . Inx

e lim / —dx =0,
1

Differentiability n—oo
Versus Real /n X
Differentiability

The Complex

Ll but the improper integral

ati
Example. > |nx 1 InXx * Inx
Furter Tests for —dx = —dx+ —dx = -0+ 0
Uniform 0 X 0 X 1 X

Convergence
(optional)

The Multivariable

N .
B doesn’t exist.
Uniform

Convergence of

Improper Parameter

Integrals (optional)
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Exercise

© Show that in the definition of a two-sided improper integral
over (0, o) in terms of two one-sided improper integrals we
can take any number a > 0 instead of a = 1 as intermediate
point, i.e., the value of

/Oaf(x)dx+/:of(x)dx:Iriina/raf( dx + Ilm/ f(x

doesn’t depend on a.

® In stark contrast with this, prove the following fact regarding
the previous example. Given any numbers 0 < r < R and
C € R show that there exists a € (0,r) and b € (R, o) such

that
/b InX

In other words, by letting a | 0 and b — oo in a certain
“dependent” way, we can achieve that f0°° "‘TX dx converges
to any prescribed value.
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Dirichlet’s and Abel’s Tests

Suppose that for every x € D the function t — f(x,t) is
continuously differentiable and monotonically decreasing, and
t — g(x, t) is continuous. Then [ f(x, t)g(x, t) dt converges
uniformly on D under each of the following assumptions:

© f(x,t) converges uniformly to zero for t — oo, and there
exists a “uniform bound” M > 0 such that ’foﬁ a(x, t)dt’ <M
forall R € [0,00) and x € D.

@® There exists M > 0 such that |f(x, t)] < M for all t € [0, 00)
and x € D, and [, g(x, t) dt converges uniformly on D.

Proof.

The functions t — f(x, t) and t — g(x, t) satisfy the assumptions
of the Second Mean Value Theorem for integrals; cf. subsequent
slide. Hence, given x € Dand 0 < R < R/, there exists 7 € [R, R']
such that

/ f(x, )g(x, t)dt = f(x, R) /Tg(x,t)dt+f(X7R’) / g(x, t)dt.
R R r
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Proof contd.
Case 1 (Dirichlet): We have

/F:g(x, t)dt‘ = /OTg(x, f)dt/ORg(x, ) dt

and similarly )fTR/ a(x, t)dt’ < 2M. Since f(x, t) — 0 uniformly for

t — oo, there exists Ry € [0, co0) such that |f(x, t)| < e/(4M) for all
t> Rpand x € D. For R > R > Ry we then get

/ f(x,H)g(x,t)dt
R

independently of x € D. Applying the Cauchy test for uniform
convergence finishes the proof.

<2M,

<W 2M+m 2M =

Case 2 (Abel): Here we can apply the reverse Cauchy test to
I~ 9(x, t)dt. If Ry denotes a response to ¢/(2M) in thls test and

R > R> Ry, we can upper-bound | [ g(x,t)dt| and | [’ "g (x, 1) dt‘
by e/(2M), and then finish the proof in the same way. O
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Introduction to

Differential The following facts are commonly called the First and Second

S Mean Value Theorem for (Riemann) integrals. Prove these facts.
Thomas
honed © Suppose f: [a, b] — R is non-negative and integrable and
g: [a, b] — Ris continuous. Then there exists 7 € [a, b] such
that

b b
/af(t)g(t)dt:g(r)/a f(tydt.

Hint: Let m = min{g(t); t € [a,b]}, M = max{g(t); t € [a, b] }.
Then m < g(t) < Mfor t € [a, b]. Multiply these inequalities
by f(t) and integrate over [a, b].

® Suppose f: [a,b] — R is continuously differentiable and
monotonic and g: [a, b] — R is continuous. Then there
exists T € [a, b] such that

b T b
/ f(t)g(t)dt = £(a) / a(t) + £(b) / g(t)dt.
o a a T

e Hint: Use integration by parts with G(t) = |, a' g(s)ds, and
apply the First Mean Value Theorem to the resulting integral.
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Example
We consider the function

F(x) = / S'—?t e dt, x€]0,00). (FE)
0
For x > § > 0 we can estimate the absolute values of the integrand
f(x,t) = 0t e~ and its partial derivative f,(x,t) = —sin te > by
d(t) = e~%, and apply Weierstrass’s test to show the uniform
convergence of the integrals [;* =0 e=*dt and [;* sin te=* dt on
[0,00) for any 6 > 0. The Differentiation Theorem then implies that
F is differentiable on (0, c0) with F'(x) = — [, sinte™dt.
Using integration by parts on the expression for F’(x) two times
(either way), one finds that F’(x) = —1/(1 + x2) and hence
F(x) = —arctan x + C for x > 0, where C is some constant. In
fact C = n/2 and F(x) = w/2 — arctan x = arccot X, as follows
from limy_,o F(x) = 0. The latter can be proved by (with
justification!) interchanging the order of limit and integral in (FE),
but is also easy to see directly:

Fools [

sint _
e xt

o 1
dtg/ e Xdt=— forx>0.
0 X
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Example (cont'd)

The actual motivation to consider the function F(x) is that it leads
to an evaluation of the famous Dirichlet integral

sint

F(O):/O lar=7 (D)

For this we need to show that F is continuous in x = 0, because
then we can use

F(0) = limy 0 F(x) = limyyo [7/2 — arctan x] = 7/2. However,
since (D) doesn’t converge absolutely, it is impossible to argue
with the Weierstrass test or Lebesgue’s Bounded Convergence
Theorem, making this step the most difficult in the evaluation of (D).
But with the Dirichlet test for uniform convergence at hand, it is
easy to do: For x >0, t > 1 let f(x,t) = e X/t, g(x, t) = sin t. All
assumptions of the test are satisfied (e.g., f(x,t) — 0 uniformly
for t — oo follows from 0 < f(x,t) < 1/t).

= [~ S8t e=*dt converges uniformly on [0, co) and hence
represents a continuous function F;(x) (by the Continuity Theorem).
But F(x) = F(x) + fo sint =X dt, and the latter is also continuous
(by the Continuity Lemma).
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t
Similar reasoning can be used to evaluate the integral / L: dt.

This is the subject of an accompanying exercise (H18 of
Homework 3). Here, as a preparation for the exercise, we show
that F: R — R defined by

[ cos(xt)
F(x) 7/0 211 dt

is continuous on R and differentiable on R \ {0} with derivative

°° tsin(xt)
F'(x)=— .
(%) /0 2 dt, x#0

cos(xt)

Since | 77| < t2+1 and [,* tz‘:& = [arctan(t)],” = m/2 is finite,
0°° C;’iﬁ” dt converges uniformly on R (Weierstrass’s test).

— F Is continuous on R (Continuity Theorem).
Justifying the differentiation under the integral sign is more

complicated, since the corresponding integrand ¢ + {5220
absolutely integrable.

is not
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Pt It suffices to show that [;° % dt converges uniformly on [5, cc)
for every § > 0. Then the D|fferent|ation Theorem gives
F/(x) = — [7° 2520 at for x > 0 and, since F is even, this also

holds for x < 0.

For a proof we can apply Dirichlet’s test with f(x, t) =
g(x, t) = sin(xt). Since

R R _
/ san(xt)dt:[_“s(xﬂ _ 1 zcosxh) 2
0 X o X 1)

_t
f2+1’

d t  1-F
dt 2 +1  (24+1)?

<0 fort>1,

and of course lim;_, o, ,2'+1 = 0, the assumptions of Dirichlet’s test
e are satisfied (strictly speaking, only for [ 52 dt, but uniform

o convergence of [ ! dt is equivalent to that of [; G0 dp).
\mproper Parameter
Integrals (optional)
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Honold instructive:

/OO l‘sin(Xt)dt_ _cos(xt) 't oo/"Ccos(xl‘) 112 dt
o +1 x r+1], 0 x (P41)2

1 [ 1
;/0 cos(Xt)mdt.

Since ﬁ = O(t2) for t — oo, the last integral converges

uniformly for x € [0, co0) (Weierstrass’s test), and hence

I ’Sti;‘ff) dt converges uniformly on each interval [, cc), § > 0.

The example nicely illustrates what can go wrong if you blindly
interchange limits and integration without thinking about proper
justification: From the formula for F’(x) one is tempted to

S conclude that F/(0) = — f;° ©500 4t = 0, but this is wrong!
. When you solve Exercise H18 you will see that F is not

Improper Parameter

Integrals (optonal) differentiable at x = 0.
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Problem Restatement
Consider an explicit first-order ODE y’ = f(t, y) with a continuous
function f: D — R, D C R? open, and the corresponding initial
value problems y’ = f(t, y) A y(ty) = yo for (f, ¥o) € D.

Observation
¢: 1 — Ris a solution of y' = f(t, y) A y(t) = yo if and only if the
graph Gy = {(t,¢(t)); t € I} of ¢ is contained in D and

.t t
o =yo+ [ d(e)is=yo+ [ f(s.0(s)) s
to to
forall t € I. Here | C R is an interval containing £y in its interior.

Equivalently, ¢(t) is a fixed point (“fixed function”) of the operator
¢ — T¢ defined by

t
(T¢)(t):yo+/t f(s,6(s))ds, tel

As domain of T we can take the set of continuous functions
¢: 1 = Rwith Gy = {(t,¢(t));t € I} C D.
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Thus the (local) existence of solutions of the IVP
y' = f(t,y) A y(t) = yo reduces to the following

Problem

Given (fy, ¥o) € D, show that there exists an interval

I'=(t — 0, % + 4), 6 > 0, such that the corresponding operator T
(which depends on /) has a fixed point.

The Existence Theorem for solutions of 1st-order ODE’s (and
ODE systems) will be proved in this way, but the proof can be
given only after several further preparations.

The Uniqueness Theorem is easier to prove and essentially
requires only to find the correct condition on the function f(t, y)
that implies the uniqueness of solutions. But the proof is also far
from being trivial, as you will see.



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Problem
Restatement
Reduction of n-th
order ODE's to
1st-Order Systems
Newton lteration

Matrix Norms

Order Reduction
Now consider an explicit n-th order ODE y(" = f(t,y,y’,...,y"=")
with a continuous function f: D — R, D C R™" open, and the
corresponding initial value problems obtained by prescribing
y(ty) = yi for 0 < i < n—1 for some (b, Yo, ..., ¥Yn_1) € D.
Observation
Writing the ODE in the vectorial form

y 1\’ y y
y/ yI/ y/I
y=n y ity y,....y=")

we see that it is equivalent to the first-order ODE system
y' =1(t,y) with f: D — R" defined by
Y1
f(t7YOa-~-aYn—1): '
Yn—1
f(ta}/O7Y1a-~-,Yn—1)
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Honold y(/) y1

¥ JZ)
Yoo Yn—1
y,’,,1 f(t7YO>Y1a---7}/nf1)

e and a solution n-tuple (yo, y1,- - -, ¥n—1) must satisfy

Reduction of n-th
order ODE's to

1st-Order Systems. }/1 = J/67
ation / 1!
Y2=Y1=W,

Yo1 =y, and hence

1)
Y =i =1 Y0 Y1 Y1) = F(1 Yo, Yoo vV,
In other words, the first coordinate function is a solution of the
n-th order ODE and the remaining coordinate functions are its
derivatives up to order n— 1.



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Problem
Restatement
Reduction of n-th
order ODE's to
1st-Order Systems
Newton lteration

Matrix Norms

Order Reduction Cont'd

For the corresponding IVP’s the same reduction applies:
A solution of the vectorial IVP

y/:f(t7y)7 y(to):yoz(y(())7y107"'7y2—1)
has as its first component function y(t) a solution of the n-th
order IVP

yO =1ty y, ...y ), yO() =yPforo<i<n-—1.

Conclusion

Extending the scope to systems of ODE’s allows us to restrict
attention to first-order systems only.

The operator view applies also to this case and shows that a
solution of y’' = f(t,y) A y(&) = y° satisfies

y(t) =y°+ / f(s,y(s)) ds.

)
and hence is a fixed point of the operator T defined by

(To) (1) =y° + [, (s, #(5)) ds.
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For the subsequent development it is instructive to recall a similar
setting from Calculus |, where solving a fixed-point equation for a
certain “operator” (map) was also required:

Newton’s Method for finding roots (cf. [Ste21], Ch. 4.8)

Suppose we want to compute a solution of an univariate equation
like sin(x) = 1/3. This equation can be rewritten as f(x) = 0 with
f(x) = sin x — 1/3 and solved as follows.

Suppose we know already a good approximation x, to the
unknown root x* of f. It is then reasonable to replace f(x) by its
linear approximation ¢(x) in x, and take the root of £ as new
(hopefully better) approximation to x*.

f(xn) _.
Flxy)

UX)=f(xn) + (X)) (X —Xp) =0 <= X =X5—

Repeating this step gives a sequence xp, X1, X2, . . ., Which is
determined by the recurrence relation x,.1 = X, — f(xn)/f'(Xn)
and the initial value xp.

After introducing the operator T(x) = x — f(x)/f'(x), the
recurrence relation becomes x,11 = T(Xy).
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Newton’s Method cont'd

We are interested in the case where the sequence (x,) converges
in R, say to x*. Passing to the limit in x,.1 = T(x,) and using
continuity of T (which requires that f is C' and ' has no zero
“nearby”), we obtain

= Jim s = Jim, To) = T ((fim xa) = T0)
= Xx* is a fixed point of T.
= x* is aroot of f, since T(x) = x — f(x)/f(x) = x is equivalent
to f(x) = 0.
Thus (x,) can only converge to a root of f. But how can we be
sure that the sequence actually converges (or, rather, how to
choose the starting value X, so that the sequence must converge?).

First answer: Suppose we know already that f has a root x*.
(For example, if a < b are such that f(a) < 0, f(b) > 0 then the
Intermediate Value Theorem implies f(x*) = 0 for some x* € (a, b).)

= Xpi1 — X" = T(Xn) = T(x") = T'(&)(Xn — X7)

for some &, between x* and x,.
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Since

f'(x)? —f()f"(x)  f(x)f"(x)

f’(X)2 - f’(X)2 ’

we have T’(x*) = 0, and hence (provided T’ is continuous, which
requires f to be of class C2?) | T'(x)| is very small near x*.
= (xp) will converge rapidly to x* if the starting value xp is
sufficiently close to x*.
For example, suppose we know that x* € (a, b), | T'(x)| < 3 for
x € |a, b], and T(a) < b. Then the iteration with initial value xo = a
will converge to x*. (For the proof consider the sign of T'(¢,).)

Speed of convergence: 2nd-order Talor approximation of T in x*
gives, using T'(x*) = 0,

T'(x) =1

1
Xnit — xX* = T é&n) (Xn _ X*)27

again with ¢, between x* and x,; moreover, if f is of class C® then

7'//(5,7)*> T"(X*):f”(X*)/f’(X*).

This is called quadratic convergence and says that the number of

correct digits in the decimal expansion of x, essentially doubles at

every iteration.
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oiferenial - Second answer: Suppose we don't yet know that f has a root.
Equations In this case we consider the difference

Thomas

Honold Xni1 — Xp = T(Xn) — T(Xn_1) (fn)( — Xn— 1)

with &, between x,_1 and x,.

Further we suppose that there exists a constant C < 1 such that
|T'(&n)| < C for all n. (For example, this holds if | T'(x)| < C < 1
on [a, b] and x, € [a, b] for all n.) Then, using induction, we obtain

Xni1 = Xn| < C"|x1 — X0l

: K

:\(j)e;\:\;:;r;‘l;eraucn |Xn+k — Xn| S Z ‘X,H_j - Xn+i—1 |

, i=1

<(C"+C™ 4.4 C”*"*‘) X1 — Xo|

<Z C’> X1 — Xo| =

Since lim,_,. C" = 0, given ¢ > 0 we can find a response N € N
such that |x, — x,| < e whenever m, n > N. This says that the
sequence (x,) is a Cauchy sequence and hence converges in R.

|X1 — Xol -
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Definition

A real-valued sequence (ay) is said to be a Cauchy sequence (or
to satisfy the Cauchy criterion for convergence) if for every € > 0
there exists N = N, € N such that |x; — x| < e whenever

m,n> N.

Theorem
Every Cauchy sequence in R converges.

Proof.

We have stated and proved this theorem in Calculus Ill. Here is a
different proof: Given a Cauchy sequence (ay), define two further
sequences (¢,), (un) by

en = inf{an, ant1, nt2, - - - }7
Up = sup{an, @ns1, @ns2,-- - }-

— 61 SKZS"'SEnSanSUnSUn—1§-~-U1-

Since (¢5) is non-decreasing and bounded from above by u;, say,
the limit £ = lim,_, o £, exists in R. Similarly, u = lim,_, o, Uy exists
in R. We claim that ¢ = u.
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Proof cont'd.
Consider e > 0. Then for n = N, + 1 and m > n we have

an—e<am<ap+e
— an_ESEnSUnSan+€.

Hence u, — ¢, < 2¢, which (since € > 0 is arbitrary) implies ¢ = u.

Finally we can apply the squeezing theorem to conclude from
Iy < a, < upthatlimp_ o @n = ¢ = u as well. |

Remark

The definition of Cauchy sequences makes also sense for the
Euclidean spaces RY, d > 1, and in particular for C £ R?. An
easy adaption of the previous proof shows that Cauchy
sequences in RY converge as well; cf. next exercise.

Exercise
Show that every Cauchy sequence (x(") in R?, d > 1, converges.

Hint: Show first that for 1 < j < d the i-th coordinate sequence of
(x(M), which is defined as x"), x'? x® ... where
x( = (x", ... xI"My, is a Cauchy sequence in R.

»
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Review of Differentiable

Multivariate Functions
Recall that a function f: D — R™, D C R", is differentiable in a
point Xo € D (which must be an inner point of D) if f(x) can be
linearly approximated near Xo with an error o(x — Xq); more
precisely, if there exists a linear map L: R"” — R such that

f(xo +h) = f(Xo) + L(h) + o(h) forh — 0
or, equivalently, limp_o |f(Xo + h) — f(Xo) — L(h)| /|h| = 0.
If applicable, the linear map L is uniquely determined by this
condition. It is called the differential of f at the point xo and

usually denoted by df(xo). In terms of the differential, the above
condition takes the form (rewritten in terms of x = xo + h)

f(x) = f(Xo) + df(Xo)(X — Xo) + o(X — Xg) for X — Xo.

The matrix A € R™*" representing L = df(Xo) (i.e., L(h) = Ah for
h € R") is called Jacobi matrix (or functional matrix) of f at xo and
denoted by J¢(Xo). The entries a; of A turn out to be the partial

derivatives of f at Xo : Writing f = (..., fn), we have a; = %@(Xo)-
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Honold Since 2% = (x + yi)® = x* + 2xyi + i°y? = x* — y® + 2xy i, itis

natural to call the map s: R? — R? defined by
s(x,y) = (x? — y2,2xy) the complex squaring map.

Sty fe) = ((X G o))

— y2 + 2xhy — 2yhy + h2 hg
2xy + yhy + xhs + hy hg

2x  —=2y\ (hy h2 —h3
2y 2x h2 * 2h1h2

s(x Y) +Js(x, y)h + R(h)

with R(h) = o(h).
You can verify that the entries of Js(x, y) are the partial derivatives
(81)xs (S1)ys (82)x, (S2)y Of 51(x,¥) = X* — y? and sy(x, y) = 2xy.
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Newton’s Method cont'd
Newton’s Method can also be used to solve vectorial equations
numerically, e.g.,

5 + & = -4
X2 — xy = 2

Setting f(x,y) = (5x + ¢ +4,x%> — xy — 2) and x = (x, y), the
system becomes f(x) = 0, and we can use the same idea as in
the 1-dimensional case (writing X(") = (x,, y»)):

(x) = F(x) + s (xM)(x — xM) = 0
— x=x" - Jp(xM) 7T f(x(M) =: x(+1),

provided that J;(x(") is invertible.
Choosing x(© = (xo, yo) suitably and assuming that during the

execution only invertible matrices J;(x("), n=0,1,2,..., are
encountered, the |terat|on x(M+1) = T(x(M),
T(x) = x — J¢(x)~"(x), defines a sequence x(@, x(, x®, ..., of

points in R2, which converges to the unique solution of f(x) = 0;
see the subsequent example. (You can verify that the system has
a unique solution, e.g., by eliminating y and applying standard
Calculus techniques to the resulting equation for x.)
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Newton’s Method cont'd
The method just outlined generalizes to systems of n equations in
n unknowns.

In general, however, the convergence analysis of this
higher-dimensional Newton iteration is much more involved than
that of the 1-dimensional iteration.

Since there is no analog of the Intermediate Value Theorem for
RY, d > 1, we can only use the second method (“second answer”)
to prove convergence. The “contraction” property

x(MD — x| < C|x(M —x(=N)| for all n, where C < 1 is a fixed
constant, turns out to work for d > 1 as well. A few more details
on the method will be provided when we discuss matrix norms
and in the exercises.
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Example (f(x) = sin(x) — 1/3)

For f(x) = sin(x) —1/3 we have T(x) = x —

FECUITENCe Xny1 = X, — Snln)—1/8

cos(Xn)

sn()—~1/3 and the

cos(x)

. The following lists the Newton
iterates for the starting values xo = 1 and xp = 2.

0.5 1

0.3398369094472336
0.3398369094541219
0.3398369094541219

2.8017557441642770
2.8017557441356713
2.8017557441356713

n Xn n Xn
0 | 1.0000000000000000 0 | 2.0000000000000000
1 | 0.0595308479054063 1 | 3.3840405426873920
2 | 0.3338544363566040 2 | 2.7933518120488390
3 | 0.3398306671376748 3 | 2.8017684650491024
4 4
5 5
6 6

—z - sin(z) —1/3

—0.5

—1.0 1
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Here it takes quite a while until quadratic convergence sets in.

Thomas n Xn n Xn
Infoelé 0 | 1.0000000000000000 || 13 | —0.7424942987207009
1 | 0.5000000000000000 || 14 | —2.7812959406776083
2 | 3.0000000000000000 || 15 | —1.9827252470438306
3| 2.0384615384615383 || 16 | —1.5369273797582563
4 | 1.3902821472167362 || 17 | —1.3572624831877325
510.9116118977179270 || 18 | —1.3256630944288679
6 | 0.3450284967481692 || 19 | —1.3247187886152572
7 | 1.4277507040272703 || 20 | —1.3247179572453902
8 | 0.9424179125094829 || 21 | —1.3247179572447460
9 | 0.4049493571993796 || 22 | —1.3247179572447460
10 | 1.7069046451828516 || 23 | —1.3247179572447460
11 | 1.1557563610748134 || 24 | —1.3247179572447460
12 | 0.6941918133295469 || 25 | —1.3247179572447460
6 -
—zzd—z+1 5
2]
3 E
2 E
I

0.5 1.0 15 2.0
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Example (f(x) = arctan x)
Here convergence/divergence of the Newton iteration

Xni1 = T(Xn) = Xn — arctan(x,)(1 + x2) depends on the choice of
the initial value xo.

n Xn n Xn
0 1.0000000000000000 0 2.0000000000000000
1| —0.5707963267948966 1| —3.5357435889704525
2 0.1168599039989130 2 13.950959086927493
3| —0.0010610221170447 3| —279.34406653361738
4 0.0000000007963096 4 122016.99891795458
5 0.0000000000000000 5| —23386004197.933886

— 1z - arctan(z) 1.0

0.5 A

—0.5 1

—1.0 A
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Differential Here we have

Equations
iomas (X — (¥) _ 5 e\ (Bx+el+4
y)  \y 2x —y —x X2 —xy—2
_ (X & 1 —x =&\ (bx+e+4
/) x4+ (@x—yer\y—-2x 5 x> —xy—2)"

Starting with the “approximate” solution (xg, yo) = (—1,0) (well,
rather it solves the first equation exactly), we obtain the sequence

Xn Yn
—1.00000000000000 | 0.000000000000000
—1.14285714285714 | 0.714285714285714
—1.15343194160013 | 0.579384010442525
—1.15552495201267 | 0.575286486588401
—1.15552722080764 | 0.575284450251602
—1.15552722080795 | 0.575284450250385
—1.15552722080795 | 0.575284450250385

O WN-—=OS

You can check that (xs, y5) is indeed very close to being a root of
f (the entries of f(xs, y5) have absolute value < 10~14).
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A metric space (M, d) consists of a set M and a map
d: M x M — R (“distance function”) satisfying the following for all

xX,y,ze M:
(M1) d(x,y) >0;d(x,y) =0 < x=y; (non-negativity)
(M2) d(x,y) = d(y,x); (symmetry)
(M3) d(x,y) <d(x,z)+d(z,y). (triangle inequality)
Examples
@ (R",dg) with de(x,y) = />, (xi — ¥i)? (Euclidean
distance);

includes R and C with dg(x, y) = |x — y]|, resp.,
de(z,w) =|z—w| = /(Rez—Rew)2 + (Imz — Imw)? as
special cases.
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Examples (cont'd)
® (R",dq) and (R",d) with the metrics

n

di(x,y) = Z |x; — yi|, (¢'-distance, "Manhattan distance")
i=1

doo (X, y) = max{[x; — yi| ;1 < i < n}. (¢>°-distance)

. d if Rx =R
O (B".d)with de(x.y) —{ FOY) iR =Ry,
de(x,0) + dg(0,y) if Rx # Ry.
dr is sometimes called “French distance” or, more accurately,
metric of the French railway network.

@ The set of all complex-valued, infinite sequences (a,)5,
satisfying >~ |az,7|2 < oo with distance function

> lan — bal®.

n=0

d((an), (bn)) =

This metric space is known as Hilbert’s Cube and usually
denoted by ¢2.
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2.5 251
20 2.0
1.5 1.54
1.0 1.0 ]
0.5 0.5
05 1.0 15 2.0 25 3.0 35 4.0 05 10 15 20 25 30 35 40
(a) Manhattan distance (b) French distance

(a) The Manhattan distance (¢!-distance) from (0,0) to (4,4) is
Matrix Norms 8, equal to the length of any path from (0,0) to (4, 4) that
uses only northward and eastward unit steps.

(b) The French distance of the points (2,1) and (4, 2) equals
their Euclidean distance, viz. dg((2,1),(4,2)) = V5, while that
of (4,2) and (1,3) is
de((4,2),(0,0)) +de((0,0),(1,3)) = v20 + v/10.
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Examples (cont'd)

@® Any set M (for example, M = R") with distance

d(x,y) = {(1) :; i ; f/’ (discrete metric)

O Weighted connected simple graphs (V, E, w) with the
shortest path distance. Here w: E — R™ is a weight function
on the edge set E, the weight or length of a path is the sum
of the weights of its edges, the underlying set is the vertex
set V, and d(v, w) is defined as the length of a shortest path
(i.e., path of smallest weight) between v and w. This
example includes unweighted graphs with the shortest path
distance if we assign weight 1 to all edges.

@ The set of all bit strings of length n with
duam(s,t) = [{1 < i< n;si# Gi}|.  (Hamming distance)

This is a special case of Example 6, because dy.n(S,t) is
equal to the length of a shortest path between s and t in the
hypercube Q.
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Honold

X,y € N (i.e., the distance on N is the induced distance).

© The set C([a, b]) of all continuous functions f: [a, b] — R on
a compact interval [a, b] C R with distance

dxo(f, g) = max{|f(x) — g(x)|;a < x < b}.

d. is also referred to as metric of uniform convergence,
since f, — g in this metric, i.e., lim,_, o dso(fr,9) = 0, is
equivalent to f, — g uniformly.

Metric Spaces

This example admits various generalizations, e.g., the

domain [a, b] can be replaced by a compact set K c R”, the
codomain R can be replaced by R™ if we change “absolute
value” to “Euclidean length”, we could work more generally
with bounded functions if we change “maximum” to
“supremum?”, or restrict to C'-functions and use the
maximum of |f(x) — g(x)| and |f'(x) — g'(x)| in the definition
of d(f, 9), etc.

al
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Examples

@ A non-connected (weighted) simple graph with the

shortest-path distance forms an example of a generalized
metric space, in which distances are allowed to take the
value oo = +00. Axioms (M1)—(M3) must still be
satisfied—for example, if d(x, y) = oo then

d(x,z) < oo Ad(y,z) < oo is impossible.

Further examples of generalized metric spaces are the
extended real line R = R U {40} with d = dg on R x R and

d(—o0,+00) = d(+oo,x) =0 forall x € R,

and the set of all functions f: X — R on an arbitrary (but
fixed) domain X with distance

Ao (f, g) = sup{|f(x) — g(x)

Similar to the case of C([a, b]), d-, captures uniform
convergence in the sense that f, — g uniformly iff

limp— 00 doo(fn, @) = 0 (Which requires d..(fn, g) < oo for all
but finitely many n).

;XGX}.
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Exercise
A metric space (M, d) (or just the metric d) is said to be
translation-invariant or norm-induced if an addition (x,y) = x + y

is defined on M and d(x,y) = d(x + z,y + z) holds for all
X,y,z € M.

© Which of the preceding examples of metric spaces are
translation-invariant?

® Show that a translation-invariant metric d: M x M = R is
determined by the corresponding norm n: M — R defined by

n(x) = d(x,0). (The zero element 0 € M is distinguished by
x+0=0+x=xforall x e M.)

@® Which properties should a function n: M — R satisfy in order
to determine a metric on M as in b) ?
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[é‘cf]fﬁ;figiz' Suppose (My, di) and (M., d>) are metric spaces and
M = M; x M. For p € R" define d,: M x M — R by

Thomas
Honold

do(X,Y) = dp((x1, X2), (V1,¥2)) = {)/|X1 —yil° + [x2 — y2lP.

@ For which p € R is (M, d,) a metric space?
® Which of our 10 examples fall under this product
construction?

© Show that d..(x,y) = limp_, 4 dp(X,y) also defines a metric
on M. To which of our examples does it correspond?

: Exercise

Let d: M x M — R be a function satisfying d(a, a) = 0 for a € M,
d(a, b) # 0 for a,b € M with a # b, and

d(a,b) < d(b,c))+d(c,a)forab,ce M.

@ Show that d is a metric.

@® Does this conclusion also hold if d(a, b) < d(b, c¢))+d(c, a) is
replaced by the ordinary triangle inequality d(a, b) < d(a, c)) + d(c,b) ?
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¢ |n any metric space we can define balls (and spheres) just
as we did in (R",dg). For example, the open ball with center
a e M and radius r € R* is defined as
B/(a) = {x € M;d(x,a) < r}.

e Using balls, we can define open sets, closed sets, inner
points, boundary points, accumulation points, limits of
sequences, and continuity of maps (but not differentiability!)
for arbitrary metric spaces. For example, a sequence (an)2,
of points a, € M converges to a point a € M, notation
limp_ o @n = a, if for every € > 0 there exists N =N, € N
such that a, € B.(a) for all n > N; equivalently, d(ay, a) < ¢
for all n > N.

Honold

e Care must be taken, however, when generalizing some of
the less obvious (but important) properties of (R”, dg) to
arbitrary metric spaces. An example is the
Bolzano-Weierstrass Theorem, which fails to hold in a
general metric space; another example is completeness.
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Example

The following three figures show the unit balls with respect to the
three metrics dg, dy, do on R?. (For dy the closed unit ball is given

by |x| + |y| <1, and for d, by max{|x|, |y|} < 1.)
/NN
N

(a) de (b) di (c) deo (d) all

The 4th figure shows the nested structure of the balls of the three
metrics: Every ball of one metric contains balls of the other two
metrics, possibly of smaller radius. This implies that the three
metric spaces have the same convergent sequences, open sets,
etc.; they are topologically indistinguishable; cf. also the exercise
on strongly equivalent metrics. On the other hand, the French
distance df is essentially different from these three. For example,
the sequence of points (cos(1/n),sin(1/n)), n € N, converges to
(1,0) in dg, dy, ds but not in dg, where all these points have distance 2.

-1.0
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[ézfj‘;figgi' (Unit) Balls of general metric spaces can look quite weird. For the
Thomas French metric this is discussed in a subsequent exercise. For a
Honold discrete metric space (M, d), the closed balls of radius 0 < r < 1

contain only 1 element (the center) and those of radius r > 1 are
all equal to M. For C([a, b]) equipped with the metric d., of
uniform convergence, the unit ball centered at f consists of all
continuous functions whose graph is contained in the strip of
width 2 symmetrically around the graph of f; see picture.

S y=glx
y=f(z

: T
a b

Figure: llustration of a ball B1(f) in C([a, b]) with respect to the
uniform metric and a particular function g € B+(f)
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It is rather obvious that the Bolzano-Weierstrass Theorem fails for
discrete metric spaces, but it also fails for the Hilbert cube, which
otherwise very much looks like (R”,dg). This is the subject of the

following

Exercise

@ Give an example of a set M that when equipped with the
discrete metric does not obey the Bolzano-Weierstrass
Theorem “Every bounded sequence has a convergent

subsequence”.
® Show that the Bolzano-Weierstrass Theorem also fails for
the Hilbert cube 2.
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Exercise
Determine the (closed, say) unit balls in the French metric dg
around each point (x, y) € R2.

Exercise (Continuity of a metric)

Let (M, d) be a metric space and (a, b) € M x M. Show that for
every ¢ > 0 there exists a § > 0 such that

d(x,a) <d Ad(y,b) < éimplies |d(x,y) — d(a, b)| <e.

Hint: First derive the so-called quadrangle inequality

[d(x, y) — d(a, b)| < d(x,a) +d(y,b).
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Complete Metric Spaces
We have defined completeness of R using the natural ordering <.
This does not generalize to arbitrary metric spaces, but there is a
reformulation of the completeness property which does:
Definition
Let (M, d) be a metric space.

© A sequence (an)2, of points a, € M is said to be a Cauchy
sequence (or satisfy the Cauchy criterion) if for every e > 0
there exists N = N, € N such that d(am, a,) < ¢ for all
m,n> N.

® (M, d) is said to be complete if every Cauchy sequence in M
converges (i.e., has a limit a € M).
Note
When dealing with series >, a, rather than sequences, we
must check the Cauchy criterion for the sequence of partial sums
Sn = > r_4 a. This requires bounding
n
Sn—Sm= Y ak forn>m>N.
k=m+1
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¢ We have proved that R is complete according to the new
definition and mentioned that, more generally, the Euclidean
spaces (R%,dg), d = 1,2,3,..., are complete. In particular
the field C of complex numbers is complete (the case d = 2).
Here we are tacitly assuming that the underlying metric is
the Euclidean metric dg. (Otherwise the assertion could be
false.)

* Any subset M of R" forms a metric space of its own with the
metric induced by dg (i.e., distances between points in M are
the same as in R”). Such a metric subspace is complete iff
M is a closed subset of R"; cf. subsequent exercise. (Recall
that M is closed if the boundary OM is contained in M or,
equivalently, M contains with any convergent sequence also
its limit).
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The “punctured” real line R \ {0} forms an incomplete metric
space (since it is not closed in R). We can prove this directly
as follows: Consider the sequence x, = 1/n € R\ {0}. This
sequence is a Cauchy sequence, since it has a limit in R, viz.
limp_,»1/n = 0, and the definition of “Cauchy sequence”
makes no reference to the ambient metric space M (we
could even take M = {1/n; n € N}). But it has no limit in

R\ {0}, and hence R\ {0} is incomplete.

On the other hand, R\ (0,1) = (—o0,0] U [1,400) is
complete since it is closed in R. The analogous
incompleteness “proof” using the sequence x, =1/2+1/n
is invalid (can you see where the argument breaks down?).

The Hilbert cube H is complete. The proof of this is a bit
technical, since the elements of H are itself sequences and
hence a Cauchy sequence in H is sort of an infinite matrix of
real numbers with a particular property.
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Examples/Counterexamples Cont’d

* The metric spaces C([a, b]) of Example 9 are complete. This

can be seen as follows:
(f) is a Cauchy sequence w.r.t. d if for every € > 0 there
exists N € N such that

[fa(x) — fn(x)| < e forallmn> Nandx c[ab]. (C)

— All sequences (fy(x)), x € [a, b], are Cauchy sequences
in R and hence convergent, showing that (f,) has a
point-wise limit function f: [a, b] — R.

Letting n — oo in (C) gives |f(x) — fm(x)| < eforallm> N
and x € [a, b], showing that f, — f uniformly.

Now the Continuity Theorem can be applied to conclude that
f is continuous, i.e., f € C([a, b]). Thus every Cauchy
sequence in C([a, b]) converges.

For continuous functions on unbounded intervals (and on
other domains such as R”) similar assertions hold: A
sequence (f,) of continuous functions that forms a Cauchy
sequence w.r.t. to the generalized metric d.,, converges
uniformly and hence has a continuous limit function.
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The subsequent exercises contain still further examples and
counterexamples. Discrete metric spaces (see Example 5 and a
subsequent exercise) are complete, and so are the metric spaces
arising from graphs (Example 6). It is possible to change the
Euclidean metric dg on R in such a way that convergence of
sequences is not affected but the new metric space (R, d) is
bounded and incomplete; see subsequent exercises.
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Exercise
Two metrics dj, d> on a set M are said to be strongly equivalent if
there exist constants «, 8 > 0 such that

adi(x,y) < da(x,y) < Bdi(x,y) forallx,y e M.

a) Show that the metric spaces (M, d;), (M, d-) have the same
open (closed) sets, the same set of convergent sequences
(Cauchy sequences), and are either both complete or both
incomplete.

b) Show that the Euclidean metric dg and the metrics d;, d in
Example 2 are strongly equivalent.

Exercise
For x,y € R set

de(x, y) Ix -y
d = — .
(x.y) 1+de(x,y) 1+ x—y|

Show that d defines a metric on R, which is not strongly
equivalent to dg, but that nevertheless the conclusions in Part (1)
of the previous Exercise hold for d;y = d and d> = dg.
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X 4 X y
d(x,y) =ds (=, ¥ ) = - .
(x.) E<1+x1+|y|) ‘1+|x| T+ 1y

a) Show that d defines a metric on R.

b) Show that (R, d) has the same open sets and the same
convergent sequences as (R, dg).

c) Show that (R, d) is incomplete.
Hint: Consider the sequence a, = n.

Exercise

Let (M, d) be a discrete metric space; cf. Example 5. Describe
convergent sequences and Cauchy sequences in (M, d) in an
alternative way (without using ¢), and conclude that (M, d) is
complete.
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Exercise
a) Show that a closed subset N of a complete metric space
(M, d) is complete in the induced metric N x N — R,
(X, y) = d(x,y).
b) Conversely, show that a subset of a metric space that is
complete in the induced metric must be closed.
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Exercise
A metric space (M, d) is said to be an ultrametric space if it
satisfies the following sharper variant of the triangle inequality:

d(a, b) < max{d(a,c),d(c,b)} fora,b,ce M.

a) Which of our ten introductory examples are ultrametric
spaces?

b) For a prime number p the p-adic absolute value on Q is
defined by [0|, = 0 and

Xlp=p"" ifx:p’"g with m € Z and p 1 ab.
Show that dp(x, y) =[x — y|, turns Q into an ultrametric
space.

c) Show that an infinite series Y~ X, in (Q, dp) satisfies the
Cauchy criterion for convergence iff x, — 0 for n — oc.

d) Show that the metric spaces (Q, dp), p prime, are not
complete.
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BANACH’s Fixed-Point Theorem
Also called “Contraction Mapping Theorem”
Definition
Let (M, d) be a metric space. A map (“transformation”)
T: M — M is said to be a contraction if there exists a constant
0 < C < 1 such that

d(T(x),T(y)) <C-d(x,y) forallx,y e M.
Note
The condition in the definition is stronger than
d(T(x), T(y)) < d(x,y) forall x,y € M with x # y. For example,
the transformation T(x) = x + 1/x of [1, +00) (equipped with the
Euclidean metric) has this property, since

|
()

and0 <1 - Xiy < 1forall x,y > 1. But T is not a contraction
since, given 0 < C < 1, the numbers x, y can be chosen to satisfy
1— le > C (take, e.g., x =1andy > (1 - C)™").

y—x
Xy

1 1
X+ny“xy+


http://www-history.mcs.st-andrews.ac.uk/Biographies/Banach.html

Math 285 s . . . .
nrodustone. Banach’s Fixed-Point Theorem applies to contractions of

Differential

Equations complete metric spaces.

hem®  Theorem (BANACH, 1922)
Suppose (M, d) is a complete metric space and T: M — M
a contraction.
© T has a unique fixed point, i.e., there exists precisely
one element x* € M satisfying T(x*) = x*.
® For every point xg € M the sequence xg, X1, Xo, . . .
defined recursively by x,.1 = T(xn) converges to x*,
and we have the error estimates

Me S

Banach’s Fixed-Point Cn

Theorem

” d(x1, Xo),

Matrix Norms d(Xn7 X*) S 1 _CC
——= d(Xn, Xp—1)-
1 . C ny An—
(The constant C has the same meaning as on the
previous slide.)
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Proof.
(1) Choose xp € M and define the sequence (x,) in M recursively
by Xn = T(Xn,1) — T2(Xn72) — ... = Tn(Xo). (Here T2 —To T,

T3 =To ToT,etc.) For m < nthe triangle inequality (used
successively) and the contraction property of T give

d(Xm, Xn) = d(T(me1)7 T(Xn71)) < Cd(Xm—1,Xn—1)

< C?d(Xm-2,Xp—2) < -+ < C™d(X0, Xn—m)

< C™M[d(x0, x1) + d(x1,X2) + - -+ + d(Xn—m—1, Xo—m)]
C"[1+C+C?+ -+ C"""|d(x0, x1)
cm—C"

m

1-C

IN

IN

d(Xo,X1).

Since 0 < C < 1 we have limp_ C™ = 0.

= For given € > 0 there exists N € N such that d(xm, X,) < € for
all n > m > N. This means that (x,) is a Cauchy sequence in the
complete metric space (M, d) and hence converges.
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Proof cont'd.

Let x* = limp_ 00 Xn.

From d(T(x), T(y)) < Cd(x,y) < d(x,y) itis clear that T is
continuous (§ = e works).

— T(X*) — T (nll)n’;cxn) = nll{‘go T(Xn) — ningoxn+1 — X*.

Suppose that also T(x’) = x'.
d(x*,x") =d(T(x*), T(x)) < Cd(x*,x')

= d(x*,x')=0= x* = x".

(2) The first assertion is clear from the proof of Part (1).
Since metrics are continuous, we get from
d(Xm, Xn) < 10_70 d(xo, x1) by passing to the limit:

m

d(X()7 X1 )

. . C
d(Xm,x*)=d (Xm’nl'—>moo x,,) = nI|_>mOC d(Xm, Xn) < i—¢

The second inequality follows by applying the first inequality to the
shifted sequence X,_1, Xp, Xp11, - - - , Which also has the limit x*. O
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Diferentia * The “weak contraction” property d(T(x), T(y)) < d(x,y) is
guatons not sufficient for the existence of a fixed point of 7. A
Thomas counterexample is the previously considered map

T(x) =x+1/xon [1,400). (For this note that closed
intervals in R form complete metric spaces of their own.)

® The 2nd error estimate d(x,, x*) < & d(Xn, Xp—1) is
particularly useful, since d(x, x,—1) can be read off by
looking at the last two iterates. (In fact, this is what in the
examples allowed us to conclude from equality of the
floating-point representations of x, and x,_1 that x* has the
same floating point representation.)

o oo ¢ In many applications, e.g. Newton’s method, the map T

Banach's Fived: oi becomes a contraction only when restricted to a suitable

complete subspace M of its domain. In this case the
condition T(M) C M, which is often difficult to verify, can be
relaxed to “x, = T"(xp) € Mforalln=10,1,2,...”; that is, we
are now looking at particular sequences.
Specifically, if M = B.(a) is a ball and xy = a, it suffices to
check the single condition d(a, T(a)) = d(xo,x1) < (1 — C)r.
This is proved on the next slide.
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e (contd)

As in the proof of Banach’s Theorem, this condition gives
d(xn,@) < (C" 1+ C" 24+ 1)d(x1,%) < (1 - C")r<r,
i.e., Xp € B/(a), and the proof of Part (1) of Banach’s
Theorem goes through.

= (x,) converges to x* € B,(a), and x* is the unique fixed
point of T in B,(a).

Part (2), however, is not necessarily true in this setting, since
for a different sequence (y»), yo € Br(a) \ {a}, the
contraction property of T on B.(a) doesn’t exclude the
possibility that some iterate y,, falls outside B,(a).

In fact, if T doesn’t map B,(a) into itself, there exists

Yo € B,(a) such that y1 = T(yo) ¢ B/(a).

For the analysis of iterations on subsets of R"” we can use
any metric on R" that is strongly equivalent to the Euclidean
metric dg (cf. previous exercise), e.g., also d; or d...
Convergence proofs may become easier by choosing a
metric different from dg.
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Example

Consider the squaring map T: C — C, z + z2. (The metric on C
is taken as the usual Euclidean one.)

C £ R? is complete, but T is not a contraction since
IT(2) — T(W)| = |22 = w?| = [z+ w||z — w|

and z + w can have arbitarily large absolute value.
Hence we cannot use Banach’s Theorem to find the fixed points
of T, which are 0 and 1.

However, we can can restrict the domain of T suitably and then
apply Banach’s Theorem:

Suppose 0 < r < 1/2 and let M = B,(0) = {z € C;|z| < r}.
* M is complete, since it is a closed subset of C.

e For z € M we have |z2| = |z < r? < r and hence
T(M) C M.

e Forz,we Mwehave |z+w| < |z|+|w| <2r < 1.
= T: M — M s a contraction (take C = 2r).
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Example (contd)

Hence Banach’s Theorem gives that any sequence

Zp=22 =2 ,=---=25", 20 € M, converges to the unique
fixed point of T in M, which is 0.

This is of course rather trivial and true for all zy € C with |z| < 1.
Definition

Suppose (M, d) is a metric space, T: M — M amap and x* a
fixed point of T.

© x* is said to be attracting if there exists a neighborhood U of
x* such that any sequence x, = T"(xp) (n € N) with initial
point xo € U converges to x*;

® x* is said to be repelling if there exists a neighborhood U of
x* such that any sequence x, = T"(xo) (n € N) with initial
point X € U\ {x*} eventually leaves U (i.e., x, ¢ U for some n).
Exercise

a) Decide whether the fixed points 0 and 1 of T: C — C,
z — z2 are attracting or repelling, and prove your assertions.

b) For which zy € C does z, = T"(z) = z§" converge to z* =17
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Exercise
The system of equations

X
y

0,01x2 + sin(y)
cos(x) + 0,01y

has a unique solution (x*, y*) with 0,5 < x* <1, 7/6 < y* < 1.
Prove this statement and compute (x*, y*)

a) with simple fixed-point iteration;

b) with Newton lteration.
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Honold arises naturally during the convergence analysis of

higher-dimensional Newton iteration.
Recall that this iteration has the form x(*+) = T (x(*)) with

T(x) = x — df(x)"" (f(x)) = x — Js(x) " f(x)

As in the 1-dimensional case we have f(x*) =0 < T(x*) =
(clear from the definition of T) and f(x*) =0 = dT(x*) =0 (i.e
Jr(x*) = 0 € R"™"), as one can show with some effort.

Now we would like to show that near a zero x* of fthe map T
defines a contraction, because then Banach’s Fixed-Point
Theorem implies limk_, . X*) = x*, provided only that x(®) (or
etk toms some other iterate) is sufficiently close to x*.

The Mean Value Theorem of n-variable calculus gives

*

T(x) - T(y) = (/0 Jr(x +t(y — x)) df) (x-y)

= A(x—vy) forsome matrix A = A(X,y).
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Thomas In the 1-dimensional case one continues with taking absolute

Honold values, viz. | T(x) — T(y)| = | T'(£)| |x — y|, and using continuity of

T’ to conclude | T'(£)| < C < 1 provided x, y are near x*.
Here we postulate the existence of a real number ||A|| such that
“taking Euclidean lengths” yields the inequality

[T(X) = T(y)| = [A(x —y)| < [|A]l[x — |-

If such a norm (“absolute value”) of A = A(X,y) exists and
satisfies ||A(x,y)|| < C < 1 for x,y near x* then the analysis in
the 1-dimensional case carries over to the n-dimensional case.
Replacing the particular matrices A(x,y) by an arbitrary matrix
A € R"™" and setting v = x — y turns the inequality into

Matrix Norms

Av
|Av| < ||A]||v| forv e R" < |A| > | v| forve R\ {0}.

It turns out that the set {|Av|/|v|;v € R",v # 0} contains a
maximum, which then clearly provides the best definition of || A||.
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The norm of A € R™" (more precisely, the matrix norm

Thomas subordinate to the Euclidean length on R") is defined as

Differential
Equations

1Al = max{'Axx;x e R”\{O}} = max{|Ax|;x € R", |x| = 1}.

The norm of a linear map L: R" — R" is defined as the norm of its
representing matrix, i.e., if L(x) = Ax then

1Ll = A = max { 4% x € R\ {0} }.

Notes
* The second equality in the definition follows from the linearity
e of L:
LT 11 0 = ‘L(x) . with X of length 1.
x| x| x| |

Since linear maps are continuous and the unit sphere in R”
is compact, the maximum is attained.
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® The definition of ||A| trivially implies |Ax| < ||A|| |x] for all

x € R”, and similarly for the corresponding linear map L, as
desired.

e The function R"*" — R, A — ||A|| satisfies the same axioms

as the Euclidean length function:

(N1) ||A| > 0 with equality iff A = 0;

(N2) ||cA|| = |c]| ||A]| for c € R;

(N3) |A+BJ < [|A] +[B].

Hence the definition d(A,B) = ||A —B|| turns R"*"into a
(translation-invariant) metric space.

e A further important property of || || is

(N4) |[ABJ| < [|A]/[|B]. (submultiplicativity).

¢ If you wonder how to actually compute matrix norms—the

answer is not easy. It uses the Spectral Theorem for
Symmetric Matrices (cf. our Linear Algebra course), and is
the subject of the next theorem. A few particular examples,
which have an adhoc solution, are discussed in the
exercises.
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¢ Functions on R" satisfying the same axioms as the

Euclidean length are called vector norms and denoted in the
same way. Examples are

x4 = Iy = Pl + el + -+ [xal,

1%/l oo = %] oo = max{|xt|,[xa] ..., [Xn| }-
For the Euclidean length the notation |x|, or ||x||, is
frequently used in place of |x|. With any vector norm one
may associate a subordinate matrix norm in the same way

as for the Euclidean length, for example
|A[l; = max{|AX|,;x € R",[x|; = 1} for A € R"*".

Reading A € R™*" as an n?-dimensional vector with entries
aj, it is quite natural to consider the Euclidean length of this
vector. This quantity is called Frobenius norm of A and
denoted by | A||g, i.e., one defines

n
A = */2;1_1 a2 for AeR™".

One can show that A — ||A||; satisfies Axioms (N1)—(N4).
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Example
For the 2 x 2 identity matrix

- (09

we have ||lz]| = 1, since I,x = x and hence in particular |lox| = |X|
for all x € R2. The same argument shows that |[I,|| = 1 in general.

Since I, corresponds to the vector (1,0,0,1) € R* (provided we
arrange the entries of a 2 x 2 matrix in the order ay1, a2, a1, a),
the Frobenius norm of Iy is ||l2||z = |(1,0,0, 1)| = v2 (and, more
generally, [[I5][z = v/n).
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Exercise
Prove that R"™*" — R, A — ||A|| satisfies (N1)—(N4).

Exercise
Prove that R™" — R, A — ||A|| satisfies (N1)—(N4).

Exercise
Compute the norms ||A|| of the following matrices A € R2*2 and
compare them with their Frobenius norms ||A||g:

2 2 2 0 3+
2 2)0 (0 -3)° 3 )
Exercise

Show that the norm ||D|| of a diagonal matrix D € R"*" is the
largest absolute value of an entry on the diagonal.

o

Exercise

Show that ||A|| < ||A||g for all matrices A € R"*" or, equivalently,
|Ax| < ||A||p x| for all A € R™" and x € R".

Hint: Use ||A|| = max{|Ax|;x € R",|x| = 1} and the
Cauchy-Schwarz Inequality for vectors in R”".
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horclc Suppose A € C™" has eigenvalues )i, ..., Ap, ordered such that

M| > |X2| = -+ > |An|. The real number |A\1] is called spectral
radius of A and denoted by p(A).

Thus p(A) is the radius of the smallest circle centered at 0 € C
that contains all the eigenvalues of A.

Theorem
For A € R™" we have ||A|| = \/p (ATA).
Notes

@ Because of this relation the matrix norm subordinate to the
Euclidean length is also known as spectral norm.

® The eigenvalues of B = ATA are nonnegative, since
Bx = \X, X # 0, implies x"Bx = \x'x,

_ x'Bx _x"ATAx _ (Ax)TAx _ |Ax[

Coxx x'x o x™x xR

Th

Matrix Norms

A

Thus p (ATA) is the largest eigenvalue of ATA.
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Proof of the theorem.
Note 2 on the preceding slide shows

AP = max {|AX® i x € R", x| = 1} = Ay = p (ATA).

(Normalizing x to unit length, the note reads A = |Ax|*.)

Since B = ATA is symmetric, there exists an orthonormal basis
{uq,...,u,} of R” consisting of eigenvectors of B; cf. the Spectral
Theorem. We may assume Bu; = \ju; with Ay > Ao > -+ > Ap.
Then for x = 37, aju;, aj € R, we get

2-x X—Za,a/u u,_Za,,

I]1

|Ax\ =x'Bx = Z ajojU; Bu, = Z a,a/)\/u u = Za YR
ij=1 ij=1 —
If x| = 1 then |Ax[> < 27, a2A\s = (0} + -+ a2) A = A1
— AP <\ =p(ATA)
In all we have shown ||A||* = p (ATA), as claimed. O
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The Uniqueness Theorem

We will prove the Existence and Uniqueness Theorem for
solutions of 1st-order ODE’s in a more general form than
[BDM17, Theorem 2.8.1]. The generalization to
n-dimensional ODE systems y’ = f(t,y) will enable us to
conclude from it a corresponding theorem for higher-order
scalar ODE’s. Further, we will relax the assumption “f(t,y)
has continuous partial derivatives with respect to the
variables in y” to “f(t,y) satisfies locally a so-called
Lipschitz condition with respect to y”. This will allow us to
apply the Existence and Uniqueness Theorem to certain
ODE'’s that are not covered by [BDM17, Theorem 2.8.1] but
still important in Engineering Mathematics.
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Diferentel Definition
Suppose f: D — R", D C R x R", is a map.
Thomas
rloneld @ We say that f = f(t,y) satisfies a Lipschitz condition with
respect toy if there exists a constant L > 0 (the

corresponding Lipschitz constant) such that

The Unigueness
Theorem

[f(t,y1) — F(t,y2)| < Llys —yo| forall (ty4), (t,y2) € D.

® We say that f satisfies locally a Lipschitz condition with
respect to y if every point (¢,y) € D has a neighborhood
D’ C D in which (1) holds with a constant L (which may
depend on the particular point).

Condition (2), together with continuity of f as a function of n + 1
variables, will be taken as the premise of the Existence and
Uniqueness Theorem. The next proposition shows that these
conditions are implied by those used in [BDM17, Theorem 2.8.1],
so that our Existence and Uniqueness Theorem covers (i.e.,
implies) that in the textbook.
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Proposition

Suppose D C R x R" is an open setand f: D — R" has
continuous (as (n + 1)-variable functions!) partial derivatives with
respect to the variablesy = (y1,...,yn). Then f satisfies locally a
Lipschitz condition with respect to'y.

Proof.
Let (a,b) € D. Since D is open, there exists r > 0 such that

V=A{(ty)lt—a <rnaly—b|<r} CD.

V is a compact subset of D.

The Mean Value Theorem (integral form) of Calculus Ill, applied
toy — f(t,y), gives for (f,y1), (¢, y2) € V the identity

f(t,y1) — f(t,y2) = (/ nyl‘V1+S(Y2—Y1))dS>(V1—V2)

with Jy y(£,Y) (8y]( ,y))1<”<n (“partial Jacobi matrix” of f).
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Proof contd.
Since the entries of the n x n matrix (g—;;(t, y)) are continuous

functions of (t,y), there exists a constant M such that
g—;;(t, y)‘ < Mforall (t,y) € V and all i,j. This implies
[Jry(t,y)|| < nM for all (t,y) € V.

The matrix A = A(t,Y1,Y2) appearing in the Mean Value Theorem
is obtained by averaging Jr y(t,y) over the line segment [y, y2]
and is subject to the same bound. More precisely, we have

|f(t,y1) — f(t,y2)| < [|A]lly1 — Ve
< |A[[g ly1 — Y2 (cf. exercise)

§W|y1 —VYo| =nMly; —ys|,

since |a;| = [y 2 (t,y1 + s(y2 — y1)) ds| < (1-0) - M = M.

Thus we can take L = nM as the desired local Lipschitz constant
and the corresponding neighborhood of (a,b) as V.
]
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Remark (LIPSCHITZ-continuity of 1-variable functions)

f: [a, b] — R is said to be Lipschitz-continuous or to satisfy a
Lipschitz condition with Lipschitz constant L if there exists L > 0
such that

[f(x) = f)I < Lix—y| forallx,y € [a,b]

The name “Lipschitz-continuity” comes from the fact that this
property implies that f is uniformly continuous (take 6 = ¢/L as
response to ¢).

The preceding Proposition is a multi-variable generalization of the
following fact:

Every C'-function on a compact intervall [a,b] C R is
Lipschitz-continuous.

For the (much easier) proof define L = max{|f'(x)|;a < x < b}
and use the Mean Value Theorem:

) = W) = 1T =y < Lix =yl


http://www-history.mcs.st-andrews.ac.uk/Biographies/Lipschitz.html
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Remark (cont’d)

A C'-function f on an arbitrary interval / C R need not be
Lipschitz-continuous, but we still get Lipschitz-continuity on every
compact subinterval [a, b] C /. Equivalently, every point x € / has
a neighborhood (x — §, x + ¢), d > 0, such that f is
Lipschitz-continuous on /N (x — §, x + 0).

The property of uniform continuity is weaker than
Lipschitz-continuity. For example, x — /x is uniformly continuous
on [0, oo), but not Lipschitz-continuous.

Remark (Metric spaces and Lipschitz-continuity)

The concept of Lipschitz-continuity makes sense for maps
between arbitrary metric spaces. If (M, d) and (M’, d’) are metric
spaces and T: (M,d) — (M',d’)isamap, wecall T
Lipschitz-continuous if there exists L > 0 such that

d'(T(x),T(y)) < Ld(x,y) forallx,y e M.

In fact much of the preceding discussion, including Banach’s
Fixed Point Theorem, is related to this concept. As an example,
observe that T: M — M is a contraction iff it satisfies a Lipschitz
condition with Lipschitz constant L < 1.
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Now we can state and prove the Existence and Uniqueness
Theorems for explicit 1st-order ODE systems y’ = f(t,y).

For implicit ODE’s there are no such Theorems, and hence an
implicit ODE must first be converted to explicit form before
drawing any conclusions about existence/uniqueness of solutions.

A crucial ingredient for both proofs will be the observation made
earlier, that solutions of the differential equation y’ = f(t,y) can
be characterized as solutions of a related integral equation:

Observation (recalled)

Suppose D C R x R™is open, f: D — R" continuous and
(fo,Yo) € D. A continuous function (curve) ¢: [ — R" with
(t,0(t)) € Dfort € I solves the IVP y" = f(t,y)) A Y(to) = Yo iff

t

#(t) = Yo +/ f(r,¢(r))dr fortel
b

By the Fundamental Theorem of Calculus, this integral equation

implies that ¢ is differentiable with ¢/(t) = f(t, ¢(t)), and of course

#(t) = Yo. For the converse integrate ¢/'(t) = f(t, ¢(t)).
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Theorem (Uniqueness Theorem)
Suppose that D C R x R" is open and that f: D — R" is
TOURRETE continuous and satisfies locally a Lipschitz condition with

Theorem

respecttoy. If p,4: | — R are solutions of an IVP

Theorem

Corollaries

y' = f(t,y) Ay(fo) = Yo, (to,Yo) € D,

then ¢(t) = (t) forall t € I.

The key step in the proof is the following lemma, which says
that the set A C [ of arguments t where ¢ and v agree is
openin /.
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Lemma
Suppose a € | is such that ¢(a) = ¥(a) (e.g., take a= ). Then
there exists ¢ > 0 such that ¢(t) = (t) forallt € INn[a—e,a+ €.

Proof.
Integrating the two equations ¢'(t) = f(t, (1)), ¥'(t) = f(t, (1))
and using ¢(a) = ¢¥(a) = b, say, we obtain

t ot
o(t) —yv(t)=b+ /a f(T7 QS(T))dT —b - /a f(T,¢(T))dT
t
= /a f(T, (;5(7')) — f(T,z/J(T))dT

By assumption, there exists a neighborhood V of (a,b) on which
f satisfies a Lipschitz condition with respect to y. Further, since ¢
and ¢ are continuous in a, there exists 6 > 0 such that
(r,¢(7)) € Vand (r,¢(r)) € VforallT € In[a—&,a+ d]. Thus
we have, denoting the Lipschitz constant by L as usual,

|f(r,6(7)) — f(1,9%(r))| < L|o(r) —w(7)] forTelnfa—d a+d].
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Proof contd.

L[ |o(r)—w(r)|dr forteln[a a+sd],
= [o(t) —¥(1)] < 2
L[ |¢(r) —w(r)|dr fortelnfa—oé,a.

t

Now we set  M(t) := sup{|¢(7) — ¥(7)|;  between a and ¢}
fortelnfa—d,a+d].

= o(t) —(t)] < L[t — a| M(1)
for all such t. Replacing t by any t’ between a and t, we also get
(1) — (1) < L|t' — a| M(t') < L[t — a| M(t).
Taking the supremum over all t’ between a and t gives
M) < L|t—a M(t) forteln[a—d,a+d].
Setting e = min {4, 5; }, this implies  M(t) <  M(t) for all

t e In[a— e, a+ ¢]. Clearly this can hold only if M(t) = 0 for all
t e Infa— e a+ €, and the proof of the lemma is complete.  [J
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Note

It was necessary to use “t € IN[a—d,a+ d]", etc., throughout the
proof, because a may be an endpoint of / (left or right endpoint).
In such a case solutions are defined only on one of the intervals
[a—4d, 4 [a a+ 9], etc.

Proof of the Uniqueness Theorem.

We prove the theorem by contradiction.

Let A= {te l;¢(t) (t)}, N=1\ A, and suppose that N # 0.
Since ¢(f) = w(to) we have ty ¢ N. Hence there are the
following two cases to consider.

Case 1: There exists t; € N with t; > fo.

Define t, as the infimum of the (non-empty and bounded from
below) set N N [fy, +o0). Then obviously & € [ty, t] C /.

We claim that ¢(&) = ¥(k). If & = { this is trivial. Otherwise
b >ty and ¢(t) = o(f) for all { € [y, £). Continuity of ¢, ¢ then
implies ¢(t2) = |im[ﬂ2 (b(t) = |im[ﬁ2 ¢(t) = 1/)(t2)

Now the lemma yields ¢ > 0 such that [, & + ¢] C A. This
obviously contradicts the definition of t.

Case 2: There exists t; € N with #; < t.
For this case a contradiction is derived in a similar way. O
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Example
Consider the ODE y’ = +/]y|.

We have seen earlier that this ODE has, among others, the
solutions y; =0 and

Ht=1)? ift>t
= {3 f<i
ye(t) {_1(,_t0)2 if t < o,

where fy € R is arbitrary. We have yi(t) = y2(f) = 0, but
y1(t) # ya(t) for t # to.

This doesn’t contradict the Uniqueness Theorem, since
f(t,y) = \/]y| has partial derivative

af(ty)_{zjﬁ if y >0,

dy —Z\Ey if y <0,

and hence doesn't satisfy locally a Lipschitz condition at any point (%, 0).
On the other hand, f satisfies locally a Lipschitz condition at every
point (%, ¥o) with yp # 0, and hence solutions of the IVP

y' =yl A y(to) = yo # 0 are unique as long as they stay away
from the t-axis y = 0.
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The next example, which a student contributed, shows that f(¢,y)
need not satisfy a local Lipschitz condition with respect to y in
order for solutions of IVP’s y’' = f(t,y) A y(f) = Yo to be unique.

Example

Consider the ODE ' = {y'” v ity #0,

0 if y=0.
The solutions are y(t) = 0 and y(t) = +e°®, ¢ € R, as is easily
derived using the standard machinery for autonomous/separable
equations and observing that no non-constant solution can attain
a value 0, +1 (the constant solutions). If it did, there would exist
t € Rand ¢ € R\ {0} such that lim;_;, ¢ = e°¢" € {0, +1},
which is impossible. Thus all associated IVP’s have a unique
solution.

But f(t,¥) = y In|y| doesn’t satisfy a local Lipschitz condition at any
point on the t-axis y = 0, because, e.g., for 0 < y; < y» we have

f(t.y) — f(t.y1) = g;(t,n)(yz Cy)=( )y - »)

for some n € (y1, y2) by the Mean Value Theorem of Calculus |,
and 1 +Innp — —oo forn | 0.
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Remark

“Continuity of f(t,y)” and “local Lipschitz condition with respect to
y” has been adopted as premise in both the Uniqueness Theorem
and the Existence Theorem (cf. subsequent slide), because under
these assumptions the theorems are fairly easy to prove and the
assumptions are sufficiently general to cover most applications. At
the cost of more difficult proofs, the assumptions can be relaxed.
For example, the conclusion of the Existence Theorem remains
true if one merely stipulates that f(¢,y) is continuous (PEANO’s
Existence Theorem), and the conclusion of the Uniqueness
Theorem remains true if the Lipschitz condition is relaxed to

[f(t.y1) — f(t,y2)| < LIyr — Ya|In|y1 — y2
(a consequence of OSGOOD s Condition; cf. the literature).

Exercise
Does the Uniqueness Theorem apply to the ODE y’ = |y| ?
If you are unsure, solve the ODE directly.
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The Existence Theorem

Theorem (PICARD-LINDELOF)

Suppose D CR x R" jsopenand f: D — R", (t,y) — f(t,y) isa
continuous function which satisfies on D locally a Lipschitz
condition with respect toy. Then for every (fy,Yo) € D there exists
an interval | containing t, as an inner point and a solution

¢: 1= R"ofthe IVP Yy = f(t,y) AY(f) = Yo.

Proof.

By our previous observation it suffices to construct a continuous
function ¢*: [lo — €, ty + €] — R" satisfying T¢* = ¢*, where T is
the “operator”

t
(To)(t) = yo + / (7, 6(r))dr.

fo

Right now T is not well-defined, because we haven’t yet specified
a suitable domain from which the function ¢ is taken. But this will
be cured in a moment.


http://www-history.mcs.st-andrews.ac.uk/Biographies/Picard_Emile.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Lindelof.html
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Proof cont'd.
Our goal is to apply Banach’s Fixed Point Theorem to T.

By assumption there exists r > 0 such that the compact set

V={(ty) e RxR";

t0|§fa|V—Vo\§r}

is contained in D and f satisfies a Lipschitz condition with respect
to y on V. Denote the corresponding Lipschitz constant by L.
Further, since f is continuous, there exists M > 0 such that
[f(t,y)] < Mon V.

Now let e = min{r,r/M,1/(2L)} and define .# as the set of all
continuous functions ¢: [y — €, [y + €] — R" satisfying

|¢(t) — yo| < rforall t € [ty — €, t + €]), and hence (t,¢(t)) € V
for such t.

A is equipped with the metric of uniform convergence, i.e.

doo (6, 9) = max{[6(t) — (D)o —e< t<tfo+e} = [0 — ],
where |||, = max{[¢(t)];to — € < t < o+ €}.

The metric space (.#, d) is complete, since it is a closed
subspace of C([ty — €, ) + ¢€]) (in fact the closed ball B/(yo)).
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Proof contd.
In order to apply Banach’s Theorem, it remains to show
T(.#) C .# and that T defines a contraction of (.#Z, d..).

Let¢p € # andp = To. For fy — e < t < fy + ¢ we have

/ f(T7¢(T))dT S:I:/t |f(7',(;5(7'))’d7’

fo

[9(t) = Yol =

<eM<r.

(The minus sign is necessary to account for the case t < t, in
which we rather mean ft"’ f(r,¢(7))dr.) This shows T(.#) C ..
Let ¢1,¢2 € 4 and 1 = To1, b2 = Too.

t
/ )‘(7’7 1 (7')) - f(T, (bz(T))dT

[0}
t

<+ [ |f(r,¢1(7)) = f(7, ¢2(7))| d7

[P1(t) — Yo(t)| =

fo
< o1 — b2l
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Proof cont'd.
The Uriueress Maximizing over t € [ty — €, I + €] gives

The Existence

e 1 — ol < 3Nt — G2l i€, doo(To1, Tho) < 1 doo(1, b2).

This shows that T: .# — .# is a contraction with C = 1/2.

Now Banach’s Theorem can be applied and yields ¢* € .# with
T¢* = ¢*. This function ¢* is the desired solution of the given
IVP. O
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Notes
¢ In the proof of the Existence Theorem (and similarly in the

proof of the key lemma to the Uniqueness Theorem) we
have used estimates of the form - - - < ifts |...|dr, where
the minus sign is chosen in the case t < f to make the
right-hand side non-negative. This rather awkward notation,

t .
or the even more awkward - - - < ‘ffo [...] dr‘ used in some

books, can be avoided if we interpret f,: in these cases as
the Lebesgue integral over the interval with endpoints t and
t (which can be either [y, ] or [t, t]).

Likewise, in the proof of both theorems we have used
estimates of the form ’f: qb(t)dt‘ < f: |6(t)] dt with

¢: [a, b] — R" continuous. For n > 1 the vertical bars refer to
the Euclidean length in R” rather than the absolute value on
R, and the inequality does not follow from the 1-dimensional
integration theory developed in Calculus Il. A proof can be
found in Exercise H17 of Homework 3, Calculus Il (Fall
2022). Alternatively, approximate ¢ by vector-valued

step functions and check that for such functions the inequality
reduces to the triangle inequality for the Euclidean length in R".
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e Banach’s Theorem also gives that a solution of the IVP can

Tho Uriauencss be obtained as the limit function ¢(t) = limx_, ¢x(t) of the
Tne Exitence “Picard-Lindel6f iteration”

Theorem

Corollaries

t

d)O(t)EyOa ¢k+1(t)ZYO+/ f(Ta¢k(T))dTa k:071327"‘
fo

because certainly the constant function ¢o(t) = yo is in .#

(whatever the chosen domain [fy — €, ty + €] is). This is

illustrated in the following example.
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Example

We apply Picard-Lindeléf iteration to construct a solution of the
IVP y" = 2ty A y(0) = yp; cf. our introductory Example ??.

Here the iteration takes the form

t
dri(t) = yo + 2 /0 réx(r)dr

We obtain

t t
<251(t):}’0+2/ TyodTZYO+QYO/TdT:Yo(1+l‘2)7
0 0

t
¢2(t) = Yo + 2/ Tyo(1 + 72)dr = yo(1 + 2 + 1*/2)
0
and in general, using induction,

t tG t2k
¢>k(t)—yo( +t2+—+§+ +k|>

The limit function is ¢(t) = yo >0 %k = }/oe’Z, the already known solution.
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Example (cont'd)
Since the functions ¢, have maximal domain R and converge
uniformly to ¢(t) = yoe’2 on every compact subinterval of R
(known from the theory of power series), we can conclude without
checking the assumptions of the Existence Theorem, or direct
verification, that ¢ solves the given IVP on R. This is done as
follows:

For any R > 0 and any continuous functions 1,v2: [-R, B = R
we have

[(Tva)(t) — (T2)(t)] =

2 / r(n(7) = da(r))dr| < R%[lhy — vl
0

on [-R, R] and hence || Ty — Te| ., < R? [|¢1 — ¥2|| ., Where
1Vl oo = 1Yl oo.r = max{|1/)(t)| —R<t< R}. This shows that T

defines a continuous operator on C([—R, R]) and implies
To = T( lim ¢k> = lim T¢x = lim ¢pp1 = ¢,
k— o0 k—o0 k— o0

which in turn implies that ¢ solves the given IVP on I = [-R, R],
as we have seen. Letting R — +oo then shows the same for / = R.
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Exercise
Use Picard-Lindeldf iteration to compute the solution ¢ = (¢1, ¢2)T

of the system
0)-(7)
4 2
with initial condition ¢(0) = (1,0)T.

Exercise
Suppose that f: R x R — R is continuous and satisfies locally a
Lipschitz condition, and that

f(—t,y) = —f(t,y) forall(t,y)c R2

Show that any solution ¢: [-r,r] = R, r > 0, 0f y' = f(t,y) isits
own mirror image with respect to the y-axis.

Exercise (hard)

Suppose I C Ris aninterval and f: | x R” — R" is continuous and
satisfies (globally) a Lipschitz condition with Lipschitz constant L.
For any two solutions ¢,+: | — R" of y’ = f(t,y) and t, € | show
that  |p(t) — (1) < seHlt=0l on 1, where § = |p(t) — ¥(lo)|.
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Recall that domains of solutions of ODE’s must be intervals in R
of positive (possibly infinite) length and may or may not contain
their boundary point(s).
Definition
A solution ¢: I — R of y' = f(t, y) is said to be maximal (or
non-extendable) if there is no solution ¢: J — R with J 2 / and
P(t) =¢(t) fort e 1.
This definition extends in the obvious way to higher-order ODE’s,
ODE systems (both explicit and implicit ones).

Corollary
Under the assumptions of the Existence and Uniqueness
Theorem,
© forevery (ty,yo) € D there exists a unique maximal solution
¢o: lo = R" of the IVPY' = f(t,y) AY(fo) = Yo;

® |y is open inR, and for every end point e of Iy (if any) the
solution curve {(t, ¢o(t)); t € lo} comes arbitrarily close to
the boundary of D when't — e.
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Maximal Solutions Contd

Note

The precise mathematical definition of “comes arbitrarily close to
the boundary” is that, e.g., if ais the left end point of fy and f € Iy
then {(t,¢o(t)); @ < t < o} is not contained in a compact subset
of D. This means that there exists a sequence t | a such that
either |¢o (k)| — oo or there exists b € R" such that (a,b) ¢ D
and limg_oo ¢0(tk) =bh.

Proof of the corollary.

(1) Let Iy = |J I be the union of all domains of solutions ¢: | — R”
of the given IVP and define ¢q: Iy — R” by ¢o(t) = ¢(t) if tis
contained in the domain of ¢. Clearly Iy is an interval containing
lo. If t € Ip and ¢4, ¢» are solutions of the IVP defined at f, we
must have ¢+(t) = ¢»(t) (apply the Uniqueness Theorem with

I = [, f] or [, k]). Hence ¢q is well-defined, and it cleary solves
the IVP. Since the domain of ¢q contains the domains of all
solutions, ¢g is maximal. Finally the Uniqueness Theorem gives
that there cannot be another maximal solution (whose domain
would necessarily be b).
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Proof cont'd.

(2) First we show that Iy is open.

Suppose by contradiction, e.g., that ly contains its left end point a.
Then (a, ¢o(a)) € D, and the Existence Theorem provides us with
a solution ¢: [a — ¢, a+ ¢] — R" of the IVP

y' = f(t,y) A y(a) = ¢o(a) for some e > 0. By the Uniqueness
Theorem, ¢(t) = ¢o(t) for t € [a, a + €]. Hence, using the
definition in terms of ¢ on [a — ¢, &), we can prolong ¢ to a
solution on [a — ¢, @) U Iy, which is an interval strictly containing /;
contradiction.

For a proof of the remaining assertion, assume e = a and by
contradiction that { (¢, ¢o(t)); a < t < o} is contained in a
compact subset C ¢ D. To derive the desired contradiction, it
then suffices to show that ¢g admits an extension to a solution on
{a} U ly. The integral equation

do(t) = Yo — /to f(r,¢0(7))dr

holds for f € (a, to] Since f is continuous, it is bounded on C and
hence |f(7, ¢o(7 ] < Mfor 7 € (a, t]. Using this, it is easy to see

that ¢o(a) := yo — fa f(7, ¢o(7))dr provides the desired extension. [
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In order to adapt the Existence and Uniqueness Theorems for
1st-order ODE systems to explicit n-th order (scalar) ODE’s

y(n) = f(t’y7y/7"'7y(n_1))

with f: D — R, D C R x R" open (again there is no analogue for
implicit n-th order ODE’s), we need to relate the property “f
satisfies locally a Lipschitz condition w.r.t. y” to that of the
corresponding 1st-order system y’ = (¢, y). (Here, and only here,
we are using bold type to distinguish scalar and vectorial functions.)
Inspecting the explicit formula for f (“order reduction”) and writing
Y=o,y ¥n-1),2=(20,...,2Zn-1), We have
Y1i—
f(t,Y)—f(t,Z): :
Yn—1— 2Zn—1
f(ty) — f(t,2)

Now suppose that |f(t,y) — f(t,2)| < L|y — z|. For the squared
Euclidean length of f(t,y) — f(t,z) we then obtain the estimate
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T
L

f(t,y) - f(t,2)® vi — 22 +1f(t,y) - f(t,2)?

1
1

]

IN

(vi—z)? + LBy — 2

o

1=
=(1+3)ly -2

This says that f(¢,y) satisfies a Lipschitz condition w.r.t. y
with Lipschitz constant v/1 + L2.

Conclusion: If f satisfies on D locally a Lipschitz condition
w.r.t. y then so does f (with slightly larger Lipschitz
constants).

Of course we also have: If f has continuous partial
derivatives 2 (t V) dy (t y) then f satisfies on D
locally a LIpSChItZ condition w r.t. y, and hence so does f.
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Corollary (Existence and Uniqueness Theorem for n-th
order ODE’s)

Suppose f: D — R, D C R x R", s continuous and satisfies on D
locally a Lipschitz condition w.r.t. y. Further, let
(a,b) =(a,bo,...,bp—1) € D.

© /f¢,4: | = R are solutions of the IVP

yO =ty y, ...,y N AyD@)=b foro<i<n-—1,

(*)
then ¢(t) = (t) forall t € I.

@® There exists ¢ > 0 and a solution ¢: [a— ¢, a+ ¢] — R of the
IVP (x).

As remarked before, continuity of f, ?f, y is sufficient for
the assumptions of the corollary to hold.
Proof.
Use the reduction to a 1st-order system y’ = f(¢,y) as discussed
earlier (setting yo = y, y1 = y/, etc.), and apply the Existence and
Uniqueness Theorem to y’ = f(¢t,y). As we have shown on the
previous slide, this system satisfies the necessary assumptions
(continuity is clear). O]
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Example

We have seen in the introduction that y” + y = 0 has the general
(real) solution y(t) = Acost + Bsin t with constants A, B € R.

Here 1(t, yo, ¥1) = — Yo, which even satisfies a global Lipschitz
condition with L = 1.

— The Existence and Uniqueness Theorem applies.

Since y — (y(0),y’(0)) = (A, B) produces every vector in R?
exactly once, the Existence and Uniqueness Theorem gives
without any previous knowledge (except, of course, that

t — Acost+ Bsintis a solution of y”’ + y = 0) that locally at t = 0
all solutions have this form for unique constants A, B. Since these
solutions are defined on the whole of R, one can then conclude
that this remains true globally.

Using the addition theorems for cos t, sin t, one can show that an
alternative representation of the general nonzero solution of
y"+y=0is, eg., y(t) = Asin(t — th) with A>0and 0 < f, < 2.
This follows from the Existence and Uniqueness Theorem as well,
since y — (y(0),y’(0)) = (—Asin ty, Acos ty) produces every
nonzero vector in R? exactly once (by the polar coordinate
representation of points in R?).
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Example
Consider the (rather fancy) 3rd-order ODE

o Sin(ey - yl) if t <0,
Yo T \sine —y £ ty) ift>o0.

Here we have y"" = f(t,y,y’, y") with f: R* — R defined by

sin(e’ — yy) if t <0,
f t7 IDAF) = .
(t. 0. y1. y2) {sin(ey0 —yi+ty) ift>0.
f is continuous (check the behaviour near t = 0) and partially
differentiable w.r.t. yo, y1, y2, and gyfo, By 8y are continuous; e.g.,

if t <0,

if(t ) =
Yo, Y1, ¥2) = tcos(e?o — yy + tys) ift > 0.

Yy

— f satisfies on R* locally a Lipschitz condition with respect to
Yy = (Yo, V1, o) (it doesn’t matter that g; doesn't exist at some points).
= The Existence and Uniqueness Theorem applies, giving
unique solvability of () for any initial values y\)(a) = b;, i = 0, 1,2,
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Exercise
Determine all maximal solutions of the 2nd order ODE y” = |y]|.
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precise what we mean by “integral curve”. For simplicity we
consider only 1st-order, scalar valued ODE’s, including those in
“differential-like” form M(x, y)dx +N(x, y)dy = 0.

Definition

© By an integral curve of y’ = f(t, y), or the more general
implicit form f(t, y, y’) = 0, we mean the graph
{(t,¢(t)); t € I} of a maximal solution ¢: / — R.

® By an integral curve of M(x, y)dx +N(x, y)dy = 0 we mean
the range (/) C R? of a solution : / — R2, i.e.,
v(t) = (x(t), y(t)) should be smooth and satisfy
M(x(t), y(£))x'(t) + N(x(t), y(t))y'(t) = 0 for all t € I, which
is maximal with respect to this property, i.e., there must not
be a solution with range strictly containing ~(/).

Thus integral curves are smooth non-parametric plane curves

describing/representing the solutions of 1st-order, scalar valued
ODE’s.
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Example

Consider the ODE x dx +y dy = 0 and the corresponding explicit
formy’ =dy /dx = —x/y.

Parametric solutions (1) = (x(t), y(t
must satisfy x(t)x'(t) + y(t)y'(t) =0,

2 becomes d
% (x(t)® + y(t)?) = 0.

Thus x(t)? + y(t)? = C must be constant, showing that the
integral curves of xdx +y dy = 0 are precisely the circles

x2+y? = R?, R > 0. (For this note that smoothness of y excludes
the case R = 0, and that the maximality condition excludes
proper pieces of circles.)

The explicit ODE y' = —x/y is not defined at y = 0. Its integral
curves are the half-circles x2 + y2 = R?, y > 0 (again excluding

R = 0), which represent the graphs of its solutions
y(x)=+vR?—x2,x e (—R,R).

We see from this that integral curves of a differential-like ODE
M(x,y)dx +N(x, y)dy = 0 may split into several pieces forming
integral curves of the explicit ODE y’ = dy /dx = —M(x, y)/N(x, y). This
happens at zeros of N (singular points or points with a vertical tangent).

)) of the differential-like ODE
which after multiplication by
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Corollary (Uniqueness of Integral Curves)

Suppose N,M: D — R, D C R? open, are C' -functions. If
M(x,y)dx +N(x,y)dy = 0 has no singular points then through
every point of D there passes exactly one integral curve (“solution
curve’).

Proof.

Let (xo, ¥o) € D. By assumption (X, yo) is non-singular, i.e.
M(xo, ¥o) # 0 or N(xo, ¥o) # 0. Then the tangent direction of an
integral curve in (X, yo) is uniquely determined as the direction
orthogonal to the vector (M(Xo, yo), N(xXo, ¥0)). Since the tangent
cannot be horizontal and vertical at the same time, we can
parametrize +y locally either as y(x) or as x(y), which then must
solve the explicit ODE

dy = M(x,y) dx — N(x,y)

x = Nxy) O dyT Mxy)

respectively.

= The Existence and Uniqueness Theorem can be applied and
yields that an integral curve through (X, yo) exists. Uniqueness

follows from the maximality condition (cf. the uniqueness proof for
maximal solutions of IVP’s). O
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Remark

Since M and N are continuous, the set S of singular points of
M(x,y)dx +N(x, y)dy is closed in D. Hence D’ = D\ Sis open
and satisfies all assumptions of the corollary. = If two integral
curves intersect in one point, this point must be singular.

Afternote

It is not true in general that through every non-singular point of
M(x,y)dx +N(x, y)dy = 0 (where M, N are C'-functions on
some open set D C R?) there passes exactly one integral curve.

As a counterexample consider the family of curves y = Cx2,
C € R. Since all these curves have a horizontal tangent in (0, 0),
it is clear that we can glue branches with different C together at
(0,0) to form differentiable functions y(x) on R other than
y(x) = Cx? (e.g., y(x) = 0 for x < 0 and y(x) = x2 for x > 0).
On the other hand, solving y = Cx? for C and taking partial
derivatives gives the ODE —2yx—3dx +x—2dy = 0 or, clearing
denominators,

2ydx —xdy =0.
At the singular point (0, 0) there is no condition for parametric
solutions (except differentiability), and hence all curves described
above solve the ODE.
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Afternote con’t

(You can also check directly that, e.g., v(t) = (£,0) for t < 0 and
v(t) = (t, t?) for t > 0 is differentiable at t = 0 and solves the
ODE.)

= Through any point (xo, ¥o) with xo # 0 there are infinitely
many integral curves—follow the curve with C = yp/x3 to the
origin and from there proceed to the other side of the y-axis using
any choice for C. These curves have the half-parabola y = Cx?,
XXp > 0 in common. If we remove (0, 0) from the domain of

2y dx —x dy = 0, the half-parabola becomes an integral curve of
its own.

The picture is completed by the curve x = x(y) = 0 (the y-axis),
which is the only solution through a point (0, yp) with yo # 0.
Thus all points in R?\ {(0,0)} are non-singular, but only through
some of these points passes a unique integral curve.

The situation is similar to that for the ODE y’ = /]y|, or

dy —/]y|dx = 0, which has M(x, y) = —/]y| non-differentiable.
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Figure: Integral curves of 2y dx —xdy = 0, represented (except
for x = 0) as contours of F(x,y) = y/x?
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Phase Space
We consider an n x n ODE system

y' =f(y) withf: D — R", D C R" open. (A)

Such a system is said to be autonomous, because f doesn’t
depend on .

Observations
@ Solutions of (A) are parametric curves
y(t) = (y1(t),...,¥a(t)), t € I, contained in D. (More
precisely, the range (or trace) of the associated
non-parametric curve is contained in D.)

® y(1), t € lis asolution iff t — y(t — ty), t € | + 1y is a solution,
where [+ ty = {t + ty; t € I}. This holds for all { € R.

@ If fis continuous and satisfies on D locally a Lipschitz
condition, then for any point y(©) € D there exists precisely
one maximal solution of the IVP y’ = f(y) A y(0) = y(®, and
this solution is defined on a certain open interval / containing
t = 0 as an inner point (by the Existence and Uniqueness
Theorem).
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Definition
@ The ambient space R" containing D and the solution curves
y(t) is called phase space of the autonomous system
y = f(y).
® The non-parametric maximal solution curves {y(t), te I}
(ranges/traces of t — y(t)) are called trajectories or orbits of
y = f(y).
Corollary
Suppose f is continuous and satisfies on D locally a Lipschitz
condition. Then every point of D is contained in a unique orbit of
y’' = f(y). In other words, the orbits form a partition of D.

Proof.

Let y(© € D. As already observed, y(© € D is contained in an
orbit of a maximal solution curve y(t), t € I that is defined at t = 0.
Now suppose z(t), t € J is another maximal solution satisfying
2(t)) = y©. Replacing z(t) by t — z(t + &), t € J — tp, which is a
maximal solution as well and has the same orbit as z(t), we may
assume 0 € J and z(0) = y(©. But then the Uniqueness Theorem
gives y(t) = z(t) for t € I N J, and maximality forces I = J
(because the two curves have a common extension to /U J). Thus
the parametric curves and in particular their orbits are equal. [
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Note

Actually the proof shows more: Suppose we know a family of
(parametric) maximal solutions whose associated orbits partition
D. Then every further maximal solution has the form t — y(t — t))
for some solution y(t) in the known family and some {, € R.

The Case n =1

In this case y’ = f(y) for some one-variable function f. It is
convenient to graph y’ versus y, i.e., the function f.

/

Y

~104

~154

-y =4y

/

y
104
-y =y -2 +y
0.5 A
ﬁ‘ . ’r Y
-1.0 -0.5 0.5 1.0 1.5 2.0
54
_1.01

The phase line is the y-axis (horizontal axis). The blue arrows
indicate whether y(t) is increasing/decreasing in the respective
interval. Caution: This property depends on y(t) rather than ¢!
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Theorem
Suppose f is analytic on D, i.e., f(y) is a polynomial (D =TR) or a

power series iny — yo (D= (Yo — R, ¥o + R) for some y, € R and

0 < R< ), and Z c D denotes the (discrete) set of zeros of f.

@ The orbits of y' = f(y) are the singleton sets {z} forz € Z
and the connected components of D\ Z, which in the
polynomial case are the open intervals determined by
adjacent zeros and intervals of the form (—c, z), (z, +00)).

® Forze Z, y' = f(y) has the equilibrium solution y(t) = z.

® Iff(z) <0 then y(t) = z is asymptotically stable.
More generally, if f has a zero of odd multiplicity m = 2k + 1
at z and f®%+1)(z) < 0 then y(t) = z is asymptotically stable.

@ I/ff(z) > 0 then y(t) = z is unstable.
More generally, if f has a zero of odd multiplicity m = 2k + 1
at z and fk+1)(z) > 0 then y(t) = z is unstable.

@ If f has a zero of even multiplicity m = 2k at z then y(t) = z
is semistable (asymptotically stable from below if
fR)(z) > 0, respectively, from above if f?K)(z) < 0).
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Sketch of proof.

(2) is by now well-known and implies that for z € Z the set {z}
forms an orbit (arising from y(t) = z).

Regarding (1), we prove only that if z; < z, are adjacent zeros of
fand f(y) > 0 for z; < y < z, then (z;, z2) forms an orbit of

y' = f(y). (The other cases are similar.)

If suffices to show that a maximal solution y(t) of y’ = f(y) with
y(0) = yo € (21, 22) exists for all t € R, is strictly increasing, and
satisfies

lim y(t)=2z;, lim y(t)= 2z,

t——oo t—+4o00

because then clearly y(R) = (21, 22).

Let / be the (open) interval on which y(t) is defined. We can write

I =(a, b), where a = —oco and/or b = +oc is possible.

First we show that y(t) € (z1,2) forall t € .

This is true for t = 0 and can fail for some t only if there exists f,
such that y(&) = zy or y(&) = z (by the Intermediate Value Theorem).
This, however, would contradict the Uniqueness Theorem, because
we also have the constant solutions y(f) = z; and y(f) = z.

= y(t) is strictly increasing on / and bounded from above by z.
= y» 1= limyp y(t) exists and satisfies yp < yo < 2.



Math 285

Introduction to Proof cont’d.

Differential .y .
Equations Now we distinguish two cases:
Thomas Case1:beR

Honold

In this case y(t) can be extended to (a, b] by setting y(b) = y»,
Phase Space and one verifies easily that the extension solves y’ = f(y) also in
t = b. This contradicts the maximality of y(t).
Case 2: b = 400
Here we use that the limit

Jim y/(f)= lim f(y(1)) = ()

exists. Since lim;_, o (Y(t+ 1) — ¥(t)) = yo — yo = 0, for
sufficiently large t the quantity

O<y(t+1)—yt)y=y'(r), Te(tt+1),

is smaller than any given e > 0. Together with the existence of
lim;— 100 ¥/ (1) this implies lim;—, 1 ¥'(t) = 0, i.e., f(y2) = 0 and
hence y> = lim;_ 1o y(t) = 2o.

In the same way one proves a = —oo and lim;_,_, y(t) = z;.
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Proof contd.

(3), (4), (5) follow from (2) and the known characterization of sign
changes/non-changes at zeros of f in terms of the first
non-vanishing derivative. O

Example (y' = 4y — y?)

The preceding theorem gives immediately that the equilibrium
solutions y(t) = +2 are asymptotically stable and y(t) =0 is
unstable; cf. picture.

Example (y' = y® — 2y2 + y)

y(t) = 0is unstable and y(t) = 1 is semistable (more precisely,
asymptotically stable from below and unstable from above); cf.
picture.

Example (y' = y — y?)

This is the logistic equation with a = b = 1. The graph of
fly)=y—y?=—(y —1/2)? +1/4 is the standard parabola
upside down. It has zeros 0 and 1.

= y(t) = 0 (corresponding to the left zero) is unstable, and

y(t) = 1 (corresponding to the right zero) is asymptotically stable.
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Remark
Solutions of scalar autonomous ODE’s are best viewed as
functions t(y).

y'=1)
dy /f(y) = dt
o

v~ T

= y’ = f(y) can be solved by a single integration (just like
y' = f(t), only the roles of t and y are interchanged.

For example, in the case of y’ = y — y? we obtain

zL(y)_/yd—yyz_/<}1/+11y>dy_ln

The plot on the next slide shows 5 particular representative
solutions for the 5 orbits of y’ = y — y2. The 3 branches of

yIn )%’ represent the non-constant solutions. They can be

independently shifted vertically to produce the remaining
solutions.

y ‘+c.
1-y
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Exercise

In the proof of the theorem we have seen that maximal solutions
representing orbits of y’ = f(y) of the form (z;, z,) have domain
R. How can we determine from properties of f the domain of
solutions representing orbits of the form (—oo, z) or (2, +00) ? In
particular, answer this question for the case of a polynomial f(y).

Exercise (cf. [BDM17], Sect. 2.5, p. 61)

The phase line can also be used to determine the curvature (i.e.,
whether it is convex or concave) of solutions of y’ = f(y). Show
that solutions y(t) are strictly convex (concave) in regions of the
(t,y)-plane where f(y)f'(y) > 0 (respectively, f(y)f'(y) < 0). In
particular, the inflection points of solutions (if any) are located on
lines y = yo with f(yo) # 0 A (o) =0 (e.g., for y’ = y — y? on
the line y = 1/2). What can be said about the number of inflection
points of a non-constant solution with domain of the form (—oc, a),
(a,b), or (b,c0) with a,b e R?
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The Case n=2
Phase planes and planar trajectories/orbits are associated to
2 x 2 autonomous ODE systems

.y1/ = f1(Y17}’2)a
Y2 = (y1,)2).
Every maximal solution y(t) = (y1(t), y2(t)), t € l of such a

system is a parametric plane curve. The orbit of y(t), viz.
{(y1(1), y(t)): t € 1}, is the corresponding non-parametric curve.

Here we consider only one important example.

Example (Phase portrait of y” + y = 0)
Order reduction y; = y, y» = ¥’ transforms this 2nd-order ODE into

69 = () = (5 0 G

The orbit of a nonzero solution

i)\ _ (y(®)\ _ [ Acost+Bsint\ (A B cost
yo(t)) — \y'(t)) — \—Asint+Bcost) ~ \B —A) \sint
is a circle of radius v/ A% + B2 with center (0, 0).
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Example (contd)

Geometrically this says, that the solution with initial values

y(0) = A, y’(0) = B has the property that all “state vectors”
(y(t),y'(1)), describing the displacement from the equilibrium
position y = 0 and its velocity of change at an arbitrary time t, are
located on the circle X? 4+ Y2 = A? + B?. (Recall that when we
first determined the solutions of y” + y = 0 we used this property,
viz. y(t)? + y'(t)? = A2 + B2 = y(0)2 + y’(0)?, as a key fact.)

As predicted by the corollary, the orbits partition the plane if we
also include {(0,0)}, the orbit of the constant solution y(t) = 0.

We have also seen that solutions y(t), z(t) with the same orbit,
i.e., the same v/ A2 + B2, differ only by a time shift (phase shift)
zZ(t) =y(t—t), b € R. This is visible in the alternative
representation

y(t) = Acost+ Bsint = Im [e"(B + Ai)] = VA? + B?sin(t + ¢),

in which ¢ is determined from cos ¢ = \/Aiisz’ sing = \/A2A+752'

The collection of all orbits (or a good representative selection of
orbits) of a given autonomous ODE system is referred to as a
phase portrait.
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General (time-dependent) linear ODE’s
An n-th order linear ODE has the form

an(y'” + an—1 (YD + -+ ai(t)y’ + ao(t)y = b(t)  (x)

with coefficient functions ao(t), . .., an(t), b(t), and an(t) # 0 for at
least one t (i.e., an(t) is not the all-zero function).

Solutions of (x) are n-times differentiable functions y: / — R (or
y: I — C), where I is an interval on which all coefficient functions
are defined, satisfying

an()y\"(t) + an—1(y" V() + -+ ai()y' (1) + ao()y (1) = b(1)
forall t € 1.

As usual, (x) is said to be homogeneous if b(t) = 0 (and
inhomogeneous if b(t) # 0 for at least one t).

Notes
* In the homogeneous case b(t) = 0, the real solutions of (%)
with fixed domain J form a subspace of RY = {¢;¢: J — R},
and similarly for the complex solutions. This is easily shown
using the subspace test: The all-zero function on J is a
solution, and linear combinations (with constant coefficients)
of solutions are again solutions.
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Notes cont'd
¢ We can divide (x) by an(t) and turn it into an explicit ODE, to

which the Existence and Uniqueness Theorem can be
applied. If a,(t) has zeros, this will generally split / into two
or more subintervals for which (x) must be solved separately.

In theory linear ODE’s are well understood. There exists a
sharpened version of the Existence and Uniqueness
Theorem, asserting that an n-th order homogeneous linear
ODE has an n-dimensional solution space (which is a
subspace of R resp. C') and that there are no obstructions to
taking / as large as possible. Further, a particular solution of
an inhomogeneous linear ODE can be found using “variation
of parameters”, and its general solution can be expressed in
the usual way in terms of one particular solution and the
general solution of the associated homogeneous ODE.

In practice, however, it is difficult to solve time-dependent
linear ODE’s of orders n > 2. There are no known formulas
for computing a basis of the associated solution space. For
time-independent homogeneous linear ODE’s, on the other
hand, a basis of the solution space can be computed
“algebraically”.
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The time-independent (autonomous) case

An n-th order linear ODE with constant coefficients
(time-independent/autonomous linear ODE) has the form

yO +a, qy 4 fay +ay=b (DE)

with coefficients ag,...,an,_1,b € C.

It is not necessary to consider the more general form

any™ + .-+ agy = b, a, # 0, since we can always divide by aj
to obtain the “monic” form (DE). This doesn’t change anything,
and neither does rewriting the ODE in explicit form

y(”) —b— an71y(”—1) — - —apy.

Several important physical quantities/systems can be described
using ODE’s of the form (DE), especially 2nd-order equations. In
such applications, the left-hand side of (DE) is usually
time-independent, expressing internal characteristics of the
system. But b = b(t) may be time-dependent, modeling the
influence of an external source that changes over time. Since the
basic theory of time-independent linear ODE’s applies to this case
as well, we will generally allow b = b(t) in (DE).
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The analogy with linear recurrence relations

Recall from Discrete Mathematics (or just take it as a definition)
that a linear recurrence relation of order n with constant
coefficients has the form

Yitn = an—1}’/+n—1+"'+a1}/i+1 +a0.y/+b/a = 0) 1727' ) (RR)

and that a solution of (RR) is a sequence (yo, y1, Y2, . . . ) satisfying
(RR) for all i > 0.

In order to make the analogy with linear ODE’s more visible, we
replace a; by —a;, write y (/) in place of y;, (after all, a real
sequence is just a function y: N — R, i — J;), and rename the
variable i as t. Then (RR) becomes

y(t+n)+ap_1y(t+n—1)+---+aiy(t+1)+ay(t) = b(t), teN.

Thus, compared with (DE), solutions of the recurrence relation
(RR) have the “discrete” domain N (not a “continuous” interval /),
and the differentiation operator D: y — y’ has been replaced by
the shift operator (truncation operator)

S: (Yo, Vi, Y2, Y3, ) = (V1, Y2, Y3, - - - ).
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Because of this striking analogy, it comes as no suprise that the
methods for solving linear recurrence relations with constant
coefficients and (higher-order) linear ODE’s with constant
coefficients are very closely related. If you know how to do one of
these tasks, you will find it easy to do the other.

Example (Fibonacci numbers)

The Fibonacci numbers are defined by the order-two recurrence
relation
fipo=Ffixr+f, =0 f=1.

Of course we can use our brain (or another computer) to compute
the Fibonacci numbers successively from this:

il0 1 23456 7 8 9 10 11 12
i,]0 1 1 2 3 5 8 13 21 34 55 89 144

But this leaves several questions open, e.g.

© How fast do the Fibonacci numbers grow?

® If we change the initial values f,, f;, how does the Fibonacci
sequence change?

These questions can be answered by developing some theory,
which yields a closed formula for the Fibonacci numbers as by-product.
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Example (Fibonacci numbers cont’d)
We start with the following

Question: How does the collection of all solutions of the
recurrence relation y;, o = yir1 + yi (without specifying initial
values) look like?

Answer: Since the recurrence relation is homogeneous, sums of
solutions and constant multiples of solutions will be again
solutions. Moreover, there exist solutions, e.g., the Fibonacci
sequence and the all-zero sequence (0,0,0,...).

= The solutions form a subspace S of the vector space R" of all
real sequences (with term-wise addition/scalar multiplication).

Question: What is the dimension of S?

Answer: When specifying a solution, we can choose yy = A,

y1 = B freely, determining the rest of the sequence. Thus there
are two degrees of freedom, which suggests that the dimension is
2. (But this is not a proof, of course.)

Consider the special solutions f = (f;), g = (g;) defined as follows:

nio01 23 456 7 8 9 10 11 12
101 1 2 3 5 8 13 21 34 55 89 144
g|1 0 1 1. 2 3 5 8 13 21 34 55 89
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Example (Fibonacci numbers cont'd)

Then for A, B € R the sequence y = Af + Bg, i.e. y; = Afi+ By,
is also a solution and satisfies

y = (Afy + Bgo, Afy + Bg1,...) = (B,A,...)

= Every solution is uniquely a linear combination of f and g.
= f, g form a basis of S; in particular we have dim S = 2.

Remark: Since g; = fi_1 for i > 1, we can express the general
solution of y; o = yir1 + y; also as y; = Af; + Bfi_4, using the
convention that 4 = 0.

The answer obtained so far is not really satisfying—for example
we still have no information on the growth of (f;) and other
solutions of yi o = yir1 + ¥, and how these relate to solutions of
other linear recurrence relations.

Key idea
Every homogeneous linear recurrence relation with constant

coefficients in R has solutions of the special form (1,r,r%,r3,...),
i.e., yj=r', forsomer e C.
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Example (Fibonacci numbers cont'd)
Using the ,Ansatz* y; = r’, we get

Viee=Yim+Yyi = =4 — r(rr-r-1)=0.

= (y;) = (r") satisfies the recurrence relation iff r is a root of the
polynomial X? — X — 1. This polynomial is called characteristic
polynomial of the recurrence relation y;» = y;11 + ¥i, and

r> —r —1 =0 is called characteristic equation.

The solutions of r2 —r —1 =0are r, = 45, r, = 15 gjving
the two solutions

yh — (171+2¢§7(1+2\/5) 1+f )
v = (1 () () )
(

Since ry # r2, the solutions are linearly mdependent look at the
first two terms of both sequences!) and form a basis of S.

— The general solution is y; = ¢4 r{ + cgré' with ¢y, ¢ € R.
Pluggingin yo =0, yy =1givesci + ¢ =0, ¢ciry + caro = 1 1

(a linear system of equations for ¢y, ¢;), with solution ¢y = % 2=~
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Example (Fibonacci numbers cont’d)
—The Fibonacci nhumbers have the closed-form representation

145\ (1-V5)"
( V(58] cane

~ —0.62 has absolute value < 1, we have

1 (1+v5) 1
_|_
fo~ — ~ — x 1.62" for large n,

showing that the Fibonacci numbers grow exponentially.

fn:

il =

‘s

Since
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Example (The “Fibonacci IVP”)
By this we mean the IVP

y"=y +y, y(0)=0,y(0)=1.

Here we don’t have an easy method at hand to compute a
nontrivial solution, but we can observe at least the following
analogy to the Fibonacci recurrence relation: For any interval

| C R the real solutions y: | — R of y” = y’ + y form a subspace
of R/

Reason: Rewriting the ODE in the form y” — y’ — y = 0 shows
that it is homogeneous.

— The all-zero function on / is a solution, and for solutions

y,z: - Rthesumy +z: | - R, t — y(t) + z(t), as well as any
scalar multiple cy: I = R, t — cy(t) (c € R) are again solutions:

y+2)' -(y+2)-(y+2)=y'+2" -y -2 ~y-2z
=y'—y -y+(@' -2 -2
=0+0=0,
(cy)’ —(cy) —cy=cy"—cy' —cy
=c(y'—y' -y)=c-0=0.
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Example (The “Fibonacci IVP” cont'd)

Question: What is the dimension of the solution space S of
y" —y’—y =0, and how to compute a basis of S?

Key idea

Try functions of the form y(t) =e".

Because differentiation “preserves exponentials”, this might work.
Indeed, for such functions y(t), defined on R, say, we have

y/l(t) _ y/(t) o y(t) _ r2 ert o rerl‘ _ ert
=(r2—r—1)",

which is zeroif r> —r —1 =0.

= y” — y’ — y = 0 has the same characteristic
equation/characteristic polynomial as the Fibonacci recurrence
relation (in the sense that this data fully characterizes the
solution), and all functions

1+/5 1—V5
y()=cre 2 "+e 2 !, ¢, €ER,

are solutions of y” — y’ — y = 0.
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Example (The “Fibonacci IVP” cont'd)
Next we fit the initial conditions:

y(0)=c¢ci1+c =0,
Y'(0)=c 5 y o 155 =1,

This system is the same as for the Fibonacci recurrence relation
and was solved before.

1 _
— y(t) _ ﬁ <e1+\/51 1-v5

solves the Fibonacci IVP.
The solution is unique according to the Uniqueness Theorem.
But we can say more: Since for any A, B € R the (linear) system

c1 + c = A
rner + e = B,

with ry = 18 r, = 1=/5 can be solved for ¢, ¢z, we can fit
solutions in S to any prescribed initial values y(0) = A, y’(0) = B.
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Example (The “Fibonacci IVP” cont'd)

= There are no further solutions (by the Uniqueness Theorem),

and hence the solution space S of y”/ — y’ — y = 0 is spanned by
VG 1-VEy . .

2 ! e~z !andhas dimension 2.
— "t %" t form a basis of S, since they generate S and

are linearly independent.

€

We also say that e “2°* t, e %* t form a fundamental system of

solutions of y”" — y’ — y = 0, according to the following
Definition
A basis of the solution space of a homogeneous linear ODE (or a

homogeneous linear ODE system) is called a fundamental
system of solutions.
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Example
Determine the general solution of

Yi=4yi—1 —4yi—2 and
y// — 4y/ _ 4y

First we rewrite the equations in standard form:

Yive —4Yip1 +4y; =0,
y" —4y' +4y =0.

The characteristic polynomial is X? — 4X + 4 = (X — 2)? and has
only one root, viz. r = 2. This gives the solutions y; = ¢2' in the
discrete case and y(t) = ce® in the continuous case, but these
are obviously not enough to fit all possible initial conditions.

Question: How to obtain further solutions?

Answer: Try the sequence y; = i 2' (for a root r of multiplicity 2 in
general y; = i r', cf. Discrete Mathematics), respectively, the
function y(t) = te? (in general y(t) = te'). At least in the
continuous case this is reasonable, because te” when
differentiated also reproduces in a way itself.
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Example (cont'd)

y(t)=te
y'(t) = e2'+2te2’ (14 2t)e®
y'(t) = 2e? 4+ 2(1 + 2t)e? (4+4t) ;

— Yy — 4y £ 4y = (4 +41)e® — 4(1 + 21)e? + 4te?
=(4+4t—4 -8t +41)e* =0.

It works!
One can check that the solutions

Vi=c12 + i 2,
y(t) = c1e® + cote?

can be used to fit arbitrary initial conditions (yo = A, y1 = Bin the
discrete case, y(0) = A, y’(0) = B in the continuous case).
Moreover, the two sequences (2'), (i2), respectively, the two
functions e, te?! are linearly independent.

= They form a basis of the solution space in both cases.
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Example
Solve the inhomogenous recurrence relation
gi=0-1+gi2+1, go=91=1,

and the corresponding IVP y”" =y + y + 1, y(0) = y’(0) = 1.
We do the continuous case first.
If we have two solutions y, z of y” — y’ — y = 1 then

y-2)"-(y-2)-(y-2)=y" -y -y (2" -2 -2)
=1-1=0,
so that y — z solves the associated homogeneous ODE
y" —y’ — y = 0, which is just the Fibonacci ODE.

This tells us that one particular solution y, is enough to determine
the general solution:

Y =Y — Y¥p+ Yp =sol. of the hom. ODE + y,.

Question: How to find a particular solution?
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= The general solutionof y" —y' —y =1is

The Analogy

s 145 ¢ 1=V5 4
onsl y()=—-1+4cie 2 '+ e 2 !, c,cekR
Relations

Fitting the initial conditions gives the linear system

y(O) -1 + ci + c = 1,
y'(0) = rney + nrc = 1,

which is solved by ¢; = ¢, = 1.

1+v5  1-V5
= y(t)=—-1+e 2 +e 2 , teR

(uniquely) solves the given IVP.
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Example (cont'd)
In the discrete case we can make a table of the numbers g, and
compare with the Fibonacci numbers.

n|0 1 345 6 7 8 9 10 11 12

2
10 11 2 3 &5 8 13 21 34 55 89 144
g1 1 3 65 9 15 25 41 67 109 177 287 465

A particular solution of yj .o — yii1 — yi=1is y; = —1,i.e. the
sequence y = (—1,—1,—1,...), and the general solution is
therefore

i i
1++v5 1-+v5
}’/:_1+C1< 2\[> —|—Cz< 2f>7 ci,0 € R

The initial conditions yp = y; = 1 yield the system

¢t + C = 2,
rncy + ht = 2,
which is solved by ¢y = % Co = %
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Example (contd)

. g._1+2[<1+\f5>i+1<1_\@>i+1]
a V5 2 2 ’

=2fi,1—1, i=01,2,...

The relation g; = 2f;,1 — 1 is also visible in the table (well, with
some effort).

Using the alternative representation y; = —1 + Afi + Bf;,_ (with
f_4 = 0), we could have found it more quickly: yo = y; = 1 give
A=B=2andhence y; = —1+2(fi+ 2fi_1) = —1 + 2f;;1.

Exercise

In the example we have found that the ODE y” — y’ — y =1 and
its discrete “analogue” yi.o — yir1 — y; = 1 both have the constant
function y(t) = —1 as a solution (of course, with different domains
R resp. N). Is this a pure coincidence or an instance of a more
general correspondence between the continuous and discrete
case?

Hint: It may help to identify the discrete analogue of the
exponential function e! first.
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Determine the general solutionof y” + y =0and yj,o +y; =0
from the characteristic equation.

The Analogy . . . . .

with Linear Here the characteristic polynomial is X? 4+ 1 = (X —i)(X + i), so
Ul .

Relations that the general complex solutions are

y(t) = cre + e, teR,
Yn=ci"+c(-1)", n=0,1,2,....

with c1,0 € C.

Question: How can we find the corresponding real solutions?

Answer: In the discrete case direct inspection gives that the
solution can also be written as

y=(AB,-A-BAB,-A-B,...), ABeC,

Here we simply need to restrict A, B to real numbers to obtain the
general real solution.
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Example (contd)
In the continuous case we can argue as follows:

y(t) =Cre T+ Tl = y(t) iff T =0

(since el and e~ are linearly independent).
— The general real solution is

y(t)=ce'+Ce ™" =2Re(ce), ceC.

Setting 2c = a— bi, a, b € R, we see that the general real solution
can also be represented as

y(t) = aRe(e"") — bRe(ie'') = aRe(e'") + blm(e')
= acost+ bsint, a,beR.
A different argument to prove this uses the observation that for a

linear ODE with real coefficients the real and imaginary part of
any complex solution must be solutions as well.



Math 285
Introduction to
Differential
Equations

Thomas
Honold

The Analogy
with Linear
Recurrence
Relations

A Stronger Link between the
Continuous and Discrete Case

If you were already familiar with the solution methods for linear
ODE’s in the examples discussed so far, but not with their discrete
analogues, you may have wondered where the key idea “try
sequences of the form (1,r,r2,r3,...)” in the discrete case
comes from. The correct explanation uses the concept of
“eigenvectors/eigenvalues” of an endomorphism (linear operator)
of a vector space.

Definition (recalled)

Suppose V is a vector space over a field K and f: V — V alinear
map from V into itself (a so-called endomorphism of V). A
nonzero vector v € V is said to be an eigenvector of f if f maps v
to a scalar multiple of itself, i.e.,

f(v) =Xv forsome X € K.

The scalar A is called the corresponding eigenvalue.
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Observation

The function e, with r € C arbitrary, is an eigenvector
(“eigenfunction”) of the differentiation operator D: y — y’.
Likewise, the sequence (1,r,r?,r3,...) is an eigenvector
(“eigensequence”) of the shift operator S: (y;) — (¥i+1)- In both
cases the corresponding eigenvalue is r.

Of course in the continuous case you know this already:
D(e') = re'. In the discrete case we have likewise

S(1,r,r2,r3, ...y =(r,r2,r%, ... )=r(1,r,r2,...).

Both D and S can be iterated. Writing D o D = D? (“differentiating
twice”), Do D o D = D3, etc., and similarly for S, we have, e.g.,

(Yirz = Yir1 = Yi) = (Vir2) — Viv1) — (1)
= S%(y1) — S(yi) — (Vi) = (S =S — )W),
(S5 =S —1)(r') = S3(r") = S(r') = (r') = r?(r') = r(r") — (1)
= (rP—r—1)(r",
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and similarly

y'—y —y=D?-Dy—y=(D*-D-1)y,
(D2 -D-— 1)ert — D2 _Det — et = fRet — ret — et
=(r*—r—1)".

One sees that iterating both operators and taking linear
combinations, which corresponds to applying a polynomial in D or
S (such as p(D) =D? — D — 1 or p(S) = S2 — S — 1 in the case of
p(X) = X2 — X — 1) to the function/sequence and can produce
the left-hand side of any higher-order linear ODE/linear
recurrence relation, for their eigenfunctions/eigensequences
effectively reduces the computation to a scalar multiplication with
p(r), where r is the corresponding eigenvalue; cf. also the
discussion of matrix polynomials in Math 257.

This property will be crucial in the theoretical analysis of general
higher-order linear ODE’s (or linear recurrence relations) with
constant coefficients.

While S acts on the vector space of (complex) sequences, there is
a subtlety involved in finding a suitable domain for D. In order to be
able to apply D repeatedly, we should define its domain as C*°(R)
(complex-valued functions on R, which have derivatives of all orders).
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The Homogeneous Case
cf. also [BDM17], Ch. 4.2
We work over C (because generality does not hurt at this point)
and denote by C[X] the ring of all polynomials in one indeterminate
over C. | assume that you know how to add and multiply polynomials,
and that equality in C[X] means coefficient-wise equality.

We will also use the fact that every nonzero polynomial
a(X) € C[X] splits into linear factors in C[X], i.e.,

a(X) = ag H(X — )\,‘)m’7
=1

where d > 0 is the degree of a(X), ag # 0 is the leading
coefficient of a(X), A1, ..., A\, are the distinct roots (zeros) of a(X)
in C and m; > 1 the corresponding multiplicities. This “prime
factorization” is clearly unique, and its existence follows from the
Fundamental Theorem of Algebra; cf. Calculus II.

The Fundamental Theorem of Algebra, asserting that every
complex polynomial of degree d > 1 has a root in C, is a mere
existence theorem and doesn’t say anything about how to actually
compute the roots.
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Intreduction to- - gangral polynomial of degree > 5 (even with integer coefficients)

Differential

Equations cannot be computed algebraically, and one needs to use
Thomas numerical approximations instead.
ono!
Definition

For an n-th order linear ODE
YD+ a1y 4 agy’ + agy = b(1).

I';gu';g;gee' with constant coefficients ay, . .., a,_1 € C (but possibly
non-constant right-hand side b(t)), the polynomial
aX)=X"+a,_ 1 X" "4+ ...+ a X+ a € C[X]is called its
characteristic polynomial (and r" 4+ a,_1r"' +--- +a;r+ap =0
the corresponding characteristic equation).

Caution: In what follows, the letter “r” will have a different
meaning (number of distinct roots of a(X)).

We first consider the homogeneous case b(t) = 0. In this case
the solutions y: R — C form a subspace of CF (since sums of
solutions and linear combinations of solutions with coefficients in
C are again solutions), and it is reasonable to conjecture that this
subspace has dimension n (on the basis of our examples and the
Existence and Unigueness Theorem).
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Theorem
Suppose the characteristic polynomial a(X) of

Y+ an_ 1y 4. ary + ay =0 (H)
has prime factorization a(X) = [];_,(X — \;)™. Then the functions
R—C, t—teM 1<i<r,0<j<m—1,
form a basis of the complex solution space S of (H) (a so-called

fundamental system of solutions); in particular dim S = n.

Proof.

First we note that the number of such functions is

S, mj = deg a(X) = n, which equals the conjectured dimension
of the solution space S.

Hence it suffices to prove the following
@ S has dimension at most n.
® The functions t/e! actually solve (H), and

® they are linearly independent.
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Proof cont'd.
(1) Suppose, by contradiction, that dim S > n. Then there exist

n—+ 1 linearly independent solutions ¢+, ..., #n1: R — C of (H).
Now we try to fit the initial conditions
y(0) = y'(0) = --- = y(»1)(0) = 0 for a linear combination

y ZnH C]¢j c S

ci$1(0) + ... + Cny10n+1(0) = 0O
c1¢i(0) + ... + Cny19p4(0) = 0

<<
—~
o o
~— —
[

yr00) = ¢ 0) + ... + 1ol N(0) =

This is a linear system of n equations for the n+ 1 unknowns ¢;.
From Linear Algebra we know that such a system must have a
solution ¢ = (¢4, ..., Cnhr1) # 0. The corresponding function

Y = Ci¢1 + -+ + Cnr1Pn41 is Not the all-zero function (since the ¢;
are linearly independent), but satisfies the same initial conditions
as the all-zero function. This contradicts the Uniqueness
Theorem and proves (1).
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Proof cont'd.
(2) This is the most technical step. As discussed earlier, we can
work with polynomial differential operators

d
p(D) = ppid+psD +--- 4+ pgD?, D= o P cC.
Such an operator acts on y(t) via
p(D)y = poy + PiDy + - -+ + paDy = poy + p1y’ + -+ + pay'?,

and the ODE can be concisely written as | a(D)y = 0.

The action is compatible with polynomial addition/multiplication in
the following sense:

(p1 + p2)(D)y = (p1(D) + p2(D))y = p1(D)y + p2(D)y,
(P1p2)(D)y = (p1(D)p2(D))y = p1(D)(p2(D)y).
In other words, we can treat D like an indeterminate (it is also true
that p(D) = 0iff pg = p1 = - - - = pg = 0; cf. subsequent note),

and polynomial addition/multiplication corresponds to
addition/composition of the corresponding linear operators p(D).
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Proof cont'd.

In particular we have p;(D)p2(D) = p2(D)p1(D) for any two
polynomials p1(X), p2(X) € C[X].

This commuting relation is quite useful. For example, it shows
easily that the derivative of a solution is itself a solution:

a(D)y =0 = a(D)y’ = a(D)Dy = Da(D)y =D0 = 0.

Keep in mind that p;(D)p2(D) is an abbreviation for the
composition p(D) o p2(D) (*first apply p2(D) then ps(D)”), just like
D'isforDoDo---oD. The notation p;(D)p2(D) makes the

—_————

i times

analogy with polynomials even more visible.
Also note that composition of differential operators makes only
sense after specifying a suitable domain from which y is taken,
which in this case is C*°(R), the set of all complex-valued
functions f on R that have derivatives of all orders. The somewhat
sloppy notation “id” refers to the identity map with this domain,
viz., C®(R) — C>®(R), y — .
Next we generalize our observation that the exponentials e form
eigenfunctions of D to arbitrary polynomials p(D).
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Proof cont'd.
De)\t :)\e/\t D/ At )\/ At — ,0( ) P( )

This is the second useful relation and implies that y(t) =
satisfies a(D)y = a()\;)y =0, i.e., solves the ODE.

Further we have D(f(t)e*) = f'(t)e* + Mf(t)eM, giving

f'(t)e if = A,
[(N— w)f(t) + F(8)] X if u# .

(D — pid)(F()e) = {

This is the 3rd useful relation, which we will apply to polynomials f().
By induction, we get (D — X id)™(f(t)e) = f(M(t)e, and hence

(D — Xid)™eN = {m! o itm=j,

0 if m>j.
In particular (D — \;id)™ (teM) = 0for 0 < j < m; — 1.
= a(D)(tleM!) = 0, since a(D) is a multiple of (D — A;id)™.
Thus the functions t +— tleM!, 1 < i< r,0<j< m;—1, solve the
ODE, completing the proof of (2).
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Note on this part of the proof
The idea behind it is that

a(D)y = (D — Ay id)™ (D — A2id)™ - - (D — A id)™y

can be computed by applying n-times an operator of the simple
form D — pid with © € C, which acts like this:

(D — pid)y =Dy — py = ¥y’ — py. The order in which these
operators are applied does not matter, because polynomial
multiplication is commutative.

In the following example we write D — p for D — pid (i.e., the
identity map is simply denoted by 1). We have used this
abbreviation before (when discussing D and S together), and it
makes the formulas look a little less cluttered.

y"4+y=(D?+1)y = (D +i)(D —1i)y can be computed as the
composition of D +i and D — i in either order. Here is one:

(D—i)y =y —iy,
(D+i)y —iy) = (Y —iy) +i(y —iy)
=y"—iy' +iy' —ily = y" +y, as asserted.
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(3) A linear dependency relation among the functions t/e*!
amounts to the existence of polynomials f;(X) € C[X] with
deg f;(X) < m; — 1, not all zero, and such that

fi(HeM! + h(t)e ! 4 -+ f()eM =0 forall t € R.

Write a(X) = (X — A)™Aq(X), i.e., Ai(X) is the product of all
polynomials (X — A\;))™ with i > 2.

Since (D — \;id)™ (fi(t)eM!) = 0, we have A;(D)(fi(t)eM!) = 0 for
i > 2 and hence

Ai(D)(fi(t)eM!) =0 forall t € R.

But each factor D — );id of A¢(D) preserves the degree of fi(X) in
the product f;(t)e’! and hence acts as a bijection on the space
consisting of all such functions.

= ()M =0(tcR)= f(t)=0(tcR) = £ (X)=0.

The last implication uses the fact that polynomials have only
finitely many zeros.
In the same way one shows that £(X) =--- = f(X) = 0. O
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Notes
¢ An analogous theorem holds in the discrete case. The

solution space of a homogeneous linear recurrence relation
of order n with constant coefficients and characteristic
polynomial a(X) = [[/_;(X — A)™ has a basis consisting of
the sequences

(KXYen, 1<i<r,0<j<m—1.

The proof given in the continuous case remains valid—just
replace everywhere D by S (and functions by sequences, of
course).

The relation Df = Af is equivalentto (D — Aid)f =0, i.e., to
the ODE y’ — \y = 0 for f, whose solution is y(t) = ce*,

¢ € C. Thus the eigenspace E, of D (acting on C>*(R),
viewed as a complex vector space) is 1-dimensional and
spanned by t — e*. The corresponding generalized
eigenspace is Gy = {f; (D — Aid)™f = 0 for some m € N}. In
the proof of the theorem we have seen that G, consists
precisely of the polynomial multiples p(t)e*, p(X) € C[X].
Thus, in contrast with the matrix case, the generalized
eigenspaces of D have infinite (countable) dimension.
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e The functions in the span of {tke*; k € N, \ € C} are called

exponential polynomials.

The theorem implies in particular that any solution of a
homogeneous linear ODE with constant coefficients is an
exponential polynomial.

Conversely, every exponential polynomial solves a nontrivial
homogeneous linear ODE with constant coefficients. For
tkeM the corresponding ODE can be taken as

(D — Aid)**'y = 0, and for a linear combination >";_, ¢;thie !
we can then take the ODE as

r
| J[CERY, id)k"“] y=0.

i=1

It should be noted here that a fixed exponential polynomial
y(t) satisfies many different such ODE'’s, since a(D)y = 0
implies b(D)a(D)y = 0 for any polynomial b(X) € C[X].
However, it can be shown that there exists a unique monic
polynomial a(X) € C[X] of smallest degree such that

a(D)y = 0 and hence a unique “monic” linear homogeneous
ODE of smallest order satisfied by y(t); cf. exercises.
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e The argument used in Part (3) of the proof actually shows

that the sum of the generalized eigenspaces of D is a direct
sum. (Using the previous note, convince yourself that the
proof more generally shows: If A\¢,..., A, € C are distinct and
fi(X), ..., f(X) are polynomials in C[X] satisfying

fi(t)eMt + -+ f(t)eM =0 for t € R then

A(X) = =1£(X)=0,)

In fact the argument is the same as that used in Math 257 to
show that the sum of the generalized eigenspaces of

A € C"™" is direct. It relies solely on the fact that members of
different generalized eigenspaces G, and G,, are annihilated
by relatively prime polynomials (in this case

a(D) = (D — \id)¥, b(D) = (D — pid)’ for some k,/ € N).
Also note that, in contrast with the matrix case, the sum of
the generalized eigenspaces of D, viz. the space of
exponential polynomials, is a proper subspace of the domain
C>(R).
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Here we supply the yet missing precise definition of polynomial
differential operators p(D) = po + p1D + poD? + - - - + pgD?
corresponding to polynomials p(X) € C[X].

We have defined p(D) as the map y ~ poy + p1Dy + - - - + pgD?)y,
but this is incomplete without specifying the domain and
codomain of p(D). Since we want to compose differential
operators as maps, domain and codomain should be equal.
Now care must be taken to avoid the following problem: If

f: R — C is differentiable but " is not, D(Df) = Df’ is undefined.
(In other words, D doesn’t map the space of differentiable
functions into itself.)

The problem can be cured by taking as domain of D the set of
functions f € CF that have derivatives of all orders. This set is
commonly denoted by C>°(R) and forms a subspace of C¥. For
f € C>*(R) we have f' € C>*(R) as well (check it!), and hence

D: C®(R) — C*(R), f — f’ is well-defined.

Finally, we check that solutions of a(D)y = 0 are in fact in C*°(R).
Writing the ODE in the form y(" = agy + a1y’ + - + ap_1y(™ "
and differentiating gives y("") = agy’ + a1y” +--- 4+ ap_1y\",
showing that y("+") exists. Iterating this argument gives y € C*(R).
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Notes cont'd
¢ In the proof of the theorem we have tacitly used that the

Existence and Uniqueness Theorem holds also for complex
ODE systems and higher-order ODE’s. This can be seen as
follows: Apply reduction of order z; = z, z, = Z/,

zn = 2"V to reduce a complex n-th order ODE

zW = f(t,z,2,...,2"=1) to a complex 1st-order system
Z,=f(t,z1,...,2n), 1 < k < n. Then, writing zx = Xk + iy«
and using z; = x; + iy, we see that this system is
equivalent to

Xj = Refi(t,x1 +iY1,. .., Xn +i¥n), 1<k<n,
Vi = Imfe(t, X1 +iy1, ..., Xo +iYn) 1<k<n,

which is a 2n-dimensional real system. Corresponding IVP’s
are also equivalent—a vectorial initial condition

2(ty) = 2(9 € C" translates into X()) = Rez(® A y(fy) = Imz(®),
which gives 2n real initial conditions, matching the dimension
of the real system. Finally the real version of the Existence
and Uniqueness Theorem can be applied and gives the truth
of the corresponding complex version.
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The Real Case

Corollary
If ag, a1, ...,an_1 € R then the complex solution space of

v+ an 1y 4L ay +ay =0 (H)

has a basis consisting of n real solutions, and these form a basis
of the real solution space as well. In particular the real solution
space has dimension n as well.

The subsequent proof shows how to actually obtain a basis of
real solutions. One simply takes the real and imaginary parts of
the (possibly complex) solutions t/e*i!, discarding repetitions.
Proof.

Writing a complex solution as z(t) = x(t) +iy(t), or z = x + iy for
short, we have

0=2z"+a, 2"V 4.4 a7 +az
=x" +iy 4.4 a (X +iy) + ao(x +iy)
:x(”)+'~+a1x/+aox+i(y(”)+~~+a1y’+aoy).
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Proof contd.

By assumption, x(" + ... + a;x’ + apx and y\) + - - + ary’ + apy
are real for each t € R, and hence both must be zero.

= The real and imaginary parts of a complex solution are itself
solutions.

Applying this to a basis of the complex solution space S, we
obtain 2n real solutions, which generate S and from which we can
then select n linearly independent real solutions ¢+, ..., ¢n
forming a basis of S. Now suppose ¢y, ..., ¢, € C are such that

y(t) = c1d1(t) + -+ cadn(t) € R forall t € R.

= y(t) = C161(t) + -+ Cooin(t) = y(1)

for all t, and hence ¢; = C; € R for 1 < i < nby the linear
independency of ¢;. This shows that the real solution space is
generated by ¢1, ..., ¢p.

Moreover, since these functions are linearly independent over C
and R c C, they must also be linearly independent over R. Hence
they form a basis of the real solution space. O
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Notes
e Without the condition ag, a1, ..., an,—1 € R the conclusion in

the corollary is false, as the example y’ — iy = 0 shows. The
complex solutions are ce', ¢ € C, and the only real solution
among these is the all-zero function.

The relation between the real and complex solution space of
yM 4 a,_1y"Y 4 ...+ a1y’ + ayy = 0 just described
actually holds in more generality and can be formulated in a
pure Linear Algebra setting (and for arbitrary fields E, F with
E D Fin place of C, R). If Sis a subspace of some function
space C! (considered as a vector space over C), we can
consider the subset Sp = SN R/ consisting of all real-valued
functions in S (field reduction). The set Sk forms a vector
space over R (a subspace of R/). Conversely, starting with a
subspace T of R/, we can consider the span T¢ of T over C,
which is a subspace of C/ (field extension).

Then dim(T¢) = dim(T) holds in general, and any basis of T
over R forms a basis of T¢ over C; moreover, T = (T¢)g. But
dim(Sg) = dim(S) (equivalently, S = (Sg)¢ iff S has a basis
consisting of real-valued functions, and dim(Sg) < dim(S)
otherwise; the latter case actually occurs if |/| > 1.
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Intrgductiqn to Exe rCiSG
S a) Prove the assertions about field extension T s T¢ in the
RN previous note.
Honold Hint: The key fact to be established is that functions
fi,...,f-. I — R that are linearly independent over R remain

linearly independent over the larger field C.

b) Prove the assertions about field reduction S +— Sg in the
previous note, including for |/| > 1 an example of a subspace
R S of €/ for which dim(Sg) < dim(S).
Hint: For the example it suffices to consider the case |/| = 2,
ie., Cl~c2

c) Show that T forms a vector space of dimension 2dim(T) over R.

Exercise
Show that for any matrix A € C™*" the following are equivalent.

© The real solution space and the complex solution space of
Ax = 0 have the same dimension.

® The row space of A has a basis consisting of vectors in R”.

How about the column space of A in this regard?
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Example
We solve the 3rd-order ODE

y/// _ y// _ 2y/ —-0.
The characteristic polynomial is
aX)=X3-X2-2X=X(X+1)(X-2)
with roots Ay = 0, A2 = —1, A3 = 2 and all multiplicities equal to 1.
t 2t

=l =1l ¢

form a fundamental system of solutions.
= The general solution is

y(t)=ci + et +ce®, cf,0,03€C

(or “cq, €2, c3 € R” if only real solutions are considered).
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Example (cont'd)

It is worth recalling the argument why 1, e, ¢ solve the ODE
y/// 7y// . 2y/ -0

In polynomial differential operator notation the ODE is

a(D)y = (D® - D2 -2D)y =D(D + 1)(D - 2)y =0,

whereD+1=D+idandD -2 =D — 2 id.

* yi(t) =1 is a solution, since Dy; = 0 and hence
(D+1)(D —2)Dy;y = 0. (The order of the factors in a(D)
doesn’t matter.

* y»(t) =e~!is a solution, since (D+ 1)y, =y, + y» =0 and
hence D(D — 2)(D + 1)y, = 0.

* y3(t) = €' is a solution, since (D — 2)y; = y; —2y3 = 0 and
hence D(D + 1)(D — 2)y3 = 0.
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We solve the homogeneous 4th-order ODE

y® +8y” 416y =0.
The characteristic polynomial is
Xt +8X%+16 = (X2 +4)% = (X — 20)%(X + 2i)2
= A\ = 2i, A2 = —2i with multiplicities my = m, = 2.
— eZit’ teZit‘7 672”, te72it

form a complex fundamental system.

A real fundamental system is then obtained by taking the real and
imaginary parts of one function from each complex conjugate
pair, i.e.,

cos(2t), tcos(2t), sin(2t), tsin(2t).

The general real solution of y*) + 8y” + 16y = 0 is therefore
Y(t) = ¢y cos(2t) + ot cos(2t) + c3sin(2f) + catsin(2t) with

¢y, C2, C3, C4 € R (and the general complex solution is of the same
form with ¢q, ¢, €3, ¢4 € C).
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Again let us recall why this works:
In polynomial differential operator notation the ODE is
a(D)y = (D* + 8D? + 16)y = (D? + 4)%y = 0.
The Homoge-
neous Case

o 2 =2 (or cos(2t), sin(2t)) are solutions, since they solve
D2 4+ 4)y = y" +4y = 0, and hence also (D? + 4)%y = 0.

(
o te?!is a solution, since (D — 2i) [te?!] = %!, hence
(D — 2i)?) [te?!] = (D — 2i) [¢*!] = 0, and then
(D% + 4)2 [te?!] = (D + 2i)?)(D — 2i)?) [te?!] = 0 as well.
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Note

If you are wondering why the real and imaginary parts of any
complex fundamental system form a real fundamental system—in
particular why the number of functions in both systems is the
same, here is the argument in more detail:

If a(X) is real, its non-real roots (if any) come in
complex-conjugate pairs p, iz, which must have the same
multiplicity, say m. The corresponding 2m functions in the
complex fundamental system are {tke#!, tke#;0 < k < m—1}.
Writing © = o+ Bi, m = o — i, we have

thert = the ! cos(Bt) + 1 t“e™ sin(Bt),

thef™t = the* cos(Bt) — i the ! sin(Bt).

= The 2m real and imaginary parts of both kinds of functions
are the same (except for a sign change in the imaginary parts).
Discarding these “repetitions”, we obtain the correct number 2m
of real fundamental solutions, viz.

{tket cos(Bt), the*!sin(Bt);0 < k < m—1}.
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Example (Harmonic oszillator)
The corresponding ODE is

2
dl+w2y:0, w > 0.

Here the characteristic polynomial is X2 +w? = (X —iw)(X +iw)
and a fundamental system is {e'“! e=«!}.
The general real solution may be written in either of the two forms

© y(t) = ¢ cos(wt) + cosin(wt), ¢y,C € R;
® y(t) = Acos(wt+a), A>0,ac]0,2n).

The second form arises from the general complex solution
y(t) = cre'! + coe! by observing that y(t) is real iff ¢, = C1,
and setting 2¢y = Ae'“.
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Example (Harmonic oszillator with damping)
The corresponding ODE is
&’y dy

I +2Md7t+w§y:0'

The quantity 2 > 0 is the damping factor, and wg > 0 is the
(suitably normalized) characteristic frequency of the undamped
system, whose solutions are generated by cos(wot), sin(wot).

This is a time-independent 2nd-order linear ODE with
characteristic polynomial X2 + 2,.X + w3, whose roots are

)\1,2:—,uzi:\/u2—wg.
Case 1: u < wp.

In this case we have A\ = —p 1,4 /wg — 12, and a real
fundamental system of solutions is

cos(wt), e M sin(wt), w=1/wd — 2 < wo.

e—;d
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Example (cont'd)
Solutions form periodic oszillations with lower frequency and
exponentially decreasing amplitude.
Case 2: u = wp.
In this case Ay = \» = —pu, and a (real) fundamental system of
solutions is

e M e Ht,
Solutions ultimately approach zero exponentially, but may have
one maximum or minimum.

Case 3: i1 > wp.
In this case A\{ and A, are distinct negative real numbers, and a
fundamental system of solutions is

el emrl o =/ —wd > 0.

All solutions approach zero exponentially.
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—t > cos(t)

=t sin(t)

—t> e 2cos(V3 t/2)
~tr e 2sin(V3t/2)
et e 2

Figure: Fundamental system (in red) for wp = 1, p=1/2
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Notes on the preceding figures

¢ In the first figure you can see that the “period” (obtained by
neglecting the decay factor e~!/2) of the two fundamental
solutions is larger than for the corresponding undamped
system, whose solutions are cost, sint (47/v/3 ~ 7.255 vs.
27). Every nonzero solution y(t) inherits the “period” and the
decay factor, as can be seen by writing it in the form
y(t) = e 2(cq cos(wt) + c2sin(wt)), w = V/3/2.

® The figures show that, contrary to the case of 1st-order
ODE's, solution graphs of 2nd-order ODE’s may intersect but
can’t touch. In fact, the Existence and Uniqueness Theorem
tells us that in the cases under consideration for any point
(o, ¥o) € R? and any m, < R there is exactly one solution
passing through this point and having slope mjg there. For
the case u = wg = 1 this is illustrated on the next slide.

Exercise

It appears that in the first figure the first fundamental solution
y1(t) (that involving cos) doesn’t have a maximum at ¢ = 0. Verify
this property, and describe the extrema of y;(t) in terms of those
of cos.
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Figure: The solutions of y”" + 2y’ + y = 0 satisfying
y(1) = 1/e ~ 0.368 form a 1-parameter family, viz.
y(t)=ce '+ (1 -c)te !, ceR.
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The Inhomogeneous Case

cf. also [BDM17], Ch. 4.3
The general solution of

Y 4 a, y" Y -k ay’ + agy = b(1) (1)
(@o,...,an—1 € C, b: I = C) has the form y(t) = yn(t) + yp(t),
where y, denotes one particular solution and y; the general
solution of the associated homogeneous ODE (H). This is proved
in the same way as in a previously considered example case.

For a general continuous “source” b(t) order reduction and
variation of parameters in the general solution of the resulting

1st-order system provide a method for finding a particular
solution. This will be discussed later. Here we consider only the case

b(t) = f(t)e"" with u € C, f(X) € C[X].
The solution of this special case allows us to solve a(D)y = b(t)
for any exponential polynomial b(t) = >°% , fi(t)e*! according to the
Superposition principle
If y1(t) solves a(D)y = bi(t) and y»(t) solves a(D)y = by(t) then
y(t) = ciyi(t) + coy(t) solves a(D)y = c1b1(t) + c2be(t) (c1, ¢z € C).
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Theorem

Suppose . is a root of a(X) of multiplicity m (“m = 0” means “not
a root of a(X)”) and f(X) has degree k. Then a(D)y = f(t)e"! has
a (unique) solution y(t) of the form

y(t) = t"(co + cit + - - - + cktF)ert.

Proof.
We may assume a(X) = [[_{(X — A\)™ with = Ay, my = m
(provided m > 1). We have seen that D — );id acts on the spaces

G(k):{tHg(t)eut;g()G(C[X]degg )<k}, t=0,1,2,...,

bijectively if i > 2 and maps G(k) onto G(k " (with the convention
GGV = {0y ifi=1.

Since a(D) is the composition of such operators, with exactly m of
them equal to D — w1id, it is clear that a(D) maps ij"*k)
surjectively onto G\,

In other words, there exists g(X) € C[X] of degree < m + k such
that a(D) (g(t)e!) = f(t)e.

Moreover, since a(D) annihilates t/e*! for 0 < j < m — 1, we can
choose g(X) of the form g(X) = X"(co + &1 X + - -- + & X¥). O
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Notes

The proof remains valid for m = 0, if we omit the
normalization p = A1.

In the case m= k = 0, i.e. b(t) = e*! with x1 not a root of
a(X), we have a(u) # 0 and we can solve a(D)y = et
directly as follows:

a(D)e" — a(p)e" — a(D) <a(1u) e‘”) -

If you have difficulties to understand the argument using the
differential operators D — . id, consider first the special case
1 = 0, in which the operator is just D: y — y’ and ng) is the
space of polynomials of degree < k. From Calculus | we
know that differentiation decreases the degree of a
polynomial by 1 (except for the constant case) and hence
maps G{ onto G{~"). On the other hand, if A # 0 then

(tk )\f) ktk 1 )\f+tk)\e)\t ()\tk+ktk71)e)\t,

showing that in this case the degree of any non-constant
polynomial factor is preserved and {g(t)e*'; deg g(X) < k} is
mapped bijectively onto itself.
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Example
We determine the general solution of the 3rd-order ODE

1"

y" 12y 4y =t+2e

The characteristic polynomial is
a(X)=X3+2X2+ X = X(X+1)>2
= 1, e7!, te~! form a fundamental system of solutions of
y/// + 2y// +y/ =0.
A particular solution of the inhomogeneous ODE can be obtained
by solving

“ y/// +2y// +y/ =t

9 y/// 4 2y// 4 y/ — e—t,
and applying superposition.
(1) Here p = 0, which is a root of a(X) of multiplicity 1.

= The ,Ansatz* y;(t) = ¢t + cot? yields a solution.
Substituting this in the ODE (1) gives

2(2co)+(c1 +2cot) =c1 + 40 + 20t = t.
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Introduction to EXample (Cont’d)

Differgntial
Equations The solutionis ¢, = 3, ¢1 = —2, i.e., y1(t) = —2t + 3t
Honoia (2) Here p = —1, which is a root of a(X) of multiplicity 2.

= The ,Ansatz* y»(t) = c t?e~! yields a solution.
a(D)yz(t) = ¢D(D +id)?(t2%e") = 2¢D(D + id)(te~!) = 2cDe~! = —2ce!

= y»(t) = — 127! solves the ODE (2).
Finally, superposition gives that

The Inhomo-
geneous Case

1
(D) = yi(t) +2p5(t) = =2t + S — ™!

solves the original ODE a(D)y =t + 2e~".

The general complex (real) solution of the original ODE is

therefore

1
y(t) =ci + e+ ogte ™t — 2t + étz — t2e!

with constants ¢y, ¢, ¢35 € C (respectively, ¢y, ¢, c3 € R).
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Further Notes
¢ Pay attention to the fact that in the monomial case
b(t) = tket! the correct ,Ansatz” is
y(t) = t™(co + cit + - - - + cctk)ett (i.e., a full exponential
polynomial).
The Inhomo- ¢ Before applying superposition, collect monomials with the

geneous Case

same factors e*!. For example, when solving

aD)y =1+t+2e !, use by(t) = (1 + 1)e, bo(t) =e~!
(and not a superposition of three solutions corresponding to
1, t, e~!). This saves computation time.
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The Inhomo-
geneous Case

Example (Harmonic oszillator with periodic source)
The corresponding ODE is

d?y

el + w(z)y = A cos(wt), wp,w,A>0.

wq denotes the characteristic frequency of the oszillator and w the
frequency of the external source.

In order to apply the machinery developed, we consider the
“complexified” ODE

y// + wgy — Aei“’t.
The real part of any particular solution of the complex ODE wiill

then solve the real ODE.

The characteristic polynomial

a(X) = X2+ wi = (X — iwg)(X + iwg) has roots A » = =iwp (the
same as in the homogeneous case b(t) = 0).

Hence we need to distinguish the cases w = wq (the so-called
resonance case) and w # wy.



Math 285
Introduction to
Differential
Equations

Thomas
Honold

The Inhomo-
geneous Case

Example (contd)

Case 1: w # wp.

In this case the ,Ansatz“ y(t) = cel“! yields a solution.

a(D)y(t) = Ca(iw)eiwt — C(wg _ w2)elwt Aelwt
= c= a(iAw) = ﬁ, and a real particular solution is
0

A
t) = t).
Y1) = o cos(e)
Case 2: w = wy.
In this case the ,Ansatz“ y(t) = c te'“°! yields a solution.

a(D)y(t) = ¢(D + iwp id)(D — iwp id)(te'“°") = ¢(D + iwg id)(e“??)
= ¢(2iwg)e“0! = Aewr!

= c= 52 (: ﬁ) and a real particular solution is
wo)

y(t) = %tsm(wot)
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y(t) = ¢y cos(wot) + Casin(wot) + { ;

= The general real solution of y” + w3y = Acos(wt) is

ﬁ cos(wt) if w # wo,

ﬁtsin(wot) if w=wp

with constants ¢, ¢, € R.

Notes
® The resonance phenomenon must, e.g., be taken into

account when constructing bridges, which are subject to
vertical vibrations caused by the airflow around the bridge. If
the frequency of the external force (which is periodic)
matches the natural frequency of the bridge’s material
(steel), vibrations are amplified—leading ultimately to
disaster (— Tacoma Narrows Bridge).

In the preceding examples we have sometimes used the
factorization of a(D), which we knew from solving the
associated homogeneous ODE a(D)y = 0, to speed up the
computation of a(D)y for certain functions y. The standard
method for obtaining a(D)y is of course to compute all
derivatives y’, y”, ..., y™ and then form the linear
combination y( + ... + apy” + ary’ + aoy.
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The Inhomo-
geneous Case

Notes cont’d
e Higher-order linear ODE’s with constant coefficients are

discussed in [BDM17], Ch. 4.2—-4.4. Our theorem for the
inhomogeneous case can be viewed as a generalization of
the “method of undetermined coefficients” in Ch. 4.3; cf. also
Ex. 14 in this chapter. The “method of annihilators”,
discussed in exercises for the same chapter, provides an
alternative but equivalent approach to our result. The
“method of variation of parameters” in Ch. 4.4, which is more
powerful, will be discussed within the framework of linear

ODE systems later in the course.

The explicit formula y(t) = 7y e** for the solution of

a(D)y = e, which requires 1 to be a nonzero of the
characteristic polynomial a(X), admits the generalization
y(t) = a(m;(,l,) tMe”! in the case where 1 is a root of multiplicity
m of a(X); cp. the solution in Case 2 of the example. For the
proof write a(X) = (X — u)™A(X) and compute a(D)[tMe!!] =
AD)(D — p)™[tmer!] = A(D)[m!ler!] = m!A(u)e!. This yields
the solution y(t) = Fraryt™e*!, and the Leibniz formula for
the mth derivative D™(fg) of a product of two functions can
then be used to show that a(™ (1) = mA(u).
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following ODE’s:

Thomas

Honold
a) y"— 4y’ +4y =0;
b) y" — 5y’ +6y =0;
C) y/// 2y// + 2y y 0
d) y" —-y=0;
The Inhomo- e) y + y 0
geneous Case f) y(8 n 4y + 6_}/(4) + 4y,, + y = 0.
Exercise
Determine the general real solution of
a) y' +3y' +2y =2 d) y"'=2y"+y" = 1+e' cos(21);
b) y'+y —12y =1+ ) y@ 2y +y =25,
c) y' -5y +6y= f) y =te!, neN.

4te! —sint;
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Differential

Equations For a, b € C consider the ODE
Thomas a b
Hono
’ Y +ZY H5y=0  (t>0). (1)

a) Show that ¢: Rt — C is a solution of (1) iff : R — C
defined by ¥(s) = ¢(e®) is a solution of

The Inhomo- y// + (a — 1)y/ + by =0. (2)

geneous Case

b) Determine the general solution of (1) for (a, b) = (6,4) and
(a,b) = (3,1).

Exercise
Solve the initial value problem

r () w0 (9)
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The View from
the Top

Definition
Suppose Y = (o, 1, Y2, - - . ) is a sequence of (complex) numbers.
The (formal) power series

f(t) = y”t” @+y—1t+@t2 4]

t3
. O 0! 3!

is called exponential generating function of y and denoted by egf(y).

Notes
e egf(y) = f(t) contains all information about the sequence y.
This is true at least in a formal sense, but in the case where
f(t) has radius of convergence R > 0 can also be seen by
term-wise differentiation: y, = (" (0) is determined by f.

¢ Exponential generating functions (and likewise their ordinary
counterparts g(t) = >~ yat") are used with great success
in Enumerative Combinatorics. The most famous example is
the sequence d = (dp, di,db,...) =(1,0,1,2,9,...) of
fixed-point free permutations of n letters (so-called
derangements), whose exponential generating function turns

out to be £, showing that d, = n! >1_, G
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e |f the sequence y = (Jo, 1, Y2, ... ) grows at most
exponentially, i.e., there exists a constant C > 1 such that
lya| < C" for sufficiently large n, then egf(y) has radius of
convergence R = co. This follows from the elementary
estimate n! > (n/e)", which implies {/|yn| /n! < Ce/n — 0
for n — co. All homogeneous linear recurring sequences
with constant coefficients have this property (as we know

o from Discrete Mathematics). The same is true in the
inhomogeneous case, provided that the right-hand side
b = (b, by, bo, ...) grows at most exponentially, as is easily
proved.
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Theorem

© For all sequences'y € CN and polynomials p(X) € C[X] we
have
p(D) egf(y) = egf (p(S)y).

® Now suppose p(X) is monic of degree n. The sequence
y = (Yo, Y1, yo, ... ) Solves the linear recurrence relation
p(S)y = b iff the function y(t) = egf(y) solves the IVP
p(D)y = egf(b), y)(0) = y; for0 <i<n-—1.

Proof.
(1) We have

fiwﬁnimwnqim%m n_
Dlegf(y)] = at 2 n!t —; py t _;7,7! t" = egf(Sy)

This implies DX egf(y) = egf(SXy) for k € N and, since egf is
C-linear, further p(D) egf(y) = >°0_, px DX egf(y) =
S0 Pecgf(Sty) = egf (Lo pisty ) = egf (p(S)Y)-
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Proof cont'd.

(2) If p(S)y = b then egf (p(S)y) = egf(b), which on account of
Part (1) means p(D) egf(y) = egf(b). Thus y(t) := egf(y) solves
p(D)y = egf(b) and as remarked after the definition of egf(y) we
have y()(0) =

Conversely, suppose y(t)y =30 & tX solves p(D)y = egf(b).
Then p(D) egf(y) = egf(b) and hence egf (p(S)y) = egf(b) by

Part (1). Since egf maps sequences bijectively onto formal power
series, this implies p(S)y = b. O

Note

The theorem merely expresses the fact that term-wise
differentiation of an exponential generating function amounts to
shifting and truncating the corresponding sequence and that its
derivatives evaluated at zero are just the entries of the sequence.
If b grows at most exponentially then b(t) = egf(b) represents a
function with domain R and y(t) = egf(y), which has also domain
R, forms a solution of the “real” ODE p(D)y = b(t).
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Example
The solution of the Fibonacci IVP y” =y’ +y, y(0) =0, y'(0) = 1 is

[e%e} fn ,

y(t):zmt, teR.

n=0
If you have difficulties to see this, use the following argument
(which also works in general):
Differentiating y”’ = y’ + y repeatedly gives y("+2) = y(n+1) 1 y(n),
i.e., (v,y',y",...) satisfies the Fibonacci recurrence relation.
= (¥(0),y’(0),y"(0),...) is the Fibonacci sequence, because
the initial conditions are the same.

o0 (n) o0
— yi=> -5 e
n=0

n! n!

n=0
Of course, one must also provide an argument that the solution is
analytic (i.e., represented by its Taylor series). The machinery
developed gives that solutions are exponential polynomials
(hence analytic). One could also use the ODE to bound y("
recursively, and use this bound in turn to show that the remainder
in the Taylor expansion of y converges to zero.
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S We consider again y” = 4y’ — 4y, this time with particular initial

Thomas values y(0) = y’(0) = 1. The corresponding characteristic
polynomial is X? —4X + 4 = (X — 2)?, so that the general solution
of y” = 4y’ — 4y has the form y(t) = cie? + cote?..
Since y'(t) = 2c1e?' + c(1 + 2t)e?, we obtain the system
¢ =2¢ +c =1, =—1, and hence y(t) = e?' — te?’.

The corresponding discrete IVP is yx o = 4Yky1 — 4Vk,
Yo = y1 = 1. Here we have y; = ¢12% + c;k2%, and the initial
conditions give ¢; = 1, ¢, = —1/2, so that y, = 2k — k2k=1,

e Viewfom By the theorem the solutions must be related by y(t) = egf(y).
the Top
Indeed, we have

> 2ktk 2ktk+1 > 2k_1

y(t) = K Zkl —;T)!tk

k=0 ' k=0

0 2k _ k2k71
k=0 '
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Example (cont'd)

The coefficients ¢y, ¢, in the discrete and continuous case are not
the same. This is due to the fact that the chosen fundamental
systems are not mapped onto each other by y — egf(y). Rather,
an exponential monomial

k At — = )‘nk
t"e :Z% Z
n=

N~ nn=1)- (nfk+1))\”*ktn
n

n=0
k= n(n=1)--(n—k+1)A"
= Z n!

n=0

tl'l

is (up to a constant factor) the egf of the sequence
Yn=n(n—1)---(n— k+1)X", which involves falling factorials
instead of the powers n*. In our example the difference is not
really visible, but it becomes apparent if there are fundamental
solutions with k = 2 (i.e., the characteristic polynomial has a zero
of multiplicity > 3).
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First-Order Linear Systems

Definition
A (possibly time-dependent) first-order linear system of ODE’s
has the form

y' =A(t)y + b(t), (LS)
where A: | — C™" t — A(t) = (a;(t)) and b: | — C”,
t — b(t) = (bi(t)) are continuous (i.., all component functions of
A and b are continuous).
The domain / must be an interval contained in the domains of all
component functions. The cases / = ) and | = {a} are excluded.
As usual, the system (LS) is said to be homogeneous if b(t) =0
and inhomogeneous otherwise.

A solution of (LS) is a differentiable mapy: J — C" (i.e., a
parametric curve) defined on some subinterval J C / and
satisfying y'(t) = A(t)y(t) + b(t) for all t € J.
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Existence and Uniqueness of

Solutions
f(t,y) = A(t)y + b(t) satisfies

(2, y1) — f(t,y2)| = [A(D)(Y1 — Y2)| < [[A(D)] ly1 — Ve
< L|y1 7y2|a

provided we restrict t to compact (closed and bounded)
subintervals of /, and hence in particular a local Lipschitz
condition with respect to y.

= The Existence and Uniqueness Theorem applies and gives
the local solvability and uniqueness of solutions of any IVP

y' =A(t)y +b(t) Ay(l) =Yo (o €1, ¥0 € C").

Remark

If you are uncomfortable with complex-valued linear ODE
systems, note that any such system is equivalent to a real valued
system with twice as many equations/component functions in the
following sense: y(t) solves the complex n x nsystemy’ = A(t)y + b(t)

() soves (1) = (READ m0) (1)« (bl
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But More Is True

Theorem

Solutions to any IVPyY' = A(t)y + b(t) Ay(t) = Yo exist on the
whole domain | (and are unique).

Compare this with the nonlinear case, e.g., y’ = y? whose
solutions y = 1/(C — x) do not exist on all of R.

Proof.
We estimate thte difference of successive Picard-Lindelof iterates
yi(t) = Yo + fto A(S)yk—1(s) + b(s)ds, k=1,2,3,...

t
A(s)(Yk(S) — Yk—1(s)) ds

fo
t

<=L | |Y(S) — Yk-1(s)|ds,
fo

Vi1(t) = Yi(t)] =

provided t is restricted to a compact subinterval J C [ with f € J
and L = max {||A(t)]|; t € J}. (Recall that “+” is necessary to
include the case f < fy.)
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Proof cont'd.

ly1(t) — Yol < K := max{|ys(t) — Yol t € J},

t
ly2(t) —yi1(f)| < £L [ Kds=LK|t- ],
fo
! It — 1o

lya(t) — ya(t)| < £L | LK|s—to|ds = LZKT,
to !

and in general, using mathematical induction,

t—to]"
Weer() — ()] < Lk 20

Setting J = [a, b] we can bound the (vectorial) function series
> reo(Yk+1 — Vi) independently of t by the convergent series

pare k!



e, Proof cont'd.

ngjgfiggi' By Weierstrass'’s Criterion, this implies that the function sequence
Tromas (Y«(t)) converges uniformly on J, the limit function
Honold Yoo() = limk_ oo Y(£) is continuous on J and satisfies the integral
equation

t

Voo (£) = Yo+ | A(S)Y(S) +b(s)ds, teJ.

First-Order Linear

Systems. to
he Matrix

(The fixed-point property Ty, = Yoo requires continuity of the
operator (T¢)(t) =Yo + fté A(s)¢(s) + b(s) ds in the metric of
uniform convergence on [a, b]. From the previous estimate we
caninfer || Toy — Tl < L(b—a)||¢1 — ¢2| ., 1.e., Tis
Lipschitz-continuous; cf. also the 1-dimensional example y’ = 2ty
discussed after the Existence Theorem.)

— The Fundamental Theorem of Calculus gives

vy () = A(t)yso(t) + b(t) for t € J, and of course Y. (f) = Yo-
Finally, since an arbitrary interval / can be exhausted by compact
intervals, i.e., | = Up_y Jm With Jp = [am, bm] and

Ji € o C J3 C -+ -, we obtain that (yk(t)) converges on /, and the
limit function y.,: / — C" solves the IVP as well. O
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Note on the proof

You can see what goes wrong with the proof in the nonlinear case
by computing the Picard-Lindeléf iterates for the IVP
y' = y2 A y(0) = 1, whose solution is y(t) = 1/(1 — t).

po(t) =1,

t
¢1(t):1+/ 12ds=t+1,
0
t
¢2(t):1+/(s+1)2ds:1+[%SS+SZ+S]8:%t3+t2+t+1,
0

t
¢3(t):1+/ (1P +82+5+1)°ds =
0
=14+t+P+82+ 200+ 10+ 0+ Lt

With some effort one can show in general that ¢«(t) is a
polynomial in t which starts with 1 + ¢ 4 t2 + - - - + tk and has the
remaining coefficients in [0, 1). It follows that

Yot < ok(t) < 7% = 15 and k() — 1/(1 — t) for k — oo
if 0 < t< 1. Fort>1the sequence (¢«(t)) does not converge,
and hence nothing prevents the solution from blowing up at t = 1.
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The Link with Linear Algebra

Theorem

The solutions of a homogeneous linear systemy’ = A(t)y with
A: | — C™" form an n-dimensional vector space over C. For
solutions y1,...,Yx: | — C" ofy’ = A(t)y the following are
equivalent:

@ The functionsys,...,yx € (C") are linearly independent.
® For some ty € | the vectors yi(ty), . ..,Yx(to) € C" are
linearly independent.
© Forallty € | the vectors y1(ty), . .., Y«(to) are linearly
independent.
Proof.

If yy,y2: I — C™ are solutions then

(Y1 +Y2) =Yi +¥, = A(t)y1 +A(D)y2 = A(t)(y1 + ¥2),

i.e., y1 + Yz is a solution as well. Similarly, scalar multiples of
solutions are again solutions, and of course the all-zero function
is a solution. This proves that the solutions form a vector space
over C (subspace of the vectorial function space (C")/).
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Thomas Next we prove the equivalences. The implications (3)=—(2)=—(1)
horclc are trivial and it remains to show (1)=(3).
Suppose VY1, ..., Yk are linearly independent and that
c1Yi(f) + - - + ckYk() = 0 € C". Then the two solutions
Ciy1+ -+ ckyxkandy =0agree at t = .
s = By the Existence and Uniqueness Theorem, they must agree
e everywhere, i.e., C1y1 + -+ + Yk = 0 in (C")".
= ¢y =---=c¢k =0, sinceyy,..., Yk are linearly independent.

This proves (1)=(3).

Finally we show that the solution space V has dimension n.

Fix f, € I and consider the evaluation map V — C", y — y(f),
which is obviously linear.

Since (1)=(2), this map is injective.

Since every IVP Yy’ = A(t)y Ay(f) = Yo € C"is solvable, the map
is surjective.

= The map is a vector space isomorphism and

dim V =dimC" = n. O
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Remarks
@ The same Theorem holds, mutatis mutandis, for real-valued
solutions of “real” linear systems y’ = A(t)y with
A: [ — R™" This can be proved in the same way or inferred
from the complex case.

@® Abasisys,...,Yy, of the solution space of y' = A(t)y is
called a fundamental system of solutions. The equivalence
(1)=(2) yields the following handy test for fundamental
systems:

Writing y;(t) = (y1;(1), . .. ,ynj(t))T as columns of a matrix
®(t) (so-called fundamental matrix), we have that
{¥1,...,Y¥n} is a fundamental system of solutions iff ® (%)
has rank n for some (and hence all) f € /.

@ With &(t) as in (2) we have, using matrix-vector multiplication
for functions, the matrix version @’(t) = A(t)®(t) of the
homogeneous ODE system and the representation

y(t) = cryi(t) + - + cnyn(t) = ®(t)e

with ¢ = (c1,...,¢,)" € C" for the general solution of y’ = A(t)y.
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The Inhomogeneous Case

Theorem
@ Every inhomogeneous linear systemy’ = A(t)y + b(t) is
solvable. A particular solution isy,: I — C" defined by

vo(t) = O(t)c(t) with c(t):/ttb(s)”b(s)ds

[
where ty € | can be arbitrarily chosen.

@® The general solution of y’ = A(t)y + b(t) is obtained by
adding to the particular solutiony, from (1) the general
solution of the associated homogeneous linear system
y' =A(b)y, ie,

y(t) = ®(t)c(t) + ®(t)co
with ¢(t) as in (1) and ¢y € C".

Note that ¢o and y(fy) = yo determine each other via
Yo = (to)co, and that the general solution can also be obtained

by using c(t) = [ ®(t t)dt = co + ft ~'b(s)ds in (1).
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Proof.
(1) is proved by a higher-dimensional analogue of “variation of
parameters”. Any fundamental matrix ®(t) satisfies ' = A® and
hence

(dc) = ®'c + dc’ = Adc + &c’

— (dc)’ = Adc + b is equivalent to ®¢’ = b, i.e,to ¢’ = & 'b.
Since t+— ®(1)~'b(t) is continuous the Fundamental Theorem of
Calculus applies and c(t ft b(s)ds solves ¢/ = &~ 'b.

(2) is proved as in the one- dlmen3|onal case: If yq,y2 are
solutions of y’ = A(t)y + b(t) then y; — y» solves the associated
homogeneous system y’ = A(t)y. O]

Note

An important step in the proof is the observation that t — ()"
is continuous. Why is this true?

Reason: The entries of ®(t)~" are obtained from the entries of
®(t) (which are continuous) by applying the four basic arithmetic
operations. This follows from ®(t)~" dew(t) Adj ®(t) (see Linear

Algebra course), which expresses the entries of ®(t)~" in terms
of certain subdeterminants of ®(t).
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We consider the 1st-order system

=y ttye+1,
Y2 =tyr + Yo

This is a time-dependent inhomogeneous linear system, with

standard form
w_ (1 t\(»n 1
(Yé)_<t1 Y2+0’
e, A()= (11),b(t) =b=({).
The associated homogeneous system y; =y +tys, ys =tyi + yo
can be solved using the observationthat s = y; + yo, d = y1 — yo
satisfy the “decoupled” system

S=yi+Yo=yi+tyattyi+ya=0+)(y1+y2)=(1+1)s,
d=yi-ys=yi+tya—ty—yo=(1-t)(y1—y2) = (1 - )d.

The solution is s(t) = ¢; e+/2, d(t) = c,et=F/2 with ¢;, ¢, € R,
say.
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= (0= TOZTD = 3 (o7 4 et 117),
R

The corresponding matrix-vector form is

y(t): y1(t) :1 et+tz/2 etftzz ¢ .
yz(t) 2 | ettt /2 _et—t /2 Co

o(t)

(The factor 1/2 doesn’t matter for the fundamental matrix.)
Thus every solution of y’ = A(t)y is a linear combination of

et+t2/2 t+2/2 (1 -2 (1
y1(t):<et+t2/2 = et/ B yo(t) = et/ _1)

which therefore form a fundamental system of solutions.
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Introduction to

g‘gmggi' In order to solve the original inhomogeneous system, we compute
?:rzzle:js o(1)- 1b( - 1 _et-f/2  _gt-£/2 1\ 1 e—t-t/2
_e2t \ _gt+f?/2  gt+f?)2 0/ 2 \egt+t?/2 ]’
t _s5—8? _
1 s—s°/2 e—S5—S 2/2 ds
c(t):/— e Yas=1 (1 ,
Frsrtr Linar 0 2\e s+s°/ 2 f e s+s?/ ds

A particular solution of y’ = A(t)y + b is therefore
1 et+t2/2 et—t2/2 ff e,s,sz/z ds
Yo(t) = ®(t)c(t) = > (et+t2/2 _ot-t/2 fot o-5+5/2 45
1 [et+t/2 jo oS- s2/2 ds +et~ t2/2j e—S+s /2ds
— 2 |\t fo e—5—52/2 4g _ot—12/2 fo e—5+5/2 4g

Of course this is a toy example. You can check that s(t) and d(t),
defined as in the homogeneous case, solve the decoupled
system s’ = (1+t)s+1,d" = (1 — t)d + 1, and that ordinary
variation of parameters for these two ODE’s and the backwards

substitution y, = 3 (j;’*d") leads to the same resullt.
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The Exponential of a Matrix
Providing a solution in the time-independent case y’ = Ay
Definition
The matrix exponential function exp: C™" — C™" is defined by

expA = e kZKIA"—In+A+2A2+6A3
0

Since convergence of a sequence/series in C"*" is equivalent to
entry-wise convergence, this limit is well-defined if the

(i, /) -entries of the partial sums YK L A¥, K € N, which are

S ko 1 (AK);, converge in C for K — oo.

Let a= max{|a;|;1 < i,j < n}.

— The entries of A¥ are bounded by n*—'a.

K
na® n?ad nK—1gK
= >

<1+at+—-—+—4—+ -+ <e™< oo
k=0

1
H(Ak)i/'

2! 3! K

By the comparison test, the series formed by the (i, j)-entries of
the partial sums converges (even absolutely!), and hence the limit
defining e? is well defined.
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Introduction to Lemma

Differential

Equations If AB = BA then eAtB = ¢AeB.

Thomas

Honold Proof.
The preceding argument shows that the series defining e?
converges absolutely. Hence we can freely rearrange the
summands in the following double series:

:r;|eMa:rix AB e 1 P 0 1 /

Exponential Function

& it ee = E HA E HB E E klll
an k=0 =0 m=0 K,/
K+I=m

=3 L(A +B)™ = eATB (Binomial Theorem)

For the Binomial Theorem to hold we need the assumption
AB = BA. As an example consider the case m=2:
(A+B)2 =A%+ AB+BA +B? = A2 + 2AB + B? iff AB = BA. [
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Differential

EaNerae Since +A commute with each other, the lemma gives in particular
Thomas efeA=ehA=el= Iy, i.e., eA is invertible with (eA)_1 =e A,
Honold
Example
_ (10 01 01
A=Ey=({5),B=E2=(54);AB=(J}),
BA = (§5) # AB;
s, = (51),8 =l +B=(g1) (since B =0),
mpeoseiar A+ B = (60), (A+B)2=1(44)(66)=(0) =A+B;

AB_ (€ €
ee_<o1’
BA_e1
ee(01

10 =1 /1 1
A+B _ 1
) _<01+Zk!(0 o)
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Exercise
Show that for any diagonal matrix

d ed
o) e
D= . we have e° =

ah edn

Exercise
Which condition should a matrix A € R™" satisfy in order to
conclude that e? is

a) symmetric;

b) orthogonal.

Exercise
@ Doese? =eBimply A=B?

® s every invertible matrix B € R™*" in the range of
R™M — R™1 A — e ? What if R is replaced by C in this
problem?
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Now consider for a fixed n x n matrix A the matrix function

t el = A"—I,,thAjL A2+ A3
kO

The (i,j)-entry of eAt, viz. 312, (A )i tk is a power series, which
converges for all t € R. Termwise dlfferent|at|on yields

1k s k—1
deAt:((ijt( tAk) = al Ak:AeAt.
k k=1

dt kI Kl

Theorem
The columns of et form a fundamental system of solutions of
y' = Ay, and the general solution ofy’ = Ay is y(t) = e y(0).

Proof.

Since @ (1) := e?! satisfies the matrix ODE &'(t) = Ad(1), its
columns solve y’ = Ay.

2
¢(O):I,,+0A+%A2+-~-:In

In particular ®(0) is invertible and the assertion follows.
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Example

Consider the system y; = y», y5 = —y1, wWhich arises from the
2nd-order ODE y” + y = 0 by setting (y1,y2) = (v, y’). We are
interested in the solution with initial values y(0) = 6, y»(0) = 2,
(or y(0) =6, y'(0) = 2 for the 2nd-order ODE).

Of course this solution is y(t) = 6 cost + 2sin f, which we can use
to verify our computation.

The system has the formy’ = Ay with A = ( % ).
Since AZ= (7' %)=-I, A®=—A A*=1,, we get

1 r (-L N

el ( 1)+<t )+ S PR S (RS
] T3 i}

cost sint
—sint cost)”
Hence the solution of our IVP is

_ WAl [ cost sint) (6) [ 6cost+2sint
y(t)=e y(o)_(—sint cost) <2> _(—6sint+2cost ’

in accordance with the known solution.
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Example (contd)

Continuing with the example, we use the opportunity to illustrate
the solution method for an inhomogeneous system. The new task
is to determine the general solution of y; = y», y5 = —y1 + t,
which arises from the 2nd-order equation y” + y = t.

This inhomogeneous system has the form y’ = Ay + b(t) with
A=(51])andb(t)=(9).
A particular solution is y,(t) = eAe(t) with

t t .
c(t):/ e‘Asb(s)ds:/ coss —sins) (0}
0 0 sIn S Ccos S S
/t —8sins scoss —sins\ ]’
0 Scos S SsinS -+ cos S 0
_ fcost —sint
~ \tsint+cost—1)’
so that

(t) = cosf sint tcost—sint _ ([ t—sint
Yol =\ _sint cost) \tsint+cost—1) = \1—cost)"
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Since t — (sint) is a solution of the associated homogeneous

cost
system, we may also take
t
vl = (1)
Well, this solution could have been guessed without going
through the rather tedious computation!
The general solution of y; = y», y5 = —y; + t is therefore

(t) = cost sint) (¢ " t\ [ Cicost+cCosint+t
YWO=1{"sint cost Co 1) \—cisint+cocost+1
with ¢y, ¢ € C (or R), and that of y” 4 y = t the 1st coordinate
function y4(t) = ¢1 cost+ cosint + t (and y»(t) = y;(t), of course).
Note that solving the homogeneous system with the matrix
exponential has produced (and for real systems always produces)
a real fundamental system of solutions, whereas diagonalizing
(% §) (cf. Linear Algebra part) gives the complex fundamental

system yi(t) = e (1) JRCURE ( 1'> '

—1
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Concept Check

True or False?
Let a, b, c,d: R — R be continuous, A(t) = (CE? & t)) and Yo = (42).

© The matrix IVP Y’ = A(t)Y A Y(0) = Y, has a unique solution

Y(t) = (ﬁjg; vielf) ) that is defined for ¢ € R.

True. Setting Y( ) (y1(t)|y=(t)), the matrix IVP is
equivalent to the two vector IVP's y; = A(t)y1 Ay1(0) = (}),
y5 = A(t)y2 Ay2(0) = (2), to which the EUT (sharpened
version in the linear case) applies.

® The columns of Y(t), cf. (1), form a fundamental system of
solutions of y’ = A(t)y. True, since Yy is invertible.

(3] The solution of Y/ = A()Y A Y(0) = ({9) is t — eB® with

fo s)ds. False (in general), but true if a,b, ¢, d

are constant, in which case B = fot Ads = At.

@ The statement in (1) remains true if Y/ = A(t)Y is replaced
by Y = A(t)Y + B(t) with B: R — R2*2 continuous as well.
True, since the EUT also applies to the inhomogeneous case.
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Difrena Higher-Order Linear ODE’s
N The general time-dependent case

Honold We consider only scalar ODE'’s, that is
v 4 a, (y D 4k a(t)y + ao(t)y = b(t)

with continuous functions ag, ay,...,an_1,b: I — C.

_ Order reduction (y1,¥2,...,¥n) = (¥, ', ...,y ") transforms
e @ such an ODE into the 1st-order system

ODE's
The Wronskian

! 0 1 0

Iz 0 1z 0

Y 0 0o 0 ¥ 0
Yn—1 0 0 ... 0 1 Yn1 0

Yn —ao(t) —81(t) —a,,_g(t) —an_1(t) Yn b(t)

The coefficient matrix A(t) is the transposed companion matrix
(cf. Linear Algebra part) of the polynomial

X"+ an (X" + -+ a ()X + ao(t) € C[X] (when t € [is
considered as fixed).



Math 285 The sharpened version of the Existence and Uniqueness
inteduction© Theorem for solutions of linear 1st-order ODE systems has the
Equations fo||owing

Thomas Corollary

@ The solutions of any homogeneous nth-order ODE
v ra, ()y) 4 4 ()Y + ao(t)y =0 existon
the whole interval | and form an n-dimensional subspace S
of the function space C'.

@ Solutions y;(t),. .., yn(t) form a basis of the solution space S
iff for some (and hence all) t € | the matrix

yi(t) yo(t) . ya(t)

y1(8) () o yp(h) o ,
W(t) = : : : is invertible.

Y T NIt

©® Any inhomogeneous nth-order ODE
YO+ a4 (y" D 4 an(t)y' + ao(t)y = b(t) s
solvable. Solutions exist on the whole interval |, and they
form a coset { y,(t) + yu(t); yu(t) € S} of S.
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Corollary (contd)
O Any IVP y™ 4 a, 1(t)y" + ...+ a(t)y' + an(t)y =
b(t) Ay (ty) = ¢ for0 < i< n—1 has a unique solution,
which is defined on the whole interval I.

For real nth-order ODE’s mutatis mutandis the same assertions
hold (in particular such an ODE has a fundamental system
consisting of real-valued solutions).

Proof of the corollary.

All assertions follow from the said thegrem and the observation
that solutions y(t) = (y1(t),. .. ,yn(t))T of the reduced 1st-order
system must satisfy y»(t) = yi(t), ya(t) = y5(t) = ¥y (1), ...,

¥a(t) = ¥ V(1) and hence y;(t) = y{"(t), so that y(t) is a solution
of the nth-order ODE. The map y(t) — y;(¢) (“strip off all components
of y(t) except the first”) is then a vector space isomorphism from
the solution space of the reduced 1st-order system onto S. O

Note

In the statement of the corollary and its proof y1(t), ..., ya(t) have
a different meaning (solutions of the n-th order scalar ODE versus
coordinate functions of a solution of the 1st-order ODE system).
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Example
Let us consider the ODE
”
no_ .yl _ oyl —
y =y y=9-¢
For the associated homogeneous ODE y"" — y” — 2y’ = 0 we had
determined a fundamental system of solutions earlier, viz.

y(t) =1, ya(t) = ™", ys(t) = e*.
The corresponding 1st-order systemis y; = y», y5 = ys,
Vs =y{" =y +2y{ = ys + 2y or, in matrix form,

yi\" [0 1 0\ /n
2 =10 0 1 yal.
_y3 0 2 1 y3
Reading the proof of the corollary backwards, we see that
yi(t)  ya(t)  ya(t) 1 et
W)= y(t) ya(t) ya(t) ] =| 0 —et 2e*
yi(t) y2(t) ys(t) 0 et 4e*

is a fundamental matrix of this system.

te(—o0,1).
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Variation of parameters requires to determine W(t)~'. This is
done using Gaussian elimination as usual:

et 2t

1 e'/1 00 1 0 3|1 10
0 e 22010 |—=|0 —t 2?0100
0 e ! 4*|0 0 1 0 0 6?0 1 1
1 o o[t} -1 10 0[1 =]
= 0 —et 0|0 % —15 -1 0 10]|0 —%e’ %et
0 06201 A 00 10 fe? le?
1
1 2 2 0 T2i-D
= W) 'b(t)=| 0 —2e  le 0] =| s
0 le-2t 1g-2t 1 o2t
6 6 1=t 6(1—1)
1 t 1
¢ [T 2-9) {o 2(1-9) ds
= c(t):/ 3=s |ds = 0 309 U8
0 e—2s t o2
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EaNerae = One particular solution is

Thomas

Honold ¥o(t) = ci(t)yi(t )+ Co(t)ya(t) + c3(t)ys(t)

- / 513 s+</31_ (/Ote(iiss)ds>e2*.

— The general solution is

y(t) = yp(t) +v1y1(t) + y2y2(t) + 13ya(t)

S = (c1(t) +71)y1(t) + (ca(t) +72) y2(t) + (cs(t) + v3) ya(t)

with constants ~1, 72, 3.

Now suppose we want to solve the IVP

1

y" -y -2y = — y(0) =1, y/(O) = y”(O) =0, say.

It is possible to do this from the general solution by determining
the constants ~; from the given initial conditions.

However, there is a more conceptional approach using the matrix
exponential function eA!,
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Example (cont’d)
In terms of the initial conditions y(0) = (y(0), ¥’(0),y”(0)) = Yo,
the general solution of the associated 1st-order system is also
given by

y(t) = e¥(e(t) + yo).

where y,(t) = eflc(t) is the particular solution satisfying ¢(0) = 0.
For this note that any solution'y = (y1, y2, y3)" of the
inhomogeneous system

010 0
y=[0 0 1]y+[ O
0 2 1 e

still satisfies yo = y{, ya = y5 = y{.

It is not necessary to compute the matrix exponential e! directly
from the series representation. Instead we can use that

() = e* is the unique solution of the matrix VP

®'(t) = Ad(t) A ®(0) = I5.

Claim: At = W(t)W(0)~ ", where W(t) denotes the fundamental
matrix determined earlier. (In fact, W(t) can also be any other
fundamental matrix of the given system.)
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Differential
etz Proof of the claim: An arbitrary fundamental matrix
Thomas ®(t) = (y1(t)|y2(t)|ys(t)) has the form &(t) = W(t)S for some

Honold

invertible matrix S, since its columns must be linear combinations
of y1(1), y2(t), y3(t), and vice versa.
For ®(t) = eA! we have ®(0) = I3 and hence S = W(0)~"

1 et e 1 1/2 =172\
— AM=WHWO) "= 0 —e ! 2¢* 0 -2/3 1/3
0 et 4e* o 1/6 1/6

Higher-Order Linear
ODE's

The Wronskian

1 % %—[+%2f 2_;'_%—[_"_121)
| o 2ot T2t _le-ty
O % [+se2f ze_t+§e21
t fo —its 16:216 " ds
= c(t):/ e ASb(s)ds = O’*%ej%%e_zsds ,
0 tles+§e’25d
0 1os 48

from which the general solution of any IVP is given as
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Example (cont'd)

t 1.s 2.-2s
3¢ —|-36

1—-s

t_1_.s 1.-2s
o )(y’(O)—i-/ st>
0 1-s5s

ds> |
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We determine all solutions of the 2nd-order ODE

1T
~ 51 +2t2y 0 on/=(0,+0c0).
Since the coefficients are polynomials in ¢, it is reasonable to

guess that there are solutions of the form y(t) = t*.
Substituting this into the ODE gives

ktk=1 ¢k 3 1
_ V42 _ _ (g2 _2° ) 2 =
k(k — 1)t T + oF (k 2k+ 2) 0.

The solutions of the quadratic are k = 1 and k = % giving the
solutions
nt)=t and yo(t) =Vt

From the theory we know that the solution space is
2-dimensional. Hence y4(t), y»(t) form a basis (fundamental
system of solutions) iff they are linearly independent.

wt) v |t 1
D EDl =l Y| - pvi-vi-—3vizo

2\/
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Example (cont'd)
= y1(t), y2(t) form a basis and the general solution is

y()=cit+cVt, c¢,ceC.

The general real solution is then of course y(t) = cit + ¢/t
Cc1,C € R.

Note

Linear independence of t and v/t is actually trivial to check—the
functions are not scalar multiples of each other—, but for
higher-order linear ODE’s you will learn to appreciate the test
using W(t), which needs to be evaluated only for one particular
number f.
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Dot The Wronskian
o In the preceding example, the determinant ‘” g j’z 0 t
RETEE is called the Wronskian of y4(t), y2(t). More generally we deflne
Definition

© Suppose yq(t),...,ys(t) are solutions of the 1st-order linear
ODE system y’ = A(t)y with A: | — R™". The function

W(t) = det(y1 ()] ... lyn(1))

is called the Wronskian (Wronski determinant) of y1(t),...,¥a(1).

@® Suppose y;(t), ..., ya(t) are solutions of the n-th order scalar
ODE y™ + a,_1(t)y"=") 4 ... + ay(t)y = 0. The function

yi(t) ¥n(t)
yi(1) yn(t)
W(t) = det : :
YO Ly

is called the Wronskian of y;(t), ..., ya(t).
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Note

Earlier we had denoted the matrix in Part 2 of the definition by
W(1), anticipating its name Wronski matrix. The matrix appearing
in Part 1 is also called a Wronski matrix (though less frequently).
Note that “Wronski matrix” refers to the matrix formed from any
set of n solutions, while “fundamental matrix” requires the
solutions to be linearly independent.

Theorem (Abel’'s Theorem)

W(t) satisfies a homogeneous 1st-order linear ODE

W'(t) = a(t)W(t). The function a(t) is the sum of the main
diagonal entries of A(t) in Case (1) and equal to —an_+(t) in
Case (2).

Corollary f

There exists a constant ¢ € C such that W(t) = celo a(s)ds for
tel

In particular W(t) = 0 iffc = 0 iff W(%) = 0.

Note

This explains in a different way the criterion for solutions
yi(f),...,¥n(t) to form a basis of the solution space of y’ = A(t)y
established earlier.
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Proof of Abel’s Theorem.

We give the proof only in the case n = 2. The proof of the general
case requires properties of the determinant we haven’t developed
yet. Moreover, it suffices to prove Case (1), because Case (2)
then follows by inspecting the form of A(¢) in the order reduction
formula.

Writing (y1(£)ly2(t)) = (1) = (gggg j;;;g;) and using

o = Ad = (311¢11+ﬁ12¢21 311¢12+312¢22)’ we have

a1 P11+a2P21 A1 P12+a P22

d _ d 11 b2 _ B /
at (1) = df o1 oo = (11022 — P21012)

= ¢l1¢22 + P11020 — Pa1d12 — 21972

= (@11911 + @12021) P22 + ¢11(821 012 + @22¢22)
— (821011 + @22021) P12 — P21(@11P12 + @12022)

= (a1 + a2)(P11d22 — d21H12)

= (a1 + ax)W(t).
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Example (cont'd)
We continue our previous example

1 1
"o v =
T4 +2t2y 0 t € (0,400).

Order reduction reduces this 2nd-order ODE to the 2 x 2-system

) -(% D)
y/ _217 2lt y/
= W/(t) = % W(t) by Abel's Theorem.

The solution of this ODE is

W(t) = cexp (/ g;) —c|t|'? = eV,
since t > 0.

For the fundamental system y;(t) = t, y»(t) = V/t the constant is
c=W(@1)= ‘ ! i ’ = —J, as determined earlier.
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Now we consider the inhomogeneous ODE

1, 1
—Ey ‘i‘ﬁy—b(t), tG(O,-i-OO)

For the case b(t) = t* our previous computation suggests a
solution. In terms of the linear differential operator
L=D?%— D + 2 id the ODE can be concisely written as
Ly = b(t), and We had found earlier that

3, 1
Ky _ 2 9 T k-2
L[t]_<k 2k+2)t .

Since L is linear, it follows that L [
Substituting L=k-2 gives
K2—3k+3=((+2P-3(t+2)+5 =F+30+3 = (¢+1)(
and hence

1

b | e : 4 3
L (£+1)(€+%)t ] t, valid for £ ¢ {—1,-5}.
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Example (contd)
Solutions for ¢ € {—1, -3} can be determined using variation of
parameters. We consider b(t) = t~! as an example.

It suffices to extract the first coordinate function of the vectorial
solution (cf. the Theorem on Slide 13 of the handout version) of
the corresponding 2 x 2 system:

Yo(t) = ci(t)ys(t) + co(t)y2(t)  with
cit)\ _ [ (vi(t) v\ (0N ., _ [ 1 (—ya(t)b(D)
(cZ(t)) ‘/ (y{(t) yg(t)) (b(t)) d"/ W) (mt)b(t))d’

[ A (e [ ()= (505)

2

= Jp(t) = 2tInt — 4t is a particular solution, and (since t — 4t
solves the homogeneous ODE) f — 2tInt as well.

The same formula works for any continuous right-hand side b(t),
except that it may not be integrable in closed form; cp. also
[BDM17], Theorem 3.6.1.
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Caveats when working with time-dependent differential
operators

Polynomial differential operators with coefficients depending on t,
like L =D? — LD+ 55id (or L = D2 — J;D + 5, for short) do not
satisfy the usual algebraic rules for working with polynomials! In
particular we must not transpose time-dependent coefficients
from right to left.

Example
1 1 1 *
L=D?—- 1D+ ;> #D?—Dg; + 55 = L*.
You can work out Lf and L*f for suitable functions f and see that
they differ.
But the following easier example also tells you what’s going on:

(tD)[f] = t(Df) = tf’,
(DY)[f] = D(tf) =  + tf'.

Thus Dt — tD = id rather than Dt — {D = 0.
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Three Famous
Examples

Order Reduction

Euler Equations

Second-Order Linear ODE’s

Additional Remarks
First we state three famous (time-dependent) 2nd-order linear

ODE'’s. Actually these are one-parameter families of ODE’s
providing one ODE for every n€ N = {0,1,2,...}.

@ LEeEGENDRE’s Differential Equation is
(1-82)y" -2ty +n(n+1)y=0 (Lep)
with time domain -1 < f < 1.

® HerMITE’s Differential Equation is
y" -2ty +2ny =0 (Hen)

with time domain t € R.

® LAGUERRE’s Differential Equation is
y"+(1 -ty +ny=0 (Lan)

with time domain t > 0.
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Introduction to

Diferentia The following polynomials solve these ODE'’s:

quations

Thomas © (Ley) is solved by the Legendre Polynomial P,(X) of degree
Honold

n, which is defined by

Pult) = gy (5¢) (B 1))

® (He,) is solved by the Hermite Polynomial Hn(X) of degree
n, which is defined by

7 at

2 (d\" e
D™ Hp(t) = (—1)"%! ( ) e’
Order R ction

© (La,) is solved by the Laguerre Polynomial L,(X) of degree
n, which is defined by

LAOz&(i)%W€W
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Three Famous
Examples

Order Reduction
Euler Equations

Notes
* Since |R| = oo, polynomials a(X) = 31, &X' € R[X] and

polynomial functions R — R, t — a(t) = .1, ait’ determine
each other uniquely, validating the preceding definitions.
This follows from the degree bound for polynomials with
coefficients in a field F, which implies that polynomial
functions t — a(t) and f — b(t) arising from distinct
polynomials a(X), b(X) € F[X] can have at most

deg(a(X) — b(X)) equal values.

For a finite field F the corresponding proposition is no longer
true. For example, the polynomials 0 € F»[X] and

X2 + X € Fo[X] both determine the all-zero function Fy — Fa,
as follows from the identities 02 + 0 = 12 +1 = 0 in F».
However, the proposition remains true under the additional
assumption that a(X) and b(X) have degree less than |F|
(again by the degree bound).

The normalization factors, 51— for P,(X) and (—1)" for
Hp(X), La(X) do not matter for the solution of the ODE (since
it is linear). We could as well have assumed that all three
families consist of monic polynomials, obtained by dividing

the non-normalized polynomials by their leading coefficients.
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ngjgfiggi' We prove the assertion only for the Legendre polynomials (with
Thomas different normalization factors). Writing as usual D = §;, we
Honold evaluate D™ [(#2 — 1)D((#* — 1)")] in two different ways.

Using Leibniz’s Formula D"(fg) = 31, (7)(D'f)(D"~'g) for the
n-th derivative of a product with f = 2 — 1, g = D((t2 — 1)"), we have
D™ [(# = 1)D((# - 1)")] =
= (P -1)D"2(( = 1)") + (n+1)2)D™'((2 - 1)") + n(n+ 1)D"((£* - 1)")
= (2 = N)Pj(t) +2(n+ 1)tP(t) + n(n+ 1)Py(1).
On the other hand,
D7 (2 — 1)D((E - 1)")] =
=D [( —1)2nt(t? —1)""]
=2nD™" [{(t? —1)"]
=2n [tD™((£2 = 1)) + (n+ 1)D"((# - 1)")]
= 2ntP,(t) + 2n(n + 1)Py(t).

Three Famous
Examples
Order R ction

Euler E ions

= (1 = 2)P(t) — 2tP,(t) + n(n+ 1)Py(t) = 0 O
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Three Famou:
Examples

Order Reduction

Euler Equations

Order Reduction

Theorem A different way

Suppose | C R is an interval and a, b: | — C are continuous.
Further, suppose that ¢: | — C is a nonzero solution of

y" +a(t)y' +b(t)y =0, (%)

and J C | is a subinterval (of length > 0) such that ¢(t) # 0 for all
t € J. Then a second fundamental solution of (x) on J (i.e.,
linearly independent of the restriction ¢|,), is obtained as

P(t) = ¢(t)u(t), where u(t) is any non-constant solution of

v+ <2¢’/(” + a(t)> u'=0. ")

(1)
Note
(R) is a 1st-order linear ODE for v/, solved as usual by

U'(t) = exp (— A 2?;;((33)) + a(s) ds) = ¢>(1t)2 exp <_/to a(s) ds) .

A further integration then yields u(?).
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Higher-Order Linear
ODE's

The Wronskian

Three Famous
Examples

Order Reduction
Euler Equations

Proof of the theorem.
We have
Y = ou,
V' =¢'u+ U,
1/}// :¢NU+2¢IU/+¢U”.

= ¢"+a) + by =(¢"+ ap + bo)u+ (2¢' + ap)u’ + pu”
= (2¢' + ap)u’ + ou”,

since ¢ solves y” + ay’ + by = 0.
Hence we have

V' +ay +bp =0 <= U +(2¢'/¢p+a)u =0.

O
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Reduction

Euler Equations

Example

We compute a fundamental system of solutions of Legendre’s
ODE for n = 1, which has the explicit form

2t 2
”—1_t2y’+1_t2y:0, -1<t<. (Le)

y

As we have seen, one solution is P;(f) = 3D(? — 1) = t.

Hence, by the theorem, a second linearly independent (of the
first) solution on J = (0, 1) is ¢(t) = t u(t), where v/(t) solves

() + (2 Pi(n et ) () = (1) + (f - f’%) () = 0.

Pi(t) 1-1
A nonzero solution is

U'(t) = exp (/ _% + ﬂdt) = exp(=2Int —In(1 - 1))

B 1
(1 - R)
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dt 1.3 3 1.1 1+t

() = tu(t) = Ly

The solution () was guaranteed to exist only on (0, 1), but
clearly it is defined on the whole interval (—1, 1) and solves (Ley).

— A fundamental system of solutions of (Leq) is

Order Reduction

Euler Equations

t 1—|—t_

|
Loy

1.

N
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Or

Euler Equations

Euler Equations

Definition cf. [BDM17], Ch. 5.4

The ODE
l‘2y”+aty’+6y:0 (E)

is called Euler equation with parameters «, 3.

We will assume «a, 8 € R and consider only real solutions. (The
complex case is easily reduced to the real case.)

(E) is homogeneous linear, time-dependent, of order 2.

Except for the trivial case o = 5 = 0, (E) has a singular point in

t = 0, where the corresponding explicit equation

y" + (a/t)y’ + (B/t?)y = 0 is not defined.

— Solutions exist “independently” on (-0, 0), (0, +00) and form
a 2-dimensional real vector space in both cases.

For Part (2) of the following theorem, recall that solutions of (E)
are twice differentiable functions y: | — R satisfying (E) for every
te I For /=TRand t =0 the ODE reduces to 8y(0) = 0, which
for 8 # 0 requires y(0) = 0 (in particular associated IVP’s with
y¥(0) = yo # 0 are not solvable).
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Reflection Principle
© A solution ¢: (0, +cc) — R yields a solution 1: (—o0,0) — R
by reflecting the graph of ¢ at the y-axis (and vice versa).
® ¢ can be extended to a solution on R whose graph is
symmetric w.r.t. the y-axis if limo ¢/(t) = 0 and lim o ¢’ (¢)
exists in R.

As sketched in the proof, the existence of lim; ;o ¢"(t) implies that
of lims 0 ¢'(t) and lims o ¢(t), and the first condition requires that
|imt¢0 (ﬂ(t) is zero.

Proof.

(1) For t < 0 let ¢(t) = ¢(—t) = ¢ (|t]). Then ¢/ (t) = —¢'(—1),
Y (t) = ¢ (—t), and hence

2" (1) + oty (1) + Bi(t) = £ (—t) — atd/ (—1t) + Bo(—t)
= (—1)2¢"(—1) + a(—=t)¢' (—1) + Bo(—1)
= O’

since s = —t runs through (0, +o0) if t runs through (—o0, 0).
This proves Part (1).
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Proof cont'd.

(2) The existence of lim¢ ¢”(t) implies that ¢, which is C*> on
(0, +00), can be extended to a C2-function on [0, +o0) (with
one-sided derivatives in t = 0). This follows from

t
¢'(t) = ¢'(fo) + t ¢"(s)ds,

t
o(t) = o(l) + | ¢'(s)ds, b, t >0,
[

which makes also sense for f = 0 and gives continuous
extensions of ¢', ¢ (first for ¢/, then for ¢) to [0, +00).

It is then not difficult to show that ¢ is twice differentiable at t = 0
from the right and that ¢’(0) = lims o ¢'(£), ¢"(0) = limsj0 ¢ (1).
The reflected function ¢ (t) = ¢(—t), t € (—o0, 0], is C? as well and
satisfies ¢(0) = ¢(0), ¢'(0) = —¢'(0), ¥"(0) = ¢"(0).

Hence, provided that ¢’(0) = 0 (and only then) we obtain a
consistent extension of ¢ to R.

Finally, the ODE is satisfied also for t = 0 (for § = 0 this is trivial,
for 3 # 0 it follows from y(0) = lim;_0 y(t) = lim;_o w =0),
completing the proof.
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General
Linear
Differential
Equations

First-Order Linear
Systems

The Matrix
Exponential Function

Higher-Order Linear
ODE's

The Wronskian

Second-Order
Linear ODE’s

Three Famous
Examples

Order Reduction
Euler Equations

I 2nl \
—te [t
—t |t
—ts [t|V?
—t |t
—tes [t]?2
—te t?

1.5 1

i
D

-2.0 -1.5 -1.0 -0.5 0.5 1.0 15 2.0

Figure: lllustration of the Reflection Principle: t — |t|" defines a
C2functiononRiff r=0vr>2
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Solution of the Euler Equations
Using the reflection principle, we can restrict attention to t > 0.
We have already considered the special case a« = —1/2, 5 =1/2,
in which a fundamental system was given by t and v/t. The earlier
method works with some modifications also in the general case:

Setting L = 2 D? + ot D + § id, the Euler equation becomes
Ly = 0, and we have

Lt = (r(r=1)+ar+p)t' =0 < rP+(a—1)r+p=0,
which is solved by r; = } (1 —a+a—1)2= 4ﬁ> and
r2:%(1—a— (a—1)2—45).

Case 1: (a« —1)2 > 453
In this case ry > r; are real, so that

pi(t)=1t" and (1) = t*

(resp., ¢1(t) = (=t)", ¢o(t) = (—t)" for t < 0) form a fundamental
system of solutions.
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Euler Equations

Case 1 contd

For the following analysis, let Sy be the solution space with

domain / = R, i.e., Sy consists of all functions y: R — R satisfying (E).
Because a solution defined on some interval (—4,4), § > 0, can

be uniquely extended to R, we can alternatively view S, as the
local solution space at t = 0.

Combinatorial counting gives that there are (3) — 2 = 13 (???)
cases to consider. We consider only a few of them.

If ry, r> are negative (equivalently 5 > 0 and o > 1+ 24/5) then the
only solution defined at t = 0 is y(f) = 0. In other words, Sy, = {0}
and the only realizable initial values at t = 0 are y(0) = y’(0) = 0.

If 1 = 0 (equivalently 5 = 0 and « > 1) then the solutions defined
at t = 0 are the constant functions y(t) = ¢, c € R.

= dim(Sp) = 1, and the (uniquely) realizable initial values at

t =0 are y(0) = ¢ € R arbitrary, y’(0) = 0.
If0<n<1Vv1<n<2andrnris either negative or satisfies the
same condition as rq, then again the only solution defined at t =0
is y(t) =0, and consequently Sp = {0}.

If n =1, o =0 (the non-singular case « = 5 = 0, in which the
general solution is y(t) = ¢1 + c»t) then dim(Sp) = 2 and all initial
conditions at t = 0 are uniquely realizable.
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Case 1 contd

Ifri>2and0<rn<1V1<nr<2,the solutions on (0, +o0)
that can be extended to [0, +c0) have the form y(t) = ct" and
satisfy y(0) = y’(0) = y”(0) = 0. Solutions y(t) = ¢t on
[0,400) and z(t) = c2(—1)" on (—oo, 0] can be combined freely to
yield a solution on R.

= dim(Sp) = 2, and a basis of Sy (fundamental system of
solutions) is formed by

B TE BEE TR
y‘(t)_{o ift <0, y"’(t)—{o ift>0.

If 1 > r, = 2 then the solutions on (0, +o0) have the form

y(t) = c1t" + cot? and can be uniquely extended to [0, +oc) by
setting y(0) = y’(0) = 0, y”(0) = 2¢;. Solutions

y(t) = ¢1t" + cot? on [0, +00) and z(t) = c3(—1)"" + c4(—1)2 on
(—o0, 0] can be glued to yield a solution on R iff ¢, = c4.

= dim(Sp) = 3, and a basis of Sy is formed by the functions
y1(t), y2(t) defined above and ys(t) = t2.
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Differential If 1 > r» > 2 then all solutions y(t) on (0, +o0) can be uniquely
Fauations extended to [0, +oc) by setting y(0) = ( ) = y"(0) = 0.
iomas Solutions on (—oco, 0] and [0, +oc0) can be freely combined to yield

solutions on R. = dim(Sp) = 4, and a basis of Sy is formed by

it >0, (—t ift<o,
t) = t) =
(M) {o tr<o, 2l {o it t >0,

e ift>0, (=) ift<o,
) = ) =
ya(l) {o itt<o, Y0 {o ift> 0.

Be sure to understand the precise meaning of “basis” here:

@ Every solution y(t) € Sy is of the form

y(t) = ciy1(t) + coya(t) + csys(t) + caya(t) for some
C1, Co, C3, C4 € R. This follows from the above discussion and

cit" + cat™ if t >0,
Cry1(t) + caya(t) + Cays(t) + Caya(t) = S 0 ift=0,
Co(—t)" + cy(—t)2 ift<O.

@® The coefficients c1, ¢z, c3, ¢4 are uniquely determined by y(t).
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Case 2: (a —1)2 =4p

Here ri = . = (1 — «)/2, yielding only one fundamental solution
P1(t) = t1=a)/2,

A second fundamental solution ¢(t) can be determined using
order reduction. The cofactor u(t) in ¢o(t) = u(t)p4(t) satisfies

(1) + (2 (0 a(t)) (1) = u"(1) + (2‘ 1—a, a) U (1)

¢1(t) 2t t
=u"(t) + 11‘ u'(t) =0.
= U'(t) =exp (_/d:) :C—; = uUlt)=ciInt+c

Hence a fundamental system of solutions on (0, +00) in this case is
p1(t) = t0=/2 0 go(t) = (In t)t1=2)/2,

Extendability to solutions on R is discussed in the same way as
before. We omit the general discussion, but one case is worth
noting: For a < —3 (the case in which ‘Ea > 2) we have

lim¢o d2(t) = limeo 95 (1) = limgyo ¢4 (t) = 0. Hence the analysis
done for ry > r, > 2 carries over, and it follows that dim(Sp) = 4.
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Case 3: (a —1)2 < 43

In this case ry, r, are complex,

n :;(1—a+i\/45—(a—1)2>7
fg_;<1—a—i 46—(@—1)2> =n.

A complex fundamental system of solutions is again ", t".
A real fundamental system can be obtained by extracting real and
imaginary part of one of these. Writing ry > = A £+ iu, we get

y1(t) = Re(t**) = Re (tAei“'"t) = t*cos(puInt),
yo(t) = tsin(pln t).

In this case the determination of Sy is comparatively easy:
Nonzero solutions on (0, +o0) are extendable to solutions on R iff
A > 2. (For \ = 2 the 2nd derivative of y1(t), y2(t) oszillates wildly
near t = 0; the same is true of any nonzero linear combination of
yi1(1), y=(t).) If A > 2 then all solutions on [0, +00) satisfy

y(0) = ¥’(0) = y”(0) = 0, and hence we have again dim(Sy) = 4.
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Introduction

Definition
An analytic solution (or power series solution) of a scalar ODE is
a “power series function”

y(t)y=> ant—1)", tel,
n=0

for some interval | C R of positive length and some f; € /.

Notes

® The name “analytic” comes from analytic function, which
refers to a function f: D — C, D C C, which locally admits a
power series representation f(z) = >, an(z — z)" (either
for all zy € D, in which case f is said to be holomorphic, or
only for a fixed point zy € D).

e The (w.l.o.g. open) interval / must be contained in the interval
of convergence of > 7, an(t — )", which is of the form
(fo — p, o+ p) = B,(fo) "R with B ,(#) denoting the open disk
of convergence of Y-, a.(z — 1)". In particular the radius
of convergence p of the power series must be positive.
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Notes cont'd

¢ There is an “analytic” version of the Existence and
Uniqueness Theorem, which roughly says that if
f(t, Y0, ¥1,- .., ¥n—1) is analytic then the solution of an IVP
yO = £ty y, ..y D), yO(t) =cifor0<i<n-—1
must be analytic at & and solve the ODE wherever it is
defined.

As a consequence of this theorem we can solve ODE’s in the
analytic case by a power series ,Ansatz”.

In what follows, we will switch notation from y(t) to y(x), because
for power series the variable symbol ’x’ is more common in view
of the link z = x + y i with the complex case.
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Example
Determine a solution of the IVP y’ = x2 + y?, y(0) = 1.

Because f(x, y) = x? + y? is analytic, the solution must be
analytic as well, i.e., of the form y(x) = Z,”,O:O anx™ with

an = y"(0)/nl.
Method 1: Determine y(")(0) from the ODE.

y'=x+y? = Y(0)=0%+y(0)* =1,
y'=2x+2yy' = y"(0)=2y(0)y'(0) =2,
y"=2+2y%+2yy —  y"(0)=2+2+4=38,
y@® =e6y'y" +2yy" =  y®0)=12+16=28

= yx)=1+x+2x*+8x*+28x* ...
=1+x+x2+ 33+ x4
This method is cumbersome, and it does not tell us anything
about the radius of convergence of the resulting power series,

and hence about the domain of the solution (except that by the
general theory it must be an interval of positive length).
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Equations Method 2:  Substitute y(x) = 72, a,x" into the ODE and

Thomas ici
Homoes equate coefficients.
oo o0
Introduction y’(x) = Z naan_1 = Z(n + 1)a,,+1 Xn,
n=1 n=0
oo n
Properties Already X2 + y(X)2 — X2 + Z Z akan—k Xn
e n= k=0

Shodkan-k ifn#2,

— (n+1)a =
(n+1)an 14+ 2apa+a& ifn=2

For n > 1 this determines a, from ax, k < n, and thus together
with the initial value ay = y(0) = 1 provides a recursion formula
for an, which can easily be programmed:

Lo Y(x) = 14x+x2+3x3+ Ex*+ Ex0+ ST xO 1 208 x 7+ 309 x84 22891
+ 1961 X10 + 75092X11 + 1238759)(12 + 9884X13 4.

1400 51975 831600

6435
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Fasations The radius of convergence:

Thomas It is clear that all a, are positive. Using induction, we can easily
show that a, > 1 for all n:

Introduction

28n1 + 282+ -+ a1d 124124 412

n n

=1

ﬁan:

Properties Already

= p<1
Conversely, suppose ax < ¢ for all k < n and some constant c.
COCni‘] + C1 Cn72 + . + Cnf‘l CO

an < n =1 <",

provided that c > 1 and n > 4.
— ay < ¢V forall N > n (using induction)
=p>1/c

The Method of

Frobenius For example we can take n=4 and ¢ = f/g .

:>pz\3/§=0.9085--~>0.9



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Introduction

Example
Determine the general solution of y’ = y? using the power series
~Ansatz*.

Since y’ = y? is autonomous, we can restrict ourselves to the
case xo = 0, i.e., make again the ,Ansatz" y(x) = >~ anx".
The recursion formula of the previous example changes to

-1
1 n
an = kz_oakan_1_k foralln> 1.

= a1 = a5, & = y(aar + a1a) = &,
as = i(aoa + & + aa) = &g, etc., and in general a, = aj™"'.

o0 o0
1 ao 1
= y(x) = 236” x" = aoZ(aOX)n T 1 ax’ x| < Y] =p
n=0 n=0

Thus y(x) = 1/(C — x) with C = 1/ay, recovering the previously
determined general solution of y’ = y?2.
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Introduction

Example (cont'd)
Notes

e Two solutions, which are not defined at xo = 0, were missed.
These are

1
=—— f
y1(x) x or x < 0,
1
yo(x) = 5 for x > 0.

They can be formally included in y(x) = ap/(1 — aox) if we
permit ay = co.

® The solution y(x) = ay/(1 — apx) is defined on the
unbounded interval containing 0 and having 1/a, as one
endpoint (the other endpoint is 400 or —oc). But the power
series representation is valid only on the bounded
subinterval x| < 1.
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Dot Two Euler-Like Equations
T Example
Honold We consider simultaneously the ODE’s
Introduction
xy" +y' +y=0, (E1)
xXy"+y +y=0, (E2)

which have a singularity at x = 0 like the general Euler equation.
Note that, in a way, (E2) is more singular at x = 0 than (E1).

Making the usual power series ,Ansatz“ y(x) = >~ , a,x" and
using

y'(x) = Z na,x"~! = Z(n+ 1)ans1x",
n=1 n=0
o xy"(x)=>"n(n—1)ax"" =3 (n+1)nan.1x",
n=2 n=1
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Example (cont'd)
the ODE’s become

(o]
a +a+ Y ((n+1)napi1 + (n+1)ans1 + an)x" =0,

n=1

ao+ar + (ar +2a)x + »_(n(n—1)ap+ (n+1)ans1 + an)x" = 0.

n=2

Equating coefficients gives the recursion formulas

1

an+1:_man ‘I:orn:O,172,7 (E1)
2 _n+1

an+1:—%an forn=01,2,... (E2)

— p = o for (E1), giving the analytic solution

y(x) = a i ((;’:))zn x" for x € R.
n=0 '

— p = 0 for (E2), except in the trivial case ay = 0, giving no
nonzero analytic solution.



Math 285 Recall that a power series is a series of the form

Introduction to

Differential 0 )
Equations a(z) =Y an(z—2)", with z, 2, a, € C.
Thomas n=0
Honold .
The complex number z; (center of the power series) can often be
assumed to be zero, since we can make the translation
Power Series
anZIVAnaIytlic Z—Z+ 2.

functons — Definition
’ © Afunction f: D — C, D C C, is analyticin zy € D, if zy is an
inner point of D and there exist a, € C and § > 0 such that

f(z) = an(z—2)" forze Cwith |z - z| <4,
n=0

and analytic per se (or analytic in D) if f is analytic in every
point of D.

® Afunction f: D — R, D C R, is analyticin xo € D, if Xxp is an
inner point of D and there exist a, € R and § > 0 such that

f(x) =) an(x — x0)" for x € Rwith xp — 6 < X < Xo + 4.
n=0
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Introduction to

S @ A real function f satisfying Part (2) of the definition can be
Thomas extended to a complex function satisfying Part (1) with
Honold Zp = Xp and the same 4, since the radius of convergence of

> o @n(z — Xo)" must be > ¢ and hence the power series

converges for all z in the disk B5(Xo) = {z € C; |z — Xo| < 6}.

For this reason it is hardly necessary to discuss the case of
ropentes Arsacy real analytic functions separately. Just consider 1‘Tz e?,

Known

cos Z, sin z, etc. in place of 1 ~» €%, cos X, sin X, etc.

@ For every power series >~ an(z — 2p)" there exists
0 < p < +oo (radius of convergence) such that the power
series converges for |z — zy| < p and diverges for
|z — z5| > p. The number p is given by

1
P=1 where L = limsup +/|an|.
n—oo

If limp_ oo 'T;:;‘ exists, it must be equal to L, giving another

formula for p. But the latter is not directly applicable to power
series with gaps such that >~,° , Z¥°; cf. our earlier discussion.
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Introduction to

S © Power series f(z) =Y an(z — 2o)" can be differentiated
Thomas termwise within their open disc of convergence, and the
Honold power series

oo [ee]
f(2)=> nan(z—2z)"" = (n+1)an1(z - 2)"
n=1 n=0
o has the same radius of convergence. lterating, we obtain
f92)=> (n+ k) (n+k—=1)--(n+1)ank(z - 2)",
n=0

9 (z0) = k! ax,

()
so that a = f¥)(z0)/k! and  f(z) = Zﬂ ,

n=0
In other words, a function f is analytic at z, if all derivatives
(" (z) exist, so that we can form the Taylor series of f in z,
and the Taylor series converges and represents f in some
neighborhood of z,.
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Expansion with
Different Center

Properties contd

O Suppose f(z) =Y, an(z — Zo)" has radius of convergence
p>0andz €B,(z ) Then f(z) can be expanded into a
power series W|th center zy inthe disk |z — z1| < p— |21 — 2]
(the disk inside B,(Z) that is centered at z; and touches the
circle |z — zy| = p). In particular f is analytic in the whole disk
B,(20) ={z€C;|z— 2| < p}.

If p = oo then the new power series has radius of convergence
oo as well, and both series represent f everywhere in C.

Proof.

f(Z) = Z a,,(z - ZO)n = Zan(z —Z1+ 2Z7 — Zo)n
n=0 n=0

Since Y- an(}) (21 — 20)" K = w , we see from this that the
new series is the Taylor series of f in z1, WhICh COmes as no surprise.
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Proof contd.
The reordering is valid if the double series converges absolutely.
Since

Expansion with oo n
Different Center
Double Series
(optional
ooticens n=0 k=0

Al
Z
A

o0

n

= lanl (12— 21| + |z = 20])",
n=0

an <Z> (z— 20)¥(z1 — z9)" K

this is the case provided that |z — z| + |21 — z0|) < p (because
Y oo @n(z — 2o)" converges absolutely in B,(zy)). O

Ordinary and
Singular Points

Analy tions
The Method of
Frobenius
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y and
r Points

Analytic Solutions

The Method of
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Figure: The Taylor series of f in z; converges at least in the open
disk |z — z1| < p/, p' = p— |21 — 20|, and represents f in this disk.
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Interlude on Double Series
Roughly speaking, infinite double series bear to doubly-infinite
matrices (“doubly-infinite sequences”) the same relation as infinite
series do to infinite sequences.
Theorem (Fubini’s Theorem for double series)
Suppose a: N x N — C, (m,n) — a(m, n) = amn is any function
(called a doubly-infinite matrix), and there exists B > 0 such that
SV SN o lamn| < B forall (M, N) € N x N. Then

Z(gamn> CY am - Z(Zamn>,

m=0 (m,n)eNxN n=0

where it is understood thatN = {0,1,2,...} and all series and
double series involved converge in C.

Of course the same theorem holds mutatis mutandis for functions
a: N x N — Rand with {1,2,3,... } in place of N.

The assumption of the theorem implies that 3, ) cnwy [@mnl
converges in C (resp., R) as well and is often stated as “the
double series ), enxn @mn CONVerges absolutely”.
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Tt Interlude on Double Series Cont'd
iomas The theorem says in particular that for a doubly-infinite matrix

(amn) whose “non-negative” partial sums > . |amn| over finite
rectangles satisfy a uniform bound as stated we can compute the
total sum of the matrix either row-wise or column-wise:

mn| 0 1 2 >
0 dapo doi Qo2 ---| D
1 aio ai1 a2 ... | nR
2 dpg doy do2 ... | D2
Z Co Cq Co ... S

If r,, denotes the sum of Row m and ¢, the sum of Column n, we
have >~ o rm = > Cn (denoted by s in the matrix).

For ordinary matrices (i.e., with a finite number of rows and
columns) this property is a rather trivial consequence of the
commutative and associative laws for addition in C, resp., R.
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Interlude on Double Series Cont'd
As a concrete example consider am, = mg7. Here we obtain

m\n| O 1 2 X
0 1 1/3 1/9 ...|3/2
1 |1/2 1/6 1/18 ...|3/4
2 |1/4 1/12 1/36 ...|3/8
S2 253 28 .3

The column sums arise from the geometric series evaluation
1 +1/2+1/4+...: 75 = 2, the row sums from

1
14+1/3+1/9+ - = =73 = 3/2, and we have indeed

2+§+§+~--:3:§+1+§+~~
In fact the identity

S (525) (554) 21

m,n=0

is a discrete analogue of [ g(x)h(y)d?(x,y) = (J 9(x)dx) ([ h(y)dy).
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Interlude on Double Series Cont’d

But what is amn in the first place?
(m,n)eNxN
Itis possible to define “3 ", 1\ crxn @mn = A" as “for every € > 0

there exist M., N. € N such that ’(ZZ:1 Zﬁﬂ amn) - A’ < e for
all M > M. and N > N.”. But this definition doesn’t imply that

> (m,nenxn @mn is preserved under permutations of N x N, as the
notation “_ 1, ) crvxn @mn” suggests.

Modern definition: -, e« @mn = Alif for every e > 0 there
exists a finite set F C N x N such that for every finite set E with

F c E C N x N we have ’(E(m,n)eE amn) — A‘ <e.
Note that finite sums 3, , ¢ amn are well defined, since it

doesn’t matter in which order we add the elements an, (by the
commutative and associative laws in C).
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Interlude on Double Series Cont’d

Notes

The modern definition applies mutatis mutandis to every
complex-valued (or real-valued) function and yields a
definition of ,_, a; for any domain (“index set”) / and
functiona: | - C, i — a;.

Only countably infinite domains / are of interest, since

> ici@ = Ac Cimplies that {/ € /; a; # 0} is either finite or
countably infinite.

> ics @i exists (in C) iff ), |aj| exists (in R). In other words,
there is no difference between convergence and abso-

lute convergence; cp. with the Lebesgue integral, of which the
modern definition of infinite summation is actually a special case.

If 7: I — I'is any permutation (i.e., bijection) then
> ic1@ = X _ic; @x(i),  trivial consequence of the definition.

If >,c,ai exists and J C /, the sum } ., a; exists as well.

If Y., a exists and P is a partition of /then 3", a1 =2 jcp (Micy @1)-
Fubini’'s Theorem for double series is a special case of this.



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Interlude on Double Series Cont’d
More precisely, Fubini’'s Theorem for double series is the
statement

S Y am| = Y am=> | > am].

ReR \(m,n)eR (m,n)eNxN cec \(m,n)eC

where R, C are the partitions of N x N into “rows” resp. “columns”;
i.e., the members of R are {0} x N, {1} x N, {2} x N, ..., and the
members of C are N x {0}, Nx {1}, N x {2}, ...

The last property is also meaningful for ordinary series. For
example, it tells us that for an absolutely convergent series we have

atatat+ =@ +tatat...)+(@tata+---),
and also the rather fancy
Y an=ai+(@+as+as+ar+an+as+ )
n=1
+(as+atataot+agt+---)+(@t+ant )+,

Inner sums are taken over all n with a fixed number of prime factors.



Math 285
Introduction to
Differential
Equations

Thomas
Honold

nter

Double Series
(optional)

Interlude on Double Series Cont’d

Proofs of these properties can be found in some texts on Real
Analysis. Walter Rudin’s Principles of Mathematical Analysis that
| have recommended as background reference doesn’t include it,
but Terence Tao’s Analysis | (3rd edition, Springer 2015) has it in
Ch. 8.2, for example. The notation there is slightly different from
our’s, and yet different from the one in my source (a not so
well-known German textbook).
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@ Equating coefficients
Suppose f and g are analytic in some common connected
domain D (i.e., analytic at every point of D) and that
E = {z € D;f(z) = g(z)} has an accumulation point in D.
Then f(z) = g(z) for all z € D, and consequently the power
series expansions of f and g at any point zy € D must be the same.
Sketch of proof.
Call the accumulation point z; and suppose that
f(2) = Yo an(z — 20)", 9(2) = S5 bal(z — 20)" are
represented by different power series at 2y, i.e., a, # by, for some
n. If N is the least such n, we have

f(2) — 9(2) = (an — bn)(z — 20)" + (ANt — bs1)(Z — 20)"HT + -+
= (z—20)" (an — bn + (ans1 — bvs1)(Z2 — 20) + )
= (z - 20)"h(2),

where h is analytic at zy and h(z)) = ay — by # 0.

= h(z) # 0 in some disk |z — z| < ¢ (since h is continuous)

= f(z) # g(z) in the punctured disk 0 < |z — zp| < 4.
This contradicts the assumption that z, is an accumulation point of E.
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Differential We have thus proved that the set E; C E consisting of all points
S 2o € D where f and g are represented by the same power series
Thomas is non-empty.
E; is closed in D, since to any limit point zy of E; in D we can
apply the preceding argument to show that z; € E;.

But E; is also open, since for zy € E; the functions f and g are
represented by the same power series in some disk |z — zy| < 6,
which must be contained in E; by Property 4. (For this note that
both f and g are represented by a power series 3", ck(z — a)*

at any point a € Bs(2y); the coefficients ¢k can be computed from
the power series representation at zg, viz. ¢k = - an(})(a — 20)" ¥,
and hence must be the same for f and g.)

Since D is connected, this implies D = E; and in particular that
f(z) = g(z) forall z € D. O

Remark

Property 5 holds a forteriori for real analytic functions defined on
an open interval D C R. For C*°-functions on R it grossly fails:
There exists, e.g., a C>-function f: R — R satisfying f(x) = 0 for
x < 0and f(x) > 0 for x > 0; cf. also the subsequent example of
a “bell-shaped” function.
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Example
Consider f: R — R defined by

“ie
F(x) = e for |x] <1,
0 for [x] > 1.

Then f satisfies f(")(+1) = 0 for all n > 0, since on (-1, 1) all

derivatives f(")(x) exist and have the form (") (x) = ,‘?n(x){ﬁ
for some rational function R,(x). It follows that

limy_s+1 f(W(x) = 0, and this is enough to prove by induction that
f("(41) exists and equals 0. Thus f is a C*>°-function on R.

But f is not analytic at xo = +1, since the Taylor series at +-1
vanishes but f does not vanish in any neighborhood of +1.

Moreover, f vanishes on a large subset of R but not entirely. This
cannot happen for (per se) analytic functions (cf. Property 5): If a
real analytic function g vanishes on an interval of positive length,
it must vanish entirely. Similarly, if g is analytic, defined at zero,
and g(1/n) = 0 for all sufficiently large integers nthen g must
vanish entirely.
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Ordinary and
Singular Points
Analytic Solutions
The Method of
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0.5
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15

Figure: Graph of f(x) = e T for |x| <1, f(x) =0for |x| > 1
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iy
1.0
0.5
— - se 9 : . :
-1.0 -0.5 0.5 1,0 1.5 2.0
—0.5
—1.01

Figure: There is no nonzero analytic function defined on the unit
disk |z| < 1 and having zeros at z =1/k, k =2,3,4, ..., but
there is such a function defined on the disk |z — 1| < 1, e.g,

Z > sin(m/2).



Math 285

Introduction to
Differential

Equations

Thomas
Honold

Properties contd
0O Algebraic Operations on Power Series

We assume for the following w.l.0.g. that the centers of the
power series involved are equal to 0.
Power series functions f(z) = > ,° anz", 9(z) = > e bnz"
can be added/subtracted/multiplied by scalars termwise,
f(z) £ 9(2) =Y (an+ by)2",
n=0

cf(z) = (can)z",
n=0
and multiplied according to Cauchy’s multiplication formula

o

f(2)9(2) = (Z akb,,k> z",
k=0

The radius of convergence of the resulting power series is at
least the minimum of the radii of convergence of f and g. In
particular, sums and products of analytic functions are again
analytic.
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O Algebraic Operations on Power Series contd

Moreover, if by = g(0) # 0 then the quotient h(z) = f(2)/9(z) is
represented in some neighborhood of 0 by a power series
> oo Cnz"™ as well, which can be obtained by solving

Z anz" =f(z (Z bnz > (ni_"(:) ann)

i.e. Cy = ao/bo, C = (31 — b1Co)/b0,

Co = (32 — b1 Ci — bgCo)/bo, etc.

Thus quotients of per se analytic functions are analytic
wherever they are defined.

Finally, there is a “chain rule” for analytic functions: If f is
analytic at zy and g is analytic at wyp = f(z) then the
composition g o f: z— g(f(z)) is analytic at z,. Thus
compositions of per se analytic functions are analytic as well.
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[élcfaft?;?igtrlwil ® Algebraic Operations on Power Series contd
Thomas The power series representation of g o f at z; can be
Honold computed from those of f and g, f(z) = >_72, an(z — 2,)"
and g(w) = >, ba(w — wp)", as follows: In

9112 = 3 bule) - )" =3 bn (S stz
n=0 n=0 k=1

expand for each n the power (3,7 ak(z — zo)")n into a

Alasorac Operaions power series 3"~ An(z — 2o)', and rearrange the resulting
double series Y__o bnAn(z — 20)" into a power series

S, c(z—2), i, ¢ =, byAn. The required absolute
convergence of the double series can be shown to hold in a
neighboorhod of z,.

It should be noted that the computation of the coefficients ¢
in g(f(2)) = 302 ¢i(z — 2o)! doesn’t require taking any
limits but uses only the arithmetic of the base field (which is
Q, R, or C in our case).
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Example (The Fibonacci generating function)
Consider the rational function

— 1 —1£v5
(2) == zeC\{Z52).
f is analytic at zy = 0 and hence has a power series expansion
f(z) = >, 2" for small z. Equating coefficents in
1=(h+hz+hZP+H22+ ) (1-2z-2°)
=fo+(fi—R)z+(b—fi — )P+ (h—fh—f)2+ -,

weseethatfy=f=1,f,=f_1+f_oforn>2,ie., f,is the
n-th Fibonacci number (with the convention that f, = f; = 1).

The closed form of f, can be obtained by —— into a power
series:

> n 1 B 1 « 15}
HZ::Of”Z _(1az)(1ﬂz)_aﬂ<1a2_1ﬂz)

ee} n+1 —
—Za 5 z"  with a:1+2\/§,6:1 2\/5.
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Differential . . .
Equations As a simple example for the composition of power series we
consider the series expansion

f(z):lzzzizozu ZZ() Stk

1-2

Thomas
Honold

33 (o) ZZH
S(504)-

which is valid for |z| + |z < 1, ., |z| < (vVB—-1)/2.
Equating coefficients of z" shows

= () () ()

k=0

o0

evaluating the SW-NO diagonal sums of Pascal’s Triangle ((y)), ,_o-
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Example (cont'd)
But the example shows more: Since

(Z + 22)n o Z ZI1+12++IH7
(itsi2,..5in)€{1,2}"

the coefficient of z" in "7 (z + z%)" is equal to the number of
ordered partitions of n into one’s and two’s. The power series
identity >"7° (2 + z2)" = s——; shows that these numbers are

1—-z—22

just the Fibonacci numbers. For example, we have

1=1,
2=2=1+1,

3=24+1=1+2=1+1+1,
4=24+2=24+141=14241=14142=1+414+1+1,
5—24+24+1=24+1+42=1+42+2

=24 141+ =142+ 1+1=1+1+2+1=1+1+1+2
14T +14+1+41.
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Example (EULER Numbers)

The Euler numbers (or secant numbers) Eq, Eq, Eo, ... are
defined in the such a way that the corresponding exponential
generating function is 1/ cos x = secx:

1 . En ,
= — X
cos X Z n!
n=0

Since cos x = cos(—x), we musthave Ey =E3=Es =--- =0
(equate coefficients!), so that we can write the defining equation

as
oo E n i (oo} _1 n i
(Z (2;)! x ) (Z ((Zn;! x > =1

n=0

Expanding the product and equating coefficients gives the
recurrence relation

( 1)n k
E Eok e (k)1 (20— 2K)] =0 forn>1

Multiplying by (2n)! puts it into the more convenient integral form
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Introduction to

: : n —k(2n —
S > k=o(=1)""*(3%)E2k = 0, or

Thomas
on 2n 2n
Honold Eop = <2)E2n—2 <4)E2n_4+ <6>E2n—6:|:"'

The first few even Euler numbers are Eg = 1,

o= (o)t
o= o) (i) -
o () (%)eas (S 15515141281,

6

e (- (e (- ()

—28.61-70-5+28-1—1=1385,
0 = 50521,

Eqp = 2702765,

E1s = 199360981,
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Example (BERNOULLI Numbers)

The Bernoulli numbers By, B1, Bo, ... are defined in the such a
way that the corresponding exponential generating function is

x/(e¥—1):
X 1 ZOO Br ,
= > = — X

eX —1 T+ 5+5+ nzon!

This gives the recurrence relation

By
= _ = f > 1
Bo=1, kZ:Ok!(n—k+1)! 0 fornz1,

which can also be written as

n
’
Bo = 1, Z(n; )Bkzo forn> 1.
k=0

The first few Bernoulli numbers are:

n|0] 1 [2]8] 4 |5][6][7] 8 [9]10
Bol[ 1] —2[5[0[ s [0z [0]-5[0]z
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Example (cont'd)
It is no coincidence that the odd Bernoulli numbers B3, Bs, B7, ...
are zero:

Z&an X Jr572x+x(e"—1)7x(e’<+1)

o n! eXx—1 2 2(ex —1) 2(ex —1)
x/2 —x/2

_xeM+e X cosh(x/2) X oth X

T 2eX/2—e X2 2sinh(x/2) 2 2
is an even function of x, and hence has all odd coefficients equal
to zero.

As a by-product, we obtain the power series expansions at xo = 0
of x coth X, x cot X = ix coth(ix), tan X = cot x — 2 cot(2x), viz.,

o B2n 22n 5 o (_1)n B2n 22n 5
xcothx:z x=", xcotx:zix”,
I
—  (2n)! pre (2n)!

e —{\1—1B,, 22n(92n _ 4
tanx =3 1) (2£n)!( )xz”—1:x+%x3+15x5+%x7+...

n=1
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S @ Zeros and Poles
S In general a quotient h = f/g of nonzero functions f, g that
Honold are analytic at z; is only defined in a punctured disk

0 < |z — 2| < . We can write

f(2) = (z—20)™f(2), 9(2)=(z—20)™01(2)

with my, m; € N, fi, g1 analytic at zy and f;(z,) # 0,

91(20) # 0. (The exponents my, m. are those of the smallest
powers (z — Z;)" appearing with a nonzero coefficient in the
power series representation of f and g at zy; cf. Property 5).

= h has the representation

h(z2) = (2 — 20)"M(2)

with m=my — mp € Z, hy = f; /g1 analytic at z, and

hi(20) = fi(20)/g1(20) # 0.

In this case we say that h has order m at z,. If m > 0, we call
Zo a zero of h of order m; if m < 0, we call zy a pole of h of
order —m (note that —m > 0 in this case).
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Thus h has a pole of order m at z; iff h1(z) = (z — zp)"h(2)
is analytic at zy and hy(zy) # 0; equivalently, the “power
series expansion” of h at zy (valid for 0 < |z — z| < 0) starts
with the negative power (z — zp) =™ :

h(z)= Y ca(z—2)", c-m#0.

n=—m

The concept of “pole” applies to any analytic function defined
on a punctured disk, e.g., z — 1/(e? — 1) has a pole of order
1inz =0.

In Complex Anaysis it is shown that a bounded analytic
function h on a punctured disk 0 < |z — z| < 6 can be
extended to an analytic function on the whole disk (in
particular lim,_, 5, h(z) exists in this case). This gives a
characterization of poles of hin terms of boundedness of
Z— (z— 2p)™h(z) and implies that other types of isolated
singularities (called essential singularities) must be tied to
high local fluctuations of the values of the function.
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horclc We close with two properties whose proofs require the more
advanced machinery of Complex Analysis.

® We have seen that per se analytic functions f: D — C,
D C C, are differentiable, i.e., lim (f(z+ h) — f(2))
h—0, heC

exists for all z € D, and that the derivative f'(z) is again
analytic. Conversely, it can be shown that differentiable
functions are analytic (and thus have derivatives of all
orders). This is in sharp contrast with the real case: A
differentiable function

f: D— R, D CR, can have a derivative which is not differentiable,
and f can be C* without being analytic; cf. examples.

Advanced Properties

Differentiable per se (in the above sense) complex functions
are also called holomorphic.
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Properties contd
© It can be shown that the power series expansion

f(z) = > 2 an(z — 20)" of a holomorphic function is valid in
the largest open circle around z; on which f is defined. In
other words, if f is defined on the whole complex plane (a
so-called entire function) then every power series
representing f has radius of convergence p = oo, and if

p < oo then the circle |z — zy| = p must contain a singularity
of f (i.e., a point where f is not defined).

The proof in the general case requires Cauchy’s Integral
Formula from Complex Analysis, but in the special case of a
rational function f = P/Q (P, Q polynomials with gcd(P, Q) = 1)
we can see it rather quickly using the partial fractions
decomposition.

Suppose Q(X) = [T_{(X — \;)™ is the prime factorization of
Q(X)inC[X]and 0 < |A1| < |A2] <--- < |A]. Then Ay is a
singularity of f closest to the origin.

The partial fractions decomposition of f has the form

r mj

(2) = R(2)+>_ Y (2_07;)5 with R € C[X], Gis € C, Gim # 0.
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Thomas The non-polynomial summands can be expanded into a
Honold power series using the generalized binomial theorem:

1 _ (_1)5)‘73 _ s 7300 n+s—1 —n_n
(Z—Ai)57(1—>\f1z)37( R nz:% s—1 )N %

The series converges precisely for ‘/\f‘z‘ <1,i.e.,for

|2 < [Adl.

= For |z| < |\1] all such expansions converge, showing
that f has a power series expansion f(z) = >"7°; a,z" in the
circle |z| < [M].

The radius of convergence p of >, a,z" cannot be larger
than |\1], because |z| < p cannot include a singularity of f.
= p=[M|

Finally, the change of variables w = z — z,, which transforms
f(z) into another rational function, shows that the preceding
statement holds for the power series expansion of f at an
arbitrary point zo ¢ {\y,..., A/}
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Example (Geometric series)

The function f: C\ {1} = C, z— L is holomorphic with
fl(z) = (1 77 . At zy = 0 it has the weII known series
representation

T4z+224..=) "=

The radius of convergence of the geometric series is p = 1.

(It cannot be larger since on the circle |z| = 1 there is a singularity
of f.)

We can expand f into a power series at any pointac C\ {1} by
the following computational trick. (There is no need to compute
the derivatives (") (a).)
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Example (Geometric series cont’d)

The radius of convergence of the new power series, which except
for the factor (1 — a)~' is a geometric series as well and
converges for |z — a| < |1 — a, is p’ = |1 — a| (the distance from a
to the singularity of f, as predicted by Property 9).

The derivatives of f can now be read off from the power series
expansion:

fN(a) = acC\{1}.

n!
(1—a)+t’

n!

Of course you can also prove by induction that (" (z) = (oLt
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Figure: Disks of convergence of the Taylor series of z — - at

ac{0,-1,i}

-
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Example
The function g C\{#i} —-C,z— 22+1 is holomorphic with
dg(z)= (22+1 . At zy = 0 it has the series representation
1
1-224+24 -2+ = —— |z] <1,
1422

which is also an instance of the geometric series.

Restricting g to R gives the function R — R, x — X2+1 , Which is

real analytic everywhere. But unlike the exponential series, its

Taylor series 1 — x2 + x* — x8 £+ ... at xo = 0 doesn’t converge on

all of R, but only for |x| < 1.

The same is true for R — R, x — arctan x, which has Taylor series
—x3/3+x%/5 - x"/7T+--- at x, = 0 and represents an

antiderivative of x — e

This example vividly explains why we need to look at the complex
extensions of real analytic functions to determine their more
subtle properties.
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Analytic Solutions
The Method of
Frobenius

: . . |
Figure: Disks of convergence of the Taylor series of z — "+ at

ae {0,1,1+1i}. For a=1+ithe nearest singularity is i, and
hence p = 1.
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Properties Already

S Compute the Taylor series of z — zﬂj ata=1anda=1+i.
Different Center
Doube Seres Hint: Proceed as for z — 1%2 and then use partial fractions.

Equating Coefficients
Algebraic Operations
Zeros and Poles

Advanced Properties

Ordinary and
Singular Points
Analytic Solutions
The Method of
Frobenius
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Ordinary and Singular Points
We consider implicit 2nd-order homogeneous linear
time-dependent ODE’s with analytic coefficients, i.e.,

P(x)y” + Q(x)y' + R(x)y =0 (1)

with real analytic functions P # 0, Q, and R defined on some
common interval /.

At points xp € [ with P(xo) # 0 we can put (1) into the explicit form

QW . A
P T =g @

and we know from the discussion of quotients of analytic
functions (see Property 6) that p and g are analytic at xp.

If P(xo) =0, let P(x) = Py(x)(x — xo)™ with P; analytic at xo and
Pi(xp) # 0. (The integer m > 1 is the multiplicity of xo as a zero of
P or, equivalently, the smallest index of a nonzero coefficient in
the power series expansion of P at xp; it exists in view of P #~ 0.)
We can assume that one of Q(xp), R(x0) is # 0, since otherwise
we can divide (1) by x — xo, which doesn’t change solutions
(why?) and reduces the multiplicity of xo as a zero of P by one.

y"+px)y +q(x)y =0, p(x)=
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Then (1) becomes

(x=x0)"y"+p1(X)Y +q1(x)y =0, pi(x) = gi(())(())v gi1(x) = :(();))
@)

and again p;, g1 are analytic at x.

Finally we can put (3) formally into an “explicit form”, which is not
defined for x = xo, if we admit the coefficients of y’ and y to have
poles at xp:

pi(x) a1 (x)

/!
—0. 4
Y T ey 0 )
——— ——
p(x) q(x)

Since one of p1(x0), gi(Xo) is nonzero, either p(x) or g(x) (or
both) have a pole of exact order m at xg.
Definition
© xo < lis called a singular point of (1) if P(x) = 0, and an
ordinary point otherwise.
® A singular point xo € / of (1) is called a regular singular point
if limx—x, (X — Xo)P(X) @and limy_,» (X — X0)2q(x) exist in R;
equivalently, m € {1,2} in (4) and p1(xo) =0 if m= 2.

)
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® A singular point x, is a regular singular point iff the order of
the pole(s) in Note 1 is < 1 for p(x) and < 2 for q(x).

® The condition for a regular singular point may also be
rephrased as: f(x) := (x — xo)p(x) and
9(x) := (x — x)?q(x) can be made analytic at x, by setting
F(X0) = limx—sx, (X = X0)P(X), 9(X0) = limy—sx,(X — X0)q(X).
(For an ordinary point xo the functions f, g are trivially
analytic at xp.)

From now on we will assume w.l.0.g. that xo = 0.

If Xo = 0 is an ordinary point or a regular singular point of the
ODE (1) then (4) can be rewritten as

Qo g
T

Ordinary and
Singular Points

Po

X

Y (S aptpx+pa )y 4 (G4 T gt g gud )y =0,

p(x) q(x)
The case of an ordinary point corresponds to pg = go = g1 = 0.
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After multiplication by x? this takes the more convenient “analytic”
form

X2y"+x(Po+P1X+PaXP+. . )Y +(Qo+ G X+Gex*+... )y =0, (5)
which is of course still equivalent to (1).
Here f(x) = po + p1X + PaXx® + -, g(X) = Qo + q1 X + G2X® + - --
are the analytic functions defined in the previous Note 3.

Caution: Don’t confuse f(x), g(x) with p(x), g(x), which may
contain negative powers of x and whose cofficients are indexed in
a non-standard way (cf. previous slide). Also don’t confuse the
real numbers py, g; in (5) with the analytic functions py(x), g1(x)
appearing in (3).
Example

The Euler equation x2y” + axy’ + 8y = 0, (a, 8) # (0,0), has a
regular singular point at x = 0. The corresponding analytlc
functions are the constant functions f(x) = «, g(x) = §.

We also see that truncating the coefficient functions of y’ and y in
the general form (5) after the first term yields an Euler equation,
viz. x2y" 4+ poxy’ + qoy = 0. This Euler equation will play an
important role when solving (5) in the case of a regular singular
point. But first we consider the case of an ordinary point.
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Suppose that xy is an ordinary point of
P(x)y" + Q(x)y’ + R(x)y =0, (1)

and that the power series representing p(x) = Q(x)/P(x),

g(x) = R(x)/P(x) at xy converge for |x — Xo| < p. Then for any
pair (ap, a;) € R? (or C2) there exists an analytic solution of (1) of
the form y(x) = 372 an(x — xo0)" for |x — Xo| < p.

Notes

® Since y(xo) = a and y’'(xp) = as, this says in particular that
every IVP associated with (1) locally at xo has an analytic
solution.

e The best choice of p in the theorem is the minimum of the
radii of convergence of the power series representing p(x)
and g(x) at xo, and for this choice the theorem says that the
radius of convergence of Y~ 2 an(x — Xo)" is > p.
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Proof of the theorem.
We assume w.l.0.g. xo = 0 and use the equivalent form (5) of (1)
with pp = qo = g1 = 0 for the proof. Plugging

(oo} (oo}

X2y = x> " n(n—1)ax"2 = "n(n-1)ax",
n=2 n=2
xy' = x Z napx""! = Z napx"
n=1 n=1
into (5) gives
(o] o0 o0
Z n(n—1)a,x" + Z na,x" Z onx™ | +
n=2 n=1 n=1

o0 o0
+ D ax" | | Y gax"| =0,
n=0 n=2

or, equivalently,
n—1 n—2

n(n—1)a, + Z kakpn_k + Z akQn_x =0 forn=2,34,...
k=1 k=0
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Proof cont'd.
It is clear that this recurrence relation for the sequence
(a0, a1, a, ... ) has a unique solution for any given ap, a;.

It remains to show that the so-defined power series },° ; anx"
converges for |x| < p. For this we use the following

Lemma
The radius of convergence of any power series ", bn(z — Zo)"
is given by

R :=sup{r € R; the sequence (|b,| r") is bounded} .

Proof of the lemma.

We show that ", bs(z — 29)" converges for |z — z5| < R and
diverges for |z — zg| > R. (Notably this also proves the existence
of the radius of convergence.) W.l.o.g. we assume zy = 0.

|z| < R: There exists r > |z| such that (|b,| r") is bounded, say
[bn| r" < M for all n. = |bpz"| = |bn| r"(|2] /r)" < MQ" with
q:=|z|/r < 1. Since > MqQ" converges, we can apply the
comparison test and conclude that > b,z" converges.

|z| > R:1If 3 byz" converges then b,z" — 0 and |b,z"| = |by| |2|"
is bounded. This contradicts the definition of R. O
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duatons example, 3>, nz" has R =1 and |b,| R" = n — oo, whereas

Thomas S, (1/n)z"has R=1and |b,|R" = 1/n— 0.

Proof of the theorem cont'd.

Let r < p be given. Then, by the lemma, the sequences (|p,| r")
and (|gn| r") are bounded, say by M.

Using the recurrence relation for a,, we now try to bound (|a,| r").
Guided by one of our introductory examples, we find

S
|
N

n—1

> k(akr ) (pn—kr"™") + (@) (Gn-kr"")
k=1

(Zk|ak|r +Zaro>

n(n—1)|as| r" =

}

ic Solutions

— |an|r" < Z |a Ik (n>2)

This is a recursive bound for the sequence (|a,| r"), which
unfortunately is not as simple to handle as the former one.
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Proof of the theorem cont’d.
Now we proceed as follows: We define an auxiliary sequence (uy)
by uy = |ao|, uy = |ay| r, and

Mk +1)

= — 7 for n > 2.
tn n(n—1)uk ornz
k=0

One can show by induction that

Upi1 1.

lap| r" <up, foralln and lim
n—oo  Up

cf. exercises. It follows that for any positive ry < r we have

lan| i < up(ri/r)" withg:=nr/r<1,

and that the series Y-, u,q" converges (because .~ , upx"
has radius of convergence 1).

= We can apply the comparison test to conclude that

> oo lan| r{ converges as well (or that (|a,| r{") is bounded,
whatever you prefer!).

Finally, since r and r; were chosen arbitrarily subject only to

r <r<p,itis clearthat > . |an| r{’ converges for all r; < p, and
hence .-, a,x" converges for [x| < p. O
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the general solution of (1) is y(x) = apy1(x) + ary=(x). In
particular, y1, y» form a fundamental system of solutions of (1).
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S Suppose (a,) and (u,) are sequences of nonnegative real
Thomas numbers satisfying
n—1
M(k+1)
< >
=2 pin—1) (n=2),
k=0
Properties Already 1 M(k N 1 )
Un Zn(n_*')uk (n— )7

k
Up = o, U1 = a1

e for some constant M > 0.

a) Show «ap < u, for all n.

Ordinary and b) ShOW ||mni>oo Uni1 = 1

Singular Points Un
el Hint: Express up.1 in terms of u,.

Frobenius

c) Is the sequence (up) (and hence («,) as well) necessarily
bounded from above?
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Example (Airy’s Equation)

The ODE y” —xy =0 is known as Airy’s Equation. The
theorem predicts that its general solution is analytic everywhere.
Making the usual power series ,Ansatz“ y(x) = > -, a,x" and
substituting y(x) into Airy’s Equation, we obtain

o0

Y'(x) =Y _(n+2)(n+1)an2x",

n=0

oo oo
xy(x) = Z apx™! = Z an_1x"
n=0 n=1

2a,+» ((n+2)(n+1)an2 — a_1)x" =0
n=1
an—1

— 32 == 0 al"ld an+2 - m

forn=1,2,3,...

n

n 1 1
= asp2 =0, azp = aok[[1 W, dsn+1 = a4 H m

k=1
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Honold X3 XG X9
x)=1
) =1+3 5465327986532
X4 X7 X10

The radius of convergence of these power series is p = oo, as you
can check by applying the ratio test to the series with the gaps
removed (or substitute z = x3).

= The general solution of Airy’s Equation, which is

y(x) = aoy1(x) + aryz(x)
4 ) 6 a 7

A . Ly U X0+ x4
3-2 4.3 6-5-3-2 7-6-4-3 ’

also has radius of convergence p = co.

This direct proof of p = oo is instructive but not necessary, since
the theorem implies p = oo (as for any explicit linear 2nd-order
ODE with polynomial coefficients).
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Example (Legendre’s Equation)
The Legendre equation (or family of equations)

(1-x®)y" —2xy' +n(n+1)y =0 (Lep)

has regular singular points in x, = +1, but an ordinary point in
Xo = 0.

= We can solve it in (—1, 1) with the usual power series ,Ansatz"
y(x) =Y, akx (“k” is necessary, since (Lep) is indexed by n).
Since the coefficients are polynomials, it is better not to rewrite it
in explicit form (which would produce the power serie

1)) but solve it directly.
We obtaln
(1= X2 k(k = Naxk2 —2x> " kax* '+ n(n+1) ) acx*
k=2 k=1 k=0
= > (k+2)(k +1)a2x" —Zk (k= 1)aex® —ZZkakx +Z n(n+1)ax*
k=1 k=0

((k +2)(k + 1)aks2 — (K2 + k — n? — n)ag)x* = 0.

P
k=0
D
k=0
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s = B2 = o) T kepkr ) 2 (e
(—1)m = . ,
= &m =20 Gy [T (n—2i)(n+2i+1)],
i=0
- o , .
A2m 1 :a1mn[(n72/f1)(n+2/+2)]

A fundamental system of solutions of the Legendre equation is

therefore
Yi(x) = mz:0(1),,7n(n—2)~~(n—2m+2)&;7}:;)3)(n+(*‘;)--~(n+2m— 1) 2T

o) = Y (A0S0 20 0420 g

m=0
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is odd) is a polynomial function of degree n and hence
analytic everywhere. The other solution is analytic in (—1,1),
since p(x) = =2, q(x) = %) have power series
expansions at xo = 0 with p = 1 In fact the ratio test applied
to the non-polynomial solution shows that its radius of

convergence is precisely 1.

¢ Since the polynomial solutions are scalar multiples of the
polynomial fundamental solution, this must also hold for the
n-th Legendre polynomial P,(x). Hence up to a normalizing
factor P,(x) is equal to y;(x) if nis even and to yo(x) if nis
odd. The normalizing factor can be determined from the
i/ leading coefficients of P,(x) and the polynomial fundamental
° Soluons solution, which are

sthod of
nius

@m@n—1)---(n+1) :1(2n> resp. (— 1)L 1 it koddk.
2"n! 2n TTk-1,koda K
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For the latter observe that for even n the signless coefficient
of X" n y1(x) is

nn—2)--2(n+1)(n+3)---(2n—1)  (n+1)(n+3)---(2n—1)

n! -~ (n-1((n-3)---3-1 "

and similarly for odd n. It follows that

(_1)Ln/2J H}Z(lnﬁ,keven k % i (X) if nis even,
2" HZ:Lkeven k yZ(X) if nis Odd,

which together with the formulas for y;(x), y2(x) determines
the coefficients of P,(x).

Alternatively (and less cumbersome), differentiate

(x2 = 1)" =37 _o(—1)%(})x®"~2k exactly n times to obtain
the coefficients of Pp(x) = 51— D" [(x2 — 1)"] directly.

- 2!

Pp(x) =
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Inhomogeneous Equations

X is said to be an ordinary point (resp., a regular singular point) of
P(x)y" + Q(x)y’ + R(x)y = S(x), (2)

if the same is true of the associated homogeneous equation and
S(x) is analytic at xp as well.

Corollary

If xo is an ordinary point of (2) then solutions y,(x) of (2) are
analytic in xo, and the power series representation

Yo(X) = >"020 an(x — Xo)" is valid (at least) for |x — Xo| < p, where
p denotes the minimum of the radii of convergence of the three
power series representing p(x) = Q(x)/P(x), g(x) = R(x)/P(x),
and r(x) = S(x)/P(x) at xo.
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Proof of the corollary.

Let / be an open interval containing xp and not containing any
zero of P. In terms of a fundamental system y;(x), y2(x) of
solutions of (1) on /, any particular solution of (2) on / has the
form yp(x) = c1(X)y1(x) + c2(x)y2(x) with

C1(X)—71+/X}/\2)\(]?1§(0dt, C2(X)_fy2+/‘xy1(“l;)(:§t)dt’

where 1, v are constants and W(x) = y1(x)y5(x) — yj(x)y=(x) is
the Wronskian of y1(x), y2(x); cf. the vectorial
variation-of-parameters formula. By Abel's Theorem, the
Wronskian has the form W(x) = yexp [ —p(t) dt for some
constant v # 0. Since p(x) is analytic in the disk |z — xo| < p and
integration doesn’t change the radius of convergence of a power
series, the function W(x)~" = 4~ exp [;* p(t) dt is analytic in

|z — xo| < p as well. The same is true of yy(x), y=(x) (by the
theorem) and r(x) (by assumption). Since y,(x) is obtained from
these functions by a finite number of additions, multiplications and
integrations, it must also be analytic in |z — xo| < p. O
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Example
We solve the IVP

Yty = LAy() Y(0)=0 on(-1,1).

Notably, the machinery developed for higher-order linear ODE’s
with constant coefficients can’t be used to solve this ODE (since
LX is not an exponential polynomial), but order reduction and
vectorial variation of parameters can be, of course.

Expanding the right-hand side into a geometric series and making
the usual power series ,,Ansatz” turns the ODE into

y(x) =020 anx”

Z[ (n+2)(n+ 1)an2 + an) x" _Zx
n=0 n=0

1—a,

— " forn=0,1,2,...
(n+2)(n+1)

— an+2 =
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Equations Together with ay = a; = 0 this gives

Thomas

Honold B 1,145 1 4, 1 5 23 5 2838 , 697 4
YX) = 3 X g X5 X 54 X+ 756+ 7008 Ta0320 ¢ T

985 , 39623 .

72576 © 3628800 ©

By the corollary, the series is guaranteed to converge for |x| < 1
and solves the ODE in (-1, 1).

In fact, it is not difficult to see that

1
n(n—1)

i.e., limpoo (N(N—1)a,) = 1.

This follows, e.g., from n(n_”%)g,_z) <ap< ﬁ for n > 3, which
can be shown by induction.

— The radius of convergence of >~ ; a,x" is exactly 1.

From the general theory we know, however, that y(x) has a
(unique) extension to (—oo, 1), which is analytic as well.

+

an =~ for n — oo,
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Introduction to

Diff tial H . H H

Equations Question: How to find the extension of y(x) to (—oo, 1) ?

Thomas Answer: With power series we cannot do this in one fell swoop,
ono!

but we can use a different center to enlarge the domain.

Let us consider this for x = —1, i.e., we make the powers series
JAnsatz” y(x) = 302 o ba(x + 1)

S 1 — (x+1)"
n+1 _
— bpp = 1/2 bn forn=0,1,2,...

(n+2)(n+1)
This gives the general solution as

Ordinary and 0 1 N
" cSo\\iltiL)ns bO Z ((2 X + 1 an + b Z )) (X =+ 1)2n+1_~_

sthod of n=0
nius

+ A1)+ g(x +1)3—%(X+1)4+@(X+1)5
+ 725 (X + 1)° + g (X + 1) + ke (X + 1)° +

FNEN
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Example (cont'd)
This expansion is valid (at least) for —3 < x < 1, because the
distance from xp = —1 to the singularity of 1/(1 — x) is 2.

Since we are interested in the extension of the solution on (-1, 1)
determined before, we need to solve the same IVP
y(0) = y/(0) = 0. This gives the two equations

boCOS1+b1Sin1+%+i_%+91ﬁ+71ﬁ+'“:O,
—bgsin1+bjcos1+2+ 2 — s+ 2+ 55+ =0,

from which by, by can be determined. (Likely the two series
involved can’t be evaluated in closed form, but we can use
numerical approximations instead.)

Note: Alternatively, one could determine by = y(—1), by = y'(—1)
directly from the series representation in (—1, 1). But this is not
advisable, since the resulting alternating series converge slowly
(because —1 is on the boundary of the disk of convergence).

Similarly, we can obtain power series solutions of y” + y = 1#

—X
that are defined for x > 1 by choosing a center xo > 1, but we
stop the discussion here.
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The Case of a Regular Singular Point
Now suppose that xp is a regular singular point of

P(x)y"” + Q(x)y’ + R(x)y = 0. (1)
As discussed before we can assume xg = 0, in which case the

ODE has the equivalent form

X2y 4 x(Po+P1X+PaX2+.. )Y +(Qo+qx+qex®+...)y =0 (5)
with x — f(x) = >~ pnx" and x — g(x) = D"~ gnx" analytic in
B,(0) for some p > 0.

Since truncating f(x), g(x) after their constant term yields the
Euler equation x?y” + xpoy’ + qoy = 0, it is reasonable to try the
generalized (“fractional”) power series ,,Ansatz®

o0 o0
y(x) = ax""=x"Y " a,x" = x" x analytic
n=0 n=0

for finding a nonzero solution of (1). The number r € C is uniquely
determined by y(x) if we require ay # 0 (or, yet better, normalize
toag=1).



Math 285 Substituting
Introduction to
Differential 00

Equations y/(x) — Z(r + n)a,,x’*”fﬂ
Thomas n=0
Honold i
Y'(x) =Y (r+n)(r+n—1)ax"?
n=0

into the explicit form of (1), we obtain the power series equation

i(r+ n)(r+n—1)a,x""+ (i(r + n)a,,x’“) (i p,,x”) +
n=0

Zeros and n=0 n=0
Advanced Properties o'e) [ee)
; (Z anxr+n> (Z qnx”> o
n=0 n=0
which (take the factor x” out!) is equivalent to

Analytic Solutions
The Method of
Frobenius

n n
(r+n)(r+n—"1)ay+ > (r+k)akpox+ Y _ akGnk =0,
k=0 k=0

n=0,1,2,...
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This can be rewritten as

n—1
[(r+n)(r+n—1)+(r+n)po + Go] @+ Y _ [(r + K)Pn—k + Gn—] ak = 0
k=0
forn=0,1,2,...
Observations

e The first equation is
[r(r—1)+rpo + Qo] a = 0.

It has the form F(r)a, = 0 with the quadratic polynomial
F(ry=r(r—1)+ro+qo=r>+ (po — 1)r + qo.
¢ In each of the subsequent equations, a, appears with the
coefficient
(r+n)(r+n—1)+(r+npo+q = F(r+n).

Apart from a, only numbers a, with k < n appear in such an
equation.



Math 285 Observations cont'd

Introduction to

Differential . . .
Equations ¢ Regarding r as a variable, we can solve the equations for
Tiieres n=1,23,... by defining a, = an(r) recursively as
Honold

a(r) =1,

n—1
an(r) = —¥Z[(r+k)p k + Qn_k] ak(r) forn>1
! F(r+n) & nke T N =

The so-defined r — an(r) = Pn(r)/Qn(r) is a rational
function of r, whose denominator can be taken as the
polynomial Q,(r) = F(r+1)F(r+2)---F(r+n).

For example, we have

___1 __Ipiran
) =~ Fry P+ @laln) = gy
1
l?cebneﬂjzr;odov aZ(r) = F(f ¥ 2) ([rp? + qQ]aO(r) + [(r + 1)p1 + q1]a1(r))

_ F(r+ 02 + go] = [(r + 1)p1 + qillrp1 + q1]
B F(r+1)F(r+2) '
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These observations remain mutatis mutandis true for regular
singular points xp # 0. In the general case, Q(x)/P(x) and
R(x)/P(x) must be expanded into powers of x — X, viz.,

) = B0 = Pyl — 1)+ ol — 10
T00 = B = o g 0+

and F(r) = r? + (py — 1)r 4+ qo formed from the numbers py, qo
appearing in these expansions.

Definition

The quadratic equation F(r) = 0 is called indicial equation
associated with the regular singular point xq of (1). Its roots ry, r»
(in the case r1, . € R ordered as ry > ry) are called exponents at
the singularity xq.

Note

F(r) = 0 is exactly the equation that r should satisfy in order for
y(x) = x" to form a solution of the Euler equation

x2y" + poxy’ + qoy = 0 obtained by truncating (5).



Math 285
Introduction to
Differential
Equations

Thomas
Honold

" ons
The Method of
Frobenius

Theorem (cf. [BDM17], Th. 5.6.1)
Suppose that xo = 0 is a regular singular point of

P(x)y” + Q(x)y' + R(x)y =0 (1)
and that
~Qx)  po
p(x) = % - +P1 + P2X + P3x® + pax® + -

R(x
q(X)_PEx; 3(2)4'@4-6724-673)(4-(74)( +-

holds for 0 < |x| < p (i.e., Y=o PaX", > = GnX" converge for |x| < p).

© /fthe exponents ry, r, at xo are distinct and ry — r, ¢ 7, then
(1) has two linearly independent solutions on (0, p), viz.

yi(x) = x" (1 + Zan(ri)xf’) . i=1,2.
n=1

These are obtained by setting ag(r;) =1 and forn > 1
determining an(r;) recursively from
1 n—1

S0+ K)Pn—ik + Gn—k] @(ri)-

P R &
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Theorem (cont'd)

® Ifry — r, € Z, the larger root ry (respectively, the double root
ri = r) yields one solution of (1) of the form
yi(x) =x"(1+3 72, an(rn)x") on (0, p). The coefficients
an(nry) are determined in the same way as in Case (1).

® Ifry = b, a second solution of (1) on (0, p) that is linearly
independent of y(x) is

Yo(x) = y1(x) Inx + x" Z bn(ri)x".
n=1
with by(r1) = ay,(n1).

@ Ifr, —nn= N € Z", asecond solution of (1) on (0, p) that is
linearly independent of y1(x) is

yo(x) = ayi(x)Inx + x" <1 + i cn(rg)x”>

n=1

with a= ,“_Tz(r —rR)an(r) and cy(r) = ;r [(r — r2)an(r)]

r=ry
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Notes on the theorem
e The theorem also holds for regular singular points xo # 0,

provided one replaces x by x — xp and (0, p) by (xo, Xo + p)
everywhere in its statement.

Solutions on (—p, 0) (resp., on (Xp — p, Xo) can be obtained
by making the substitution z(x) = y(—x) in (1), which gives
P(—x)z" — Q(—x)Z' + R(—x)z = 0. The corresponding
equation (5) is

x2Z" +x(po—P1X+PX2F-- )2 +(Qo— g1 X+ x3F--- )z = 0,
which has the same indicial equation as (1). Further one can
show by induction that the coefficients a,(r) change to
(—=1)"an(r) when using the “alternating” sequences

(Po, —p1,P2,---), (G0, —q1, G, ... ) instead of (po, p1, P2, - .. ),
(90, G1, @2, . .. ). This implies that solutions on (—p, 0) have
the same form as in the theorem (with the same a,(r), ba(r),
cn(r), a, because the change a,(r) — (—1)"an(r) is undone
by the the back substitution y(x) = z(—x)), except that x" is
replaced by (—x)" = |x|" and In x by In(—x) = In|x|. Thus, if
we write |x|" and In |x| in the formulas then both cases

0 < x < pand —p < x < 0 are covered; cf. [BDM17], Th. 5.6.1.
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Notes on the theorem contd
e It is usually difficult to obtain an explicit formula for the

functions a,(r) from the recurrence relation. Hence, instead
of computing a,(r) and the expressions for b,(r), c,(r) and a
in terms of a,(r), it is often better to use the postulated form
of the solution as an ,Ansatz” and try to determine the
coefficients ay(r;), bn(ri), cn(r;) and a by substituting it into (1).
Since the roots of the indicial equation are

ro= 15 (1 —pox/(po—1)2 —4q0), Cased (n—rncZh)
occurs iff (pg — 1)2 — 4go = N? is a perfect square, and then
rn= (1 — Po + N)/2, r = (1 — Po — N)/2

InCase 1 (r1 — o ¢ Z) itis possible that ry, r, € C\ R. Then
r, = 1y, the two indicated solutions satisfy y»(x) = y1(x), and
the real and imaginary part of one of them provide a real
fundamental system.

The subsequent proof of the theorem shows that the solution
y2(x) in Case 4 is obtained in the same way as in Case 3
except that the exponent r; is replaced by r, and the rational
functions an(r) by an(r) = (r — r2)an(r).
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Notes on the theorem cont'd
¢ The theorem is essentially due to GEORG FERDINAND
FROBENIUS (1849-1917), and the method developed to
solve 2nd-order time-dependent linear ODE’s at regular
singular points is commonly referred to as the method of
Frobenius.
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Proof of the theorem.

(1) For the first equation to be satisfied, we must choose r as a
root of the indicial equation., i.e., r=ry orr =re.

Sincern —r» ¢ Z,we have F(ri+n) #0forallne Z™.

= ap(r) is defined for all n € N and yields a solution of (1).
The solutions y1(x), y=(x) obtained in this way are linearly
independent, since y;(x) ~ x" for x | 0 and certainly not

x" ~cx™for x | 0.

(2) Here we have F(ry +n) #0forallne Z*.

— r; gives rise to a solution of (1) as in Case 1.

(3) We work with the two-variable function

rx_xZan X_Za XN,

which is defined for |x| < p, r ¢ {rr —1,rn — 2,...} (see below),
and the differential operator

L = x?D? + x f(x)D + g(x)
x2D? 4+ x(po + p1x + - )D+ (o + g1 X + - -+ ) id,

which in the following acts like a partial derivative (i.e., D £ ax)



Math 285 Proof contd.

Introduction to

Eéicfmm By definition of the coefficients an(r), we have
fistion L[¢] = X"+ Z 0x™*" = (r —n)x
Since L involves only -2 5¢» Clairaut's Theorem gives Lo 5, = g ol

(provided we apply it to a C2-function).

= L Bﬂ L[qb] 2(r — r)x" + (r —r)?(Inx)x"
=0.

r=n

L[ 50| = o

It follows that a second solution of (1) is
¢

57 (%) = (Inx)x" Z an(r)x" + x" Z a,(r)x"

= (InX)y1(x) + x" Za r)x

Frobenius

Clearly this solution is linearly mdependent of y1(x).
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Introduction to PrOOf Cont’d.

R The proof of (3) is not yet finished, because the termwise
Thomas differentiation used in the computation needs to be justified. Also
Honold we need to show that the generalized power series series

solutions in Parts (1)—(4) actually converge for |x| < p.

The latter can be done by a slight modification of the method used
in the analytic case. For 0 < p; < p we have a recursive bound

— (Ir[ + k +1) M|ay(r)| pf
n<
[@n(r) 1*; F(r+ n)|

for the coefficients of ¢(r, x), obtained from the recurrence
relation for a,(r) in the same way as before (and with the same
meaning of M). The auxiliary sequence (u,(r)) defined by
Up(r) =1 and

—1
: nz (7l + & + 1) Mu(r) forn>1
L prd |F(r+n) -
still satisfies limp_, Unit (1) — (independently of r), so that the

un(r)
proof can be finished in the same way as before.
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Differential

Eqlanons The preceding argument can be modified to yield uniform
Thomas convergence of ¢(r,x) = >_.°a(r)x" ™" and its partial
hicrold derivatives up to certain orders (order 1 for 2 and order 2 for &)

on compact subsets of their domain, justifying termwise
differentiation. The arguments in Parts (1), (2), (4) are similar.

(4) Here we set
O(r,x) = (r— )XY an(r)x" =x"> (r— rz)an(r)x".
n=0 n=0

The functions a,(r) = (r — r2)an(r) satisfy the same recurrence
relation as an(r), but start with ag(r) = r — re.

1 N—1
= CVN(I') - 7(r_|_ N— f1)(f+ N— r2) par [(r+ k)p“—k + qn—k] (r, rg)ak(r)
R ] N—1
P ~TriN-1n kZ:O [(r + K)Pn—k + Qn—k] ak(r),

sincery =+ N.
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Equations _— OéN(r) is aﬂa'ytiC at ro.
Thomas The recurrence relation then implies that a,(r) are analytic at r»
Honold for n > N. Clearly this also holds for n < N, in which case
an(fg) =0.

As in (3) it then follows that ¢(r, x) defined for |x| < p,
ré{n-1n-2....n—-N+1,n—-N-1,rn-N-2,...},and
satisfies

L[g] = (r — r)(r = r2)ao(r) = (r — ri)(r — )X,

L] S| = 1o

=0.

r=ry

a¢ , o0 , o0
— ﬁ(rg,x) = (Inx)x" ,;)a,,(rg)x” + X" ;a’,,(rg)x”

is a second solution of (1).
It remains to verify that this solution has the form stated in the
theorem. For the 2nd summand this is true by definition of a,(r).

Frobenius
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Proof contd.
The first summand can be rewritten as

oo o

(Inx) >~ an(r)x™? = (Inx) Y~ anin(r2)x™",

n=N n=0

which is equal to ay;(x) Inx = an(r2)y1(x) In x iff
aniN(r2) = an(r2)an(n) for n € Nyg. This in turn can be proved by
induction on n (the case n = 0 being trivial):

1 n+N—1

anin(r2) = —m ; [(r2 + K)PnsN—k + QninN—k] ck(r2)

n+N—1
1 +

- FTH k;v [(r2 + K)PrN—k + Gnin—k] k(r2)

7
IN

1

=~ “Fln+n) [(r2+ K+ N)pn—k + Gn—k] aks+n(r2)

T I
- O

— _F(H1+n) [(r1 + K)Pn—k + Qn—k] an(r2)ax(r)

=
o

= an(r)an(n). O
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Introduction to

Differential Find two linearly independent solutions of the ODE
quations
R 2xy" +y +xy=0, x>0.

Rewriting the ODE as
1 1
1 Y4 o _
y + ox + 5V 0,
we see that x = 0 is a regular singular point and py = 1/2

(pr=p2=-=0,q=0(q1=0,g=1/2,g=q==0).
= The indicial equation is

rP+po—Nr+q=rP-sr=r(r-1%) =0.

= The exponents at the singularity x =0are y =1/2, r, = 0.
Thus we are in Case (1) of the theorem and there must be
solutions y1(x), y2(x) of the form

" ttions
The Method of
Frobenius

yi(x) = ﬁi an(1/2)x", Yo(x) = i an(0)x".
n=0 n=0
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Introduction to

Differential rn = 1/2

Equations . A—

thomas Instead of using the general recurrence relation for an(r) at r =1/2,
Honold we determine it directly from the ODE, writing a, in place of a,(1/2).

o0
— Z anxn+1 /2
n=0

2xy"(x) = QXZ (n+3) (n—1) anx"~3/2

R —— xy(x) = a3/ = Z ay_ox"1/2

Frobenius
n=0

—0-a +Sa1x+Z[(2n+ 1)na, + ap_2] x" =
n=2
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an-2
—a=0anda,=—————-—=forn>2
! " n(2n+1) -

= All odd coefficients a»,, 1 are zero, and

2 4 6
nx)=x (1 55 5.4.5.9 2.4.6.5.9.13

o (—1)"X2"+1?
£~ 20015913 (4n+1)’

The theorem predicts p = oo for the power series (without the
factor x'/2), which can also be seen with the aid of the ratio test.

The Method of
Frobenius
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Example (cont'd)
r. = 0: Writing again a, in place of a,(0), we obtain

Y0 =3 an"
n=0

2xy"(x) =2x_n(n—1)ax"?
n=2

o)
= Z 2n(n—1)a,x""

n=2

Y'(x)=>_ nax""
n=1

oo o0
xy(x) = Z apx™ = Z an_ox"!
n=0 n=2

o0
— 0-a+ax+ Y [n(2n—1)a,+ a, 2] x" =0
n=2
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Example (cont'd)

an_
— a=0anda,= —— "2

n(2n—1)
= Again all odd coefficients ay,.1 are zero, and

forn>2

X2 x4 x8

-3 3t2437 2463711°
o0 1)nX2n
Z n3. 7 11 (4n—1)

The theorem predicts p = oo, which again can also be easily

found with the ratio test.

In all we have shown that y;(x), y2(x) form a fundamental system
of solutions of 2xy” + y’ + xy = 0 on (0, c0). A fundamental
system y, (x), ¥, (x) of solutions on (—oc, 0) is then obtained by
changing the fractional part of y;(x) to v/—x.

In the special case under consideration, since only even powers
X2 appear in y;(x), y2(x), this is equivalent to setting

Yy (X) = y1(=x), y5 (x) = y2(—x) for x < 0.

¥2(x) and its constant multiples are defined and solve the ODE on R.

Yo(x) =
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Example (cont’d)

Finally we compare our method of determining the fundamental
solutions y(x), y=(x) directly from the ODE with that of employing
the rational functions an(r). Since the only nonzero coefficients
among p;, g; are pp = g2 = 1/2, the general recurrence relation
becomes

_ Qano(r) an_»(r)
an(r) = Fr+n) — 2(r+n)(r+n-13)
an—2o(r)

(r+n)@2r+2n-1)’

supplemented by ag(r) =1, a1(r) = 0.
= appy1(r) =0and

(=1)"
(r+2)(r+4)---(r+2n)2r+3)2r+7)...(2r+4n—-1)

ag,,(r) =

For r € {0, 1} this coincides with the formula determined for the
coefficients of y1(x), y=(x) earlier. (For r = 1/2 the denominator
of app(1/2)is27"5-9---(4n+1)4-8---4n=2"n'5-9---(4n+1).)
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Example
We solve the Legendre equation

(1—x®)y" —2xy’ +n(n+1)y=0, neN,

near the singular point xp = 1.

Since xo = 1 is a simple zero of P(x) = 1 — x? and not a zero of
Q(x) = —2x (or not a zero of R(x) = n(n+ 1)), xo = 1is aregular
singular point.
First we put the ODE into explicit form and rewrite the coefficients
interms of x — 1:

2x , n(n+1)
x-x+1)? x-nHx+n”’

o 1 1 , n(n+1)
=Y +(x—1+2+(x—1)>y_(x1)(2+(x1))y

% 4\k
=y -|—( +Z 2k+1 x-1) )y’+n(n+1)(z (2k1+)2 (x—1)k>y7

k=-1

y// +

from which we can read off pp =1, go =0, and p =2
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Example (contd)
Remark: Since we do not need the full expansion of p(x) and
g(x), it is easier in this case to use the formulas

2x
po = lim (x — 1)p(x) = lim -2 1.
i (x — 12alx) = fim (D=1
@ = Jim (x - 1q() = fim (- MEDEED) o,

and by Property (9) of power series the radii of convergence of
>opa(x — 1), Z gn(x — 1) are the distances from x = 1 to the

singularity of 2% resp. — ™20 viz. 1 — (~1) = 2.

The indicial equation at xo = 1 is therefore
r2+(p0—1)r+qozr2:0, :>r1:r2:0.

Hence we are in Cases (2) and (3) of the theorem, and there are
fundamental solutions of the form

(x) = iak(x — D5 w(x)=y(x)In|jx — 1]+ ibk(x — 1)k,
k=0 k=1
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Example (cont'd)
For the computation of y1(x) we make the substitution t = x — 1,

i.e., x = t+1, which gives 1 — x> = —t2 - 2t, —2x = -2t — 2 and
turns the Legendre equation into

—(B+2t)y"(t+1)— (2t +2)y'(t+ 1)+ n(n+1)y(t+1) = 0.
Substituting y1(X) = y1(t+ 1) = > s axt® gives
—(2 +2t) (Z k(k - 1)akt“) —(2t+2) (Z kakt“> +n(n+1)) at*

k=2 k=1 k=0

= i[—k(k —1)ak — 2(k + 1)kays1 — 2ka — 2(k + 1)as1 + n(n+1)a] ¢
= i[(”(’“r 1) —k(k+1))ax — 2(k + 1)2ak+1}t" -0

nin+1)—k(k+1) _ (n—k)(n+k+1)
okt 1E T ki1

fork =0,1,2,...
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S Setting ap = 1 gives
Thomas ak:n(n—1)---(n—k+1)(n+1)(n+2)...(n+k)

2k (K1)2

S0

The coefficients ax with kK > n vanish, since in this case
n(n—1)---(n— k + 1) contains the factor 0.

n

= y(x) :ZQ}((Z) (n:k)(x—nk.

k=0

Since y1(x) is a polynomial, it solves the Legendre equation
everywhere, and hence must be a constant multiple of the
Legendre polynomial P,(x). The leading coefficient of y;(x) is

#(0)("2")-=z(7)

the same as that of P,(x) !

" ttions
The Method of
Frobenius
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Example (cont'd)
So we have discovered the identity

=S ()3 e
n(n+1)
2

(n—1)n(n+1)(n+2)

=1 16

(x —1)+

(x— 12+

From this we see that P,(1) = 1, which is not obvious from the
original definition of P,(x) and explains why the Legendre
polynomials are normalized in the strange way

Pr(x) = 2 (37)x" + smaller powers.

Since P,(x) is even (odd) when n is even (resp., odd), this also
gives P,(—1) = (—1)", which in turn yields the binomial coefficient
identity

i(—wk(,?) (n:k) —(-1)", n=0,1,2,...
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[é‘cf;j;figiz' For determining the 2nd fundamental solution y»(x) it will be
Thomas convenient to use the associated differential operator
Honold Lly] = (1 — x®)y” —2xy’ + n(n+1)y. For x > 1 we compute

L{y2(x)] = L[Pa(x)In(x —1)] + L

ibk(x — 1)k]
k=1
=(1- x2)<1>;;(x) In(x — 1) + 2P’,,(X)X1f1 TN p— )

—2x (P’,,(x) In(x — 1)+ P”(X)x11>
i bk(X — 1)k‘|

k=1

+n(n+ 1)Pp(x)In(x = 1)+ L

= —2(x + 1)P,(x) = Pu(x) + L[...]
= —2(t+2)P,(t+1) = Py(t+ 1)+

i
The Method of
Frobenius

+Z[ n(n+ 1) = k(k + 1)) b = 2(k + 1)2byas |t = 0,

where we have set by = 0.
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Example (cont'd)

The resulting inhomogeneous linear recurrence relation for

(b1, b2, bs, . ..) clearly has a unique solution. (For by # 0 it has a
unique solution as well, but this amounts to adding

boy1(x) = boPp(x) to y2(x), which gives nothing new.)

If the order nincreases, the number of nonzero terms in the
inhomogeneous part (which is a polynomial of degree n) will
increase as well, making it unlikely that there is a simple formula
for b, in general. For this reason we will consider only the cases
n=0andn=1.

It should be noted here that Frobenius’ power series method
doesn’t provide a convenient way of solving the general Legendre
equation completely. A 2nd fundamental solution of the Legendre
equation on (—oo, —1) or (1, +00) can be more easily found by
other methods; cf. the subsequent remarks.
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Example (contd)
We consider only the cases n=0and n=1.

n=20

Since Po(x) = 1, we obtain by = —1/2 and the recurrence relation

~ (0—-K)(O+Kk+1) . Kk
Ot = 2(k +1)2 b= 2(k+1)bk'
The solution is by = (;gk)k (obvious from (k + 1)byy1 = — 3 kbx).

x—1 1(x—-1)2 1(x—-1)3
:>y2(X):|n(X—1)— > +§( 22) _5( 23) +

—|n(x_1)—|n(1+xg1>—'"(X—1)_'"(X;1>

X —1
+1

=In +1n2 for1 < x < 3.

An equivalent choice is

1+x

X+ 1
In

=3 X_1:—%(Y2(X)—In2) for1 < x < 3.

Qo(X) = 1§ In ’
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Example (cont'd)
The function Qo(x) = 3 In ’ 1ix1is defined on R \ {1} and solves

the Legendre equation with n = 0, viz. (1 — x2)y” —2xy’ = 0, on
the three intervals into which R \ {£1} decomposes. On the
middle interval (—1,1) it is characterized as the solution satisfying
the initial conditions Qo(0) = 0, Q4(0) =

Moreover, Qo(x) coincides on (—1, 1) with the non-polynomial
series solution obtained earlier (and also with tanh ™).

In fact one easily verifies

x3 x5 X’
Qo(X)—X+§+€+7+"'7

1
Qx)=1+x+x*+x0+... =

1—x?

for [x| < 1. The identity Qj(x) = ;- holds for all x € R\ {+1}.

Finally let us note that (1 — x2)y” — 2xy’ = 0 is 1st-order linear in
¥y’ and hence can be solved by the standard method

Y'(x) =exp (f = ) and one further integration.
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Example (cont'd)

n=1
Since P¢(x) = x, the condition for y, takes the form

Llya(x)] = _3t—5+i[(2_k(k+1))bk —2(k+1)2bk+1} tk = 0.
k=0

(k—1)(k +2)

Sk + 17 by fork>2

5 3

(=) (k1)

The solution is by = for k > 2, as can be seen by

TR(k=T1)2F
writing the recurrence relation in the form i% = 2("“‘1) k’iﬁ
or,equivalently, 2, = —£22 Bt
k41 —1
= (X)) =xIn(x—1)— +Zk(k k) ’
k=2

valid for 1 < x < 3. Replacing In(x — 1) by In |x — 1], we can
extend therangeto —1 < x < 3, x # 1.
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Example (contd)
With some effort one can derive from this that another equivalent
choice is

Q1(X)=f|n 1 x

x |1+x
5 ‘ —1=—%y(x)—x.

The function Q¢ (x) is defined on R \ {£1} and solves the
Legendre equation for n = 1, viz. (1 — x?)y” — 2xy’ + 2y =0, on
all three subintervals. On the middle interval (—1, 1) itis the
solution characterized by Q1(0) = —1, Q{(0) = 0.

Like Qo(x), the solution Q4(x) can be found with less effort by
other means, for example by using the method of order reduction
for linear 2nd-order ODE’s (see our earlier example in
lecture27-28), or by inspecting the non-polynomial series
solution obtained earlier for x € (—1, 1), rewriting it in terms of In,
and extending itto R\ {£1}.
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Remark
The Legendre polynomials (or “Legendre P-functions”) are
determined by Py(x) = 1, P1(x) = x, and the recurrence relation

2n+1
n+1

Pri1(x) = XPp(x) — Pr_1(x), n=1,2,3,....

n+1

The Legendre Q-functions Qn(x) are defined for x € R\ {1} by
Qo(x) = 4 In |31, Q4(x) = £ In|1=X| — 1 and the same
recurrence relation

2n+1

Qnt1 (X) = ﬁ

X Qn(x) — Qn_1(x), n=1,2,3,....

n+ 1
One can show that for each n € N the functions P, and Q, form a
fundamental system of solutions of Legendre’s equation

(1 —x2)y"” —2xy’ + n(n+1)y =0on (—oco,—1), (—1,1), and

(1, +00).
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Exercise
o a) Determine P,(0) for n € N.

Expansion with
Different Center

Doute Sares b) Use a) to derive a binomial coefficient identity along the lines
Equating Cosficirts of the previous example.

Algebraic Operations
Zeros and Poles
Advanced Properties

Ordinary and
Singular Points
Analytic Solutions
The Method of
Frobenius
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Equation

: BESSEL'’s Differential
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Definition (BESSEL’s Differential Equation)
The 2nd-order linear ODE

X2y +xy' +(x* —1%)y =0, x>0,

with parameter v > 0 is known as Bessel’s Differential Equation.
For v € Z solutions are called cylinder functions of order v.

Rewriting Bessel's ODE as
1 V2
1" Y 7 —
Y+ Xy + <1 X2> y=0

shows that xo = 0 is a regular singular point with pyg = 1,
qo = —, and that the corresponding indicial equation is

rPrpo—Nr+q=r>—v2=(r—v)(r+v).

— The exponents at the singularity xop =0arery = v, o = —v.
This means we are in Case 1 (for v ¢ {0,5,1,3,2,...}, Case 3
(for v = 0), or Case 4 (for v € {},1,3,2,...}, with N = 2v) of the
theorem.


http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Bessel.html
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Part 2 of the theorem guarantees that one solution is obtained by

the fractional power series ,Ansatz* y(x) = >~ anx"".
= Ly =x2y" +xy' + (x* =¥y =

o0
Zn—i-l/ n+u—1)ax”+”+2n+uax”+”
0 n=0

[eS)
+ Z aan+l/+2 _ Z V2aan+u
n=0 n=0

=x" <an +@v+1aix+ i(n(n +2v))a, + a,,g)x”) ,

n=2
since (n+v)(n+v—1)+(n+v)—12 = (n+v)2—v2 = n(n+2v).

L[y] = 0 implies a; = 0 (since 2v + 1 is > 1 and hence nonzero)

and
an-2

_ &2 torp>o2
nnta2ny N7

an = —
= amy1 =0,
82(m—1) ="

&m = T amim+ ) mae AN +2) - m) O
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Normalizing by ap = 1 gives the solution
yi(x) = x¥ ZOO (1) x*™ on (0, cc).
m=0 m 22M(y +1)(v +2)--- (v +m) ’
For v € Ny a different normalization which gives the coefficients a
slightly simpler form, is ay = 57— U, The corresponding solution is
Y - (_1 )m
h(x) = x mz mi22m 0,0 + 1) (v + 2) - (v + m)

_Zm'm+u (g

This makes also sense for non-integral v, provided we interpret
(m+v)tasT(m+ v+ 1) (which is true for v € Np).

In Exercise H60 of HW10 it is shown that 1/I" can be continuously
extended to R. = 1/I(m+ v + 1) is defined for all m € Ny and v € R.
Definition

For v € R, the function

&y X
109 =3 et (2

is called Bessel function of order v.

X2m

>1/+2m

v+2m
) xe(0,00),
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2.0 1

1.5

Figure: Bessel functions of orders v =
with domain (0, o)

2, —

3
29

-1, -

1
2

—z J o(z)
=z J oy 5(x)
—zJq(x)
—zJ g5(z)

- Jo(z)
—z Jos(z)

1 3
,075,17572
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For the analysis of the different cases of Bessel’s Differential
Equation (depending on v) we switch back to the convention

v > 0 adopted earlier.

Though it is not needed for most cases, we first determine the
rational functions a,(r) arising from the condition

Llg) = L[> g an(r)x™"] = F(r)x".

Since p(x) = 1/x, q(x) = 1 — v2/x2, all coefficients p;, g; are zero
except for pp = 1, go = —v and g» = 1. This gives

L] = i (F(f +n)an(r) + Z_: [(r + K)Pn—k + Qn—k] ak(f)> X

n=0 k=0

= F()ao(r)x" + F(r+1ay(r)x™" + i [F(r+ n)an(r) + an_a(r)] x*"

n=2
= ao(r) =1, () = 0, an(r) = ~F20 = — mrsjicinmm)
(—1)"

= Ama(N =0, &) = g e 5 i)

(Check that for r = v this reduces to the previous formula

_ _ (=n"
am = am(v) = gzmm[(,,+1)(u+2)...(y+m)-)
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The case v ¢ Z
In this case we claim that there exists a fundamental system of
solutions of the form

o0 o0

yi(x) = x" Z an(v)x", yo(x)=x7" Z an(—v)x"
n=0 n=0
with ao(l/) = ao(—l/) =1.
We have already computed y1(x) and observed that J, (x) is a

constant multiple of y;(x).
For r = —v we have aspy1(—v) =0,

(~1)"
azm(_y) = 2.4...2m(2_21/)(4—2y)~--(2m—2V)

_ (=1
S 22mmi(1 - v)(2—-v)---(m—v)’

which is defined for all m, since v ¢ Z. Since F(—v) = 0, the
function y»(x) defined in this way must then satisfy L[y»] = 0.
Moreover, y1 and y» are linearly independent since y;(x) ~ x*,
Yo(x) ~ x~¥ for x | 0.
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The case v ¢ Z contd

Multiplication of y»(x) with F(1 -7 Yields J_,(x) (use the functional
equation I'(x + 1) = x I'(x) repeatedly) and shows that in this
case the two Bessel functions J,,, J_,, form a fundamental system
of solutions.

Remark

Forve {},3,5,...} the number N = r; — r, = 2v is a nonzero
integer and Case 4 of our “big theorem” (Case 3 in [BDM17],

Th. 5.6.1) applies. Thus it is rather surprising that there is such a
simple formula for y»(x) (the same as in Case 1 of the theorem).

Explanation: Since N = 2v is odd in this case, we have ay(r) =0
and hence a = lim,_,(r — r2)an(r) = 0. Thus the formula for
y2(x) in Case 4 of the theorem contains no logarithmic term.
Moreover, all functions an(r) are analytic at » = —v and hence

/

(1) = < 1(r — )an(r)] = an(r) + (r ~ )ay(r),
(1) = an(r),

reducing the formula for y»(x) to that in Case 1.
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Thecaser =0
In this case

1)”’ m = 30 G xym
z:22”’ B (m)2 \2
m=0
is a solution.

Jo(x) is defined for x € R, as is easily shown using the ratio test.
This is also guaranteed by the theorem, because p(x) = 1/x and
g(x) = 1 have no singularity except xo = 0.)

Note
Jo solves the IVP

xy"+y' +xy =0, y(0)=1, y'(0) =0.
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According to Case 3 (the case ry = r») of our theorem, there exists
a 2nd fundamental solution (linearly independent of Jy) of the form

Y2(X) = Jo(x)Inx + anX"a bn = a,(0).
n=1

For v = 0 the coefficient functions a,(r) specialize to agm1(r) =0
and

(=17
(r+2)32(r+4)%2.-.-(r+2m)2’
It follows that a/,(0) = 0 for odd n, so that the 2nd summand in
¥2(x) is an even function of x, just like Jo(x).

For even n we use the fact that the logarithmic derivative
Id(f) = f'/f (which in the case f > 0 coincides with In(f")) satisfies

a2m(r) =

(fagb)/ B (afa—1f/)gb+ fa(bgb—1g/) B ai/
fagb o fagb 0 f

g/
+b5 fora,b e Z.

In particular Id(fg) = Id(f) 4 1d(g) and Id(f?) = ald(f), relations
that resemble those of the logarithm.
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Thomas & 0 2 2 form> 1
Honold =V T s 14 T
r+2 r+4 r+2 a
&m(0) 1.1 !
—— (1 _ _ . —
azm(0) i 2 i 3 ! ! m

The numbers Hn, =1+ % + 1 + -+ + L are called harmonic
numbers, because they form the partial sums of the harmonic

series. In all we obtain, using am(0) = é;(i%
m+ H
yo(x) = '”X+Z 22m X

Another choice for the 2nd fundamental solution is

¥o(x) = 2 (4200 + (3 ~ In2)io(x))

X m+1H
(In§+7>Jo +Z 22m m x2m|

where ~ = lim (H,—Inn)~ 0.577 is the Euler-Mascheroni constant.

n—oo
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Definition

Yo is called Neumann function of order 0.

Other names are Weber function or Bessel function of the 2nd
kind of order 0.

In contrast with Jg, the function Yy is not analytic at x = 0 (not
even defined there) and satisfies

Yo(x) ~ % Inx forx /0.
If you want to learn more about Jp and Y, (as well as about
Bessel functions in general and many further so-called special
functions), look for the Handbook of Mathematical Functions
edited by M. Abramowitz and I. A. Stegun, the classic reference
on this topic.
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Figure: The Bessel and Neumann functions of order v = 0 with
domain R™.
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The case v € Z+

In this case the Bessel function J,, of order v provides one
solution, valid on the whole of R. It is characterized as the unique
solution that is analytic at xo = 0 and has normalization constant

_ 1
a = o1

oo —_1)m
h(x) = Z m!((mJ)r v)! (%

m=0

v+2m
) for x € R.

Observe that J,(0) = J,(0) = - -- = J~"(0) = 0 and

18(0) = vlag = .

A second solution Y, (x), linearly independent of J,,(x), can be
obtained in a similar (but increasingly more complicated) way as
for v = 0. Since N = 2v € Z™, Case 4 of our “big theorem”
(Case 3 in [BDM17], Th. 5.6.1) applies, and there is no
simplification this time. The case v = 1 is discussed as part of
HW10, Ex. H59.

Remark
The function J_,, also solves the Bessel ODE on R, but for v € Z+
is linearly dependent on J,; cf. HW10, Ex. H60 c).
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Figure: Bessel functions of various integral orders v > 0 with
domain R
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The case v = 3

This case is in a way special: The fractional power series ,Ansatz®
y(x) = x"123""  a,x" yields two linearly independent solutions,
since ag and ay can be chosen freely. For this recall that

L[> o anx™] = x* (0ag + (£2v + 1)aix + - ).

For (a0, ar) = (1,0) the recursion a, = — ;=25 = — =2, yields

am-1=0, agm = ((2m T and hence

:Z (;m

m=0

_ cos X
xem=1/2 _

I

For (ap, a1) = (0, 1) the recursion similarly yields a>, = 0,
am1 = (§m131 7, and hence

i 2m+1/2:sinx.
—( 2m+1 N

It follows that Cf/}x S'”XX form a fundamental system of solutions of

X2y" + xy' 4 (X% — })y 0, which can also be verified directly; cf.
also HW8, Ex. H49.
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The case v = } contd

This case is of course contained in the case v ¢ Z considered
earlier, which tells us that the Bessel functions J;,, and J_ > form
a fundamental system of solutions. The link is best illustrated by
computing J1 > and J_4 » from the general formula for J,,

\/“ mX2m
T Zmlr(m+ 3)22m
)mX2m
\/72m| M3 amit pam
mX2m 2
\/>z(2m+1 If Hslnx,
\/>Z N7 2 eex
mlr(m+ mr(m+ 5H2em — — Vorx ’

using M(x + 1) = xT(x) and I'(3) = /7.
Thus J1,2 and J_4 > are just scalar multiples of the fundamental
solutions previously determined.

m\—A
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An Application of Bessel Functions

Solutions of the 2-dimensional wave equation

Theorem
Suppose f: Rt — C is a C?-function, v € Z, \,¢ > 0,
D={(x,y,t) e R% x2+ y? >0}, and u: D — C is defined by

u(x,y, t) = f(Ar)el V2  x — rcos ¢, y = rsin .
Then u solves the 2-dimensional wave equation,

# o PE 1P
- S — = D
<3X2 + ayg c2 3t2> U(X7ya t) 0 onl,

iff f solves the Bessel ODE with parameter v,

§? f”(S)—i—Sf'(S)—F(SZ—Vz) f(s) =0, seRT.
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Notes

@ Solutions having the indicated form arise form the separation
ansatz u(x, y, t) = a(r)b(¢)c(t).

@® The theorem can be used to determine the so-called normal
modes of a vibrating circular membrane of radius R, for
which u must also be defined and continuous at (0,0, t), and
satisfy the boundary condition

u(x,y,t) =0 if x>+ y?=R>

This is achieved by choosing f as a scalar multiple of J,,
v=0,1,2,...,and A = z,,/R, where z,, denotes the n-th
positive zero of J,. (It can be shown that the positive zeros of
I, form an infinite sequence z,1 > z,» > z,3 > ---.) See
https://commons.wikimedia.org/wiki/File:Vibrating_drum_Bessel_function.gif
for an animation.

® The case v = 0 corresponds to rotation-invariant solutions of
the 2-dimensional wave equation. Solutions satisfying the
boundary conditions in (2) have the form
u(x,y, t) = Jo(Ar)(cre* + cpe ), X = z95/R, €1, ¢z € C.


https://commons.wikimedia.org/wiki/File:Vibrating_drum_Bessel_function.gif
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Proof of the theorem.
We use the representation of the Laplace operator in polar
coordinates (known from an exercise in Calculus IlI):

# R R 1o 1P

A= oo T rar T ag
We have
) 52 19 f()\r)e:ti)\ct 32611/4)
— i(votAet) [ Y Y
Au(x,y, t)=e (ar2 + p 8r> f(Ar) + 2 re

_ ai(veoEAct) 2¢n é / . f
—e AN + S F () = 5 F(An) )

2 aZeii)\Ct

9 : ‘
- — ivep — _\2p2 i(voptAct)
Hpu(x.y. 1) =1f(Ar)e oIE N2c? f(Ar)e .

Since elv¢+Act £ it follows that u(x, y, t) solves the
2-dimensional wave equation iff

211 A / Vz 2
NeF"(AR) 4 7 F/(Ar) = — F(Ar) = —Z*f(Ar).

Multiplying this equation by r? and setting s = Ar gives the Bessel

ODE for f(s), as asserted.

O
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Exercise
Determine a fundamental system of solutions for Bessel's ODE

Withz/:%,
yl/+1y/+ 1_L y:O
t 42 ’

using the ansatz z = v/t y. Then compare your result with that of
the lecture.

Exercise
Determine the general solution of the following ODE’s:

a) (2t+1)y” + (4t —2)y' —8y = (62 +t—3)e!, t>-1/2;
b) (1 —ty"+2t2 -ty +2(1+t)y =1, 0<t<1.

Hints: The associated homogeneous ODE in a) has a solution of
the form y(t) = e*! and that in b) a solution of the form y(t) = t?
with constants «, 5. In both cases a particular solution of the
inhomogeneous ODE can be determined by reducing it to a
first-order system and using variation of parameters (though this
may not be the most economic solution).
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Today’s Lecture: The Laplace Transform
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Definition

Integral Transforms

Integral transforms are maps f — F, which assign to a function f
from a certain domain (e.g., the set of integrable functions
f: [a, b] — C) another function F of the form

F(s) = /b K(s, Hf(t)dt. (IT)

Here K(s, t) is a two-variable function called the kernel of the
integral transform, and F(s) is defined for all s € C for which the
integral in (IT) exists.

Definition

The Laplace transform is the integral transform with

(a,b) = (0,00) and K(s,t) = e, i.e.,

F(s) = /OOO e Stf(t)dt.

The Laplace transform will be denoted by £; we will write F = Lf
or, making explicit reference to the arguments, F(s) = L{f(t)}.
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Thomas Definition
o Let f: [0,00) — C be a function.

Definition

@ 1 is said to be piecewise continuous if (i) the set A of
discontinuities of f is discrete (i.e., has no accumulation point
in R), (ii) f is continuous on each connected component of
[0,00) \ A (which must be an interval), and (iii) for every
a € A the one-sided limits f(a+) = limy, (1),

f(a—) = limpq f(t) exist (with the obvious adjustment in the
case o = 0).

® f is said to be of (at most) exponential order for t — oo if
there exist constants a € R, K > 0, M > 0 such that
[f(t)| < Kea whenever t > M.

Piecewise continuous functions of exponential order on [0, co)
form an appropriate domain for the Laplace transform, i.e., for
every such function f the function Lf is well-defined.

Changing the values of f on a discrete subset of [0, co) doesn’t
change Lf. It is even sufficient if f is undefined for some t € A.
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Notes
¢ Informally speaking, a piecewise continuous function may

have only jump discontinuities; there can be infinitely many
jump discontinuities in [0, co) (as in the case t — |[t]), but
only finitely many in every bounded subinterval [0, R].

The condition in Part (2) is equivalent to f(t) = O(e#) for

t — oo and should be viewed as a property depending on a.
It doesn’t necessarily mean “f grows exponentially” (since

a < 0 is allowed and, moreover, only an upper bound for
|f(t)| is given), and becomes stronger if we decrease a. (In
fact a < b implies e? = o(e?) for t — c0.)

If f: [0,00) — R is of exponential order (i.e., there exists
a € R such that f(t) = O(e?) for t — o), we can define the
exact exponential order of f as

eo(f) = inf {a € R; f(t) = O(e*) for t — oo} .

Using the infimum is necessary, since, e.g., t" = O(e#) for
t — oo whenever a > 0, but t" # O(1). (Thus all nonzero
polynomials have exact exponential order 0.)
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Examples

© All nonzero polynomials in R[t] have exact exponential order
0. The same is true of nonzero rational functions

f(t) = p(t)/q(1), p(1), q(t) € R[H] \ {0}

O t—cied +oe®l .. foel(ag<a<---<apnC#0
for 1 < i < n) has exact exponential order ay,.

@ sin(at), cos(at) for a # 0 (more generally, non-vanishing
trigonometric polynomials) have exact exponential order 0.

(4 JE S e” is not of exponential order (or of exact exponential
order +o0), because for t — oo it increases faster than any
exponential function e?.

On the other hand, the reciprocal function t - e =t is O(e)
(and o(e®) as well) for every a € R, and hence according to
the definition has exact exponential order —oc.
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Theorem
Suppose f: [0,00) — C is piecewise continuous and of exact
exponential order a € R U {£00}.

© /fa= +oo then L(f) need not be defined for any s € C.

® Ifac R then L(f) is defined and analytic at least for all s in
the open half plane Re(s) > a.

@ Ifa= —oo then L(f) is defined and analytic for all s € C (a
so-called entire function).

Moreover, in Cases 2 and 3 the Laplace transform F = L(f) can
be differentiated under the integral sign’:

F(s) = / 4 festat = — / ti(t)e=Stdt = —L{tA(B)}.
o ds 0
Notes
* Differentiating repeatedly gives F(")(s) = (—1)"L£{t" f(t)} for
neN.

¢ In Case 2 it is possible that L(f) is defined and analytic in a
larger region than Re(s) > a; cf. exercises.
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Proof.
Since f = u+iv implies Lf = Lu + iLv, we may assume w.l.0.g.
that f is real-valued.

Suppose |f(t)| < K e for t > M. We claim that [, f(t)e™' dt
converges uniformly (and absolutely) in every closed half plane
Re(s) > a+ 4, § > 0. Indeed, for such s and t > M we have

’f(t)e—st‘ — |f(t) — Re(s)t < Kea Re s)t < Ke—&t_

Since this bound is independent of s and [,;” e~%! dt converges,

we can apply the Weierstrass test for uniform convergence of

improper parameter integrals to conclude that the convergence of

= [,° f(t)e~s'dtin Re(s) > a-+ ¢ is uniform. In particular

F(s) is defined for all s € C with Re(s) > a.

Since t — tf(t) is O(e?) for t — oo as well, the integral

f°° L f(t)e stdt = — [ tf(t)e~'dt also converges uniformly in
(s) > a + ¢ for every 6 > O so that the necessary assumptions

for differentiating F(s) under the integral sign (complex version)

are satisfied.

= F is complex differentiable (and hence analytic) in Re(s) > a

For a proof using only Real Analysis see next slide. O
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Tr::r?;ﬁjs Wr|t|ng S=X-+1y we have
Definition F(S) _ F(X + ly) _ / f(t)efxtfiyt dt

e (cos(yt) —isin(yt)) dt

/ Ye ™ cos( yt)dt—H/ —f(t)e sin(yt) dt
0
U

Jy)+iv(x,y), say.

Using this formula and the results on partial differentiation of
real-variable functions under the integral sign, one can show that
u, v are partially differentiable and satisfy the Cauchy-Riemann
equations uy = vy, U, = —Vx. From this it follows without resort to
Complex Analysis that F is complex differentiable; cf. our
discussion of real vs. complex differentiability in Calculus Il1.
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Examples

O L{1} = / 1e dt = [—e_ﬂ = fors>0.
0 S S

0

More generally, this holds for Re(s) > 0 since for s = x + iy,
x > 0, we still have e =5t = e e~ — 0 for t — <.

o0 [o'e) 1
0 c{c'} :/ ete_STdtz/ e (V= —— for
0

0 s—1
Re(s) > 1.
1 - 1 [ .
O L{cost} :/ S (e +e e sdt = ,/ e (st |
0o 2 2 Jo
i 1 1 1 1 2s S
—(s+i)t - _ _ ! _
) 9 2{S—i+s+i} 2 (s—i)(s+i) s2+1

for Re(s) > 0.

o [T it ity st g V[ 1]
O L{sint} —/0 > (ef —e e *dt = o . -
1 2i
50 = for R .
sty Zi1 OrRe(s)>0
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Definition

_ / (Z)He”dl (Subst. 7 = st, dr = sdt)
9 \S s
1 < L, n
= W/o T'e Tdr = pry
for Re(s) > 0.
More generally, we have

1 <, Fr+1)
E{tr} = sr+1 \/0 Tre dr = T

for Re(s) > 0, r > —1. (It doesn’t matter here that t — t" isn’t
definedatt =0for —1 <r <0.)

In particular, £{t~"/?} =T(1/2)s7/2 = \/rs71/?,i.e.,

t — 1/+/tis an eigenfunction of £ for the eigenvalue /7.
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Examples

® We compute the Laplace transform of the “staircase”
function t — [ ¢|, which is defined for Re(s) > 0.

Since |t] = nfor t € [n,n+ 1), we obtain

e} 1 [eS)
:Zn _1efst " :1
S

ne~stdt

n (efns . ef(n+1)s)

+3e7¥ —Ze 1.0
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itz 2 Suppose that f: [0,00) — C is piecewise continuous. Show:

quations
Thomas O I f0°° f(t)e=Stdt converges absolutely for s = sy, it converges
Honold absolutely for Re(s) > Re(sp).

Definition @ If [;° f(t)e~S'dt converges for s = s, it converges for

Re(s) > Re(sp) and for such s satisfies

/0 f(t)e*'dt = (s —50/ P(t)e~ (5=t

with qb fo e~ 57dr. Moreover, the integral
I o (s— so)‘dt converges absolutely for Re(s) > Re(sp).

® There exist numbers —oo < 8 < o < o0, such that
Jo~ f(t)e~" dt diverges for Re(s) < 8, converges
conditionally (i.e., not absolutely) for 5 < Re(s) < a and
converges absolutely for Re(s) > «. Moreover, on the line
Re(s) = « the Laplace integral converges absolutely either
for all s or for no s.

= [, f(t)e~*" dt is analytic in Re(s) > 8.
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The numbers «, 8 defined in the preceding exercise are called
abscissa of absolute convergence, resp., abscissa of
convergence of the Laplace integral [;* f(t)e='dt, and the
corresponding lines Re(s) = a, Re(s) = 3 line of absolute
convergence, resp., line of convergence.

If f has exact exponential order a, we must have g < « < a. Both
inequalities may be strict. For the second inequality this is shown
in the following exercise.

Exercise
Let f: [0,00) — R be defined by

(1) = e" if |t — n| < e2" for some n € Z7,
~ 10 otherwise.

Show that f has exact exponential order 1, but [, e~ dt
converges (absolutely) for Re(s) = 0.
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Linearity

Suppose Lf; is defined for Re(s) > a; and Lf, for Re(s) > ap.
Then for any ¢, ¢, € C the function £L(c1f; + ¢2f) is defined for
Re(s) > max{ai, a} and satisfies

L{cihi(t)+cb()}=cl{fi(t)}+cl{k()}.

The proof is trivial.

As an application of linearity, we get from £{t"} = n!/s™" the
Laplace transform of any polynomial:

2 gy _C & 2 Cy d!
£{00+C1t+02t+"'+Cdt}—;+?+?+"'+w

or, writing a, = nlcp,
ao a1 ad d — .« .. —
c{g+ Tt +F =2 St
valid in the right half plane Re(s) > 0.
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Exercise

© Suppose fi: [0,00) — C are piecewise continuous and of
exponential order a; (i = 1,2). Show that the product
fify: [0,00) = R, t— fi(t)f(t) is piecewise continuous and
of exponential order a; + a> (and hence L(f;£,) is defined for
Re(s) > ay + ap).

® Suppose f: [0,00) — C is piecewise continuous and of
exponential order a. Show that g: [0, c0) — R defined by

t
g(l‘):/0 f(r)dr

is continuous and of exponential order max{a, 0}.

Hint: Show first f satisfies a bound |f(t)| < K e for all t > 0.
® Show, by way of a counterexample, that a piecewise

continuous function f: [0, 00) — C of exponential order may

have a piecewise continuous derivative f’ that is not of
exponential order.

Hint: Compose a suitable function with ¢ s et
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Differential Suppose F(s) = L{f(t)}f is defined for Re(s) > aand r > 0.

E::j::zs Then L {f(rt)} is defined for Re(s) > ra and satisfies
Honold
1 s
ity = - F ()
Properties Proof

L{f(r)} = / f(rt)e—*t dt
0
= 17/ f(r)e=s7/Tdr (Subst. 7 = rt, dr = rdt)

()

Example .

From L{cost} = &5, L{sint} = 2+1 we get
1 S/w s
Llcos(wh)} = w (s/wP+1 2 +uw?’
1
L{sin(wt)} = 1 - v

w(s/w)E+1 $2+w?
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Remark

The dilation formula can also be stated as F(rs) = £{1 f(t/r)} for
Re(s) > a/r. To see this, multiply the original dilation formula by r,
use linearity of £, and replace r by 1/r.

The next example combines the dilation property with linearity.
Example
Find E{cos2 t} and ﬁ{sin2 t}.

Solution: We have cos(2t) = cos? t —sin®t = 2 cos? t — 1 and

hence cos? t = 120,

= L{cos?t} = % (£{1} + L{cos(2t)}) = % (1 + S )

s s2+4
242
 s(s2+4)
1 s2+2
L2 _ 240 _ '
L{sin®t} = L{1} — L{cos" t} s S(id)

_2
s(s?+4)
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The Laplace transform is also well-behaved w.r.t. translations of
the argument t, but the corresponding property is more technical
to state. For ¢ € R define the “unit step function” uz: R — R by

0 fort<ec,
1 fort>c

(uo(t) = u(t) is the familiar Heaviside function), and use this to
define, for any function f: [0,00) — C a new function g: R — C by

0 fort < c,

g(t) =ue(H)f(t—c) = {f(t —¢) fort>c.

Here we use the convention “0 x undefined = 0.

Translations in the argument (cf. [BDM17], Th. 6.3.1)
Suppose F(s) = L{f(t)} is defined for Re(s) > aand ¢ > 0. Then

L{u(t)f(t—c)} =e *®F(s) forRe(s) > a.

The assumption ¢ > 0 guarantees that g(t) = uc(t)f(t — ¢)
vanishes on (-0, 0), i.e., we can view it as a function on [0, c0).
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Cluc(®f(t - o)} = [ f(t—opetar
Honold c
= / f(r)e s +O)dr
. 0
ropertes (Subst. 7 = t — ¢, dr = dt)

= e*sc/ f(r)e™*"dr = e ® F(s). O
0
Remark
The corresponding translation formula for F(s) is
F(s—c) = L{e”f(t)} forRe(s) > a+ Re(c).

Here ¢ can be any complex number. This follows immediately
from £{ef(t)} = [~ e®f(t)e=Stdt = [, f(t)e= (s dt.

Example

Forc>0wehave L{uc(t)} =e /s, valid for Re(s) > 0. This
follows by taking f(t) = 1 in the first translation formula.
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EZ*S;%Z&@' The “ceiling” function f(t) = [t] and the “floor” function g(t) = |t]
Thomas are related by g(t) = us(t)f(t — 1) (picture?). It follows that their
Honold Laplace transforms F(s), resp., G(s) are related by G(s) = e~° F(s).

= The Laplace transform of the “ceiling” function is

F(s) = e° G(8) = 5=y cf. previous example.

Properties

Example

Earlier we have shown that £{t"} = n!/s"*" for n € N. The
preceding remark gives, for Re(s) > Re(c),

n.ctl _ n! 1 _ t" o
L‘z{t c }— (S—C)n+1 or (S—C)n+1 —£ me .

Together with the partial fraction expansion of rational functions
and linearity of £ this shows (at least in principle) how to find for
any rational function F(s) = P(s)/Q(s) without polynomial part
(i.e., deg P < deg Q) a corresponding function f(t) such that
L{f(t)} = F(s). In fact, the function f(t) obtained in this way will
be an exponential polynomial (and, conversely, the Laplace
transform of any exponential polynomial is a rational function
without polynomial part).
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Term-wise Integration of
Laplace Integrals
From £{t"} = n!/s"*" and linearity of £ it follows that
ag

ap a ag g 780 a
c{g+ Sttt + 2 =2 S

Under a suitable assumption on the growth of the coefficients, this
can be extended to power series (i.e., functions f(t) analytic at

t = 0). Writing power series ), , b,t" as exponential generating
functions (i.e., b, = an/n! or a, = byn') makes it apparent that the
Laplace transform of a power series in ¢t is a power series in 1/s.

Theorem
Suppose " ° , anz" has radius of convergence R > 0. Then
f(t) = X2 o(an/n)t" is defined for all t > 0 and we have

E{f(t)}—L{Zi’!’t"}—ZS‘:L for Re(s)>1/R.

n=0 n=0
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Note that, by definition of R, the series Y-, SM converges for
Re(s) > 1/R (even for all s € C with |s| > 1/R).

Proof.

Since R =sup{r > 0; |an| r" is bounded} > 0, there exists for any
r € (0, R) a corresponding constant K such that |a,| r" < K for all
n,i.e., ¥/]an| < VK/r for all n. But then we must have

{/|an| /n! — 0 for n — oo, so that > 2 ,(a,/n')z" has radius of
convergence oo and f(t) is defined in particular for all ¢ > 0.

Moreover,

8

t"=Ke/" for0<r<R,

= |ay|
M= =20

showing that f has exponential order at most 1/R, so that £{f(t)}
is defined for Re(s) > 1/R.

Writing fo(t) = >__o(ak/k!)tX, the claimed identity takes the form

- star [ T = —st
/Of(t)e dt—/o nImefn(t)e dt—nIer;O/O fa(t)e™ dt

for Re(s) > 1/R.
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Honold We prove it directly without resorting to convergence theorems for
Lebesgue or improper Riemann integrals. Writing s = x + iy, we
have

Properties

Oo(f(t) — fo(t))e " dt
0

/ F(t)e~s! dt — / f,,(t)e‘“dt‘:
0

— lax| [
k oSt K Kk —xt
HIESY) K, tke = dt
k= n+1 k=n+1
s i o
B ki xk+1 xk+1"
k=n+1 k=n+1

As long as x = Re(s) > 1/R this converges to zero for n — oo,
because ., |a| z" has the same radius of convergence as
> meo @nz". This completes the proof of the theorem. O]
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Example

Consider the function f(t) = <, t € [0, 00) (extended
continuously to ¢ = 0 by defining f(0) = 1).

The Laplace transform of f is
sin t Csint g
F(s)=L (= e df, Re(s) > 0.
0

We have met F(s) before (in our Calculus Ill final exam) and
evaluated it using integration by parts.

Using the preceding theorem and the Taylor series of 5'—’,” we can
determine F in a more conceptual way:

oo (_1),, Al s (_1)n t2n
F(S)_ﬁ{nz;o(2n+1)! £ }£{§O2n+1 (2n)!}

S DI 1 1 1
:Z( ) :g—g+g$---:arctan(1/s),

for Re(s) > 1, since the arctan series has radius of convergence 1.
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Example (cont'd)

The extension of the identity F(s) = arctan(1/s) = arccot(s) to the
whole right half plane Hy = {s € C; Re(s) > 0} is then a
consequence of the fact that both F(s) and arctan(s) are analytic
in Hy and coincide on a subset of Hy, viz.

Hy = {s € C; Re(s) > 1}, which has an accumulation point in Hy
(in fact all points of H; are accumulation points).

However, the delicate argument required to evaluate [;* =0 dt
(using continuity of [0,00) — R, s — F(s) in s = 0, which can’t be
derived from the results on the Laplace transform established so
far) is not facilitated in any way by the present discussion.

Exercise
Find the Laplace transform of the Bessel function Jp.

Hint: The power series expansion

x", valid for |x| < 1/4,
m Z() Xl <1/

may help (but you should prove it first).
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Exercise
@ Show that

/ e fIntdt = —y = —-0.577...
0

For this recall that the Euler-Mascheroni constant v was
defined as v = limp0o (1+ 34+ + 2 —Inn)

Hint: Relate the integral to the Gamma function. Gauss’s
formula

: n! n¥
r(X):nh—>n;ox(x+1)m(x+n) (x#0,—1,-2,...),

which you don’t need to prove, may help.

® Use a) to find the Laplace transform of t — Int and the

inverse Laplace transform of s — '“Ts (Res > 0).
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The Laplace Transform and

Differentiation
The formula for F’(s) was already stated and proved:
Differentiation in the Codomain
If F(s) = £{f(t)} is defined for Re(s) > a, it is analytic (complex
differentiable) for Re(s) > a with

F'(s) = L{-tf(t)}.
Example

We use this formula to give an alternative derivation of
L{tke} = k!/(s—c)¥*! for k € N:

1 _ ct cto—st _ .—(s—o)t
S_C—ﬁ{e }, (fromecle=St = ¢ )
¥—_i 1 — _ _$aCt ct
= 5_of~ dss_c- L{—te®} = L{te"},
:;L_,i#_f 42 0t 2 ct
(s—c)® ds(s—c)? L{-e) = L{F ),

etc.
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The following formula provides the key to applying the Laplace
transform to the solution of (time-independent) linear ODE'’s.

Theorem (Differentiation in the Domain)

Suppose that f: [0,00) — C is continuous with piece-wise
continuous derivative f', and F(s) = L{f(t)} is defined for
Re(s) > a. Then we have

L{f'(t)} = sF(s)—f(0) forRe(s) > a.

If f is continuous in (0, co) but discontinuous in 0, the formula still
holds with f(0) replaced by f(0+), i.e., L{f'(t)} = sF(s) — f(0+).

Proof.
Assume first that f is a C'-function. Then integration by parts
gives

c{r(t)) = /0 TPttt = [f(t)e T + s /0 T ftestdt
— 5F(s)~ 1(0),

since | ()| < Ke? for t > M and hence |f(t)e5| < K e~ (Res-a)t,
which tends to zero for t — oo on account of Re(s) — a > 0.



mﬁg?fuhcﬁgﬁ to Proof cont'd.

Ezfj;figﬂi' Next assume that f’ has finitely many discontinuities
Thomas h < b <--- <. Then we can apply integration by parts to the
Honold C'-functions f|o 4], fls 4] for 2 < k < n, f;, ), and obtain
t t
(t)es"dt = f(t)e™" — £(0) +s | f(t)e™"dt,
0 0

Ik

Ik
/ f'(t)e ' dt = f(t)e % — f(tx_1)e %' + s / f(t)e st dt,

fk_1 tk—1

f'(t)e St dt = Jim f(t)e s — f(t,)e 5" +s/ f(t)e s'dt.

t o tn
Since lim¢_, ., f(t)e=5" = 0 (as shown above), summing these
identities yields again £{f'(t)} = s L{f(t)} — £(0).
Finally, if f has countably many discontinuities t; < &> < ..., the
preceding argument remains valid (now involving an infinite
summation).
The generalization to functions f discontinuous at { = 0 follows by
changing f(0) to f(0+), which makes f continuous in 0 but doesn’t
change Lf. O
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Corollary

Suppose that f: [0,00) — C is a C"~'-function with piece-wise
continuous n-th derivative ", and F(s) = £L{f(t)} is defined for
Re(s) > a. Then we have

L{f™(t)} = s"F(s) — s"'£(0) — " 2f'(0) — --- — s°"=1(0)
for Re(s) > a.
Again the continuity assumptionon f, f/, ..., f("~Y att = 0 can
be dropped, if one uses f¥)(0+) in place of f¥)(0) in the formula.
Proof.
Use the theorem and induction on n. O]
Remarks

In the theorem and its corollary, the derivatives f’ resp. (") may be
undefined on a discrete subset A C [0, o0); cf. the previous note
about this generalization of piecewise continuity. In fact one can
show that for a differentiable 1-variable function g the derivative g’
cannot have jump discontinuities. Hence if the one-sided limits

g’ (th=*) exist but are different, g’(#) cannot exist. Also, if f is of
exponential order a, the derivatives need not be of exponential
order, but their Laplace integrals nevertheless exist for Re(s) > a.
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The Laplace Transform and
Integration

If f: [0,00) — C is piecewise continuous then g(¢ fo T)dT is
defined for t € [0, c0), continuous on [0, co), dlfferentlable
everywhere except for the discontinuities of f, and at
discontinuities t of f the one-sided derivatives g’'(t+) still exist.

Integration in the Domain
Suppose F(s) = L{f(t)} is defined for Re(s) > a. Then

t = @ e max
L{/O f(T)dT} = for Re(s) > {a,0}.

The possible additional singularity of £ {fot } at s=0can be

explained as follows: For f(t) = e~ we have F(s) = slw Re(s) > —1,

t —T - —
and £{ [y f(r)ar} = £{fyemdr} = £{1 e} =1 - 5 = Ly,
valid only for Re(s) > 0. A new singularity at s =0 is mtroduced,
since a constant C of integration has Laplace transform C/s.
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Proof
Let g(t) = [y f(r)dr and G(s) = £{g(t)}. The function g is
contlnuous on [0 o0), and from |f(t)| < Ke? for t > M we obtain

M t
|g(t)—’ /O f(r)dr + /M f(r)dr

t
<lo)|+ [ Kevar = g(M) + % (e — )
M

K K
_ M Y av N at
g(M)| — Z e+ e

< g(M) +/M|f(7)|dT

for t > M. Clearly this implies that g(t) is of exponential order at
most max{a, 0}, so that G(s) isdefined for Re(s) > max{a, 0}.

Applying differentiation in the domain gives
F(s) = L{f(t)} = L{g'(t)} = s G(s) — 9(0) = s G(s),
i.e., G(s) = F(s)/s.
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Integration in the Codomain
Suppose F(s) = L{f(t)} is defined for Re(s) > a and f1 1 gt

exists. Then
/;{f(tt)} :/ F(o)do fors > a.
S

The condition on the existence of fo t ) dt is satisfied in particular

if f(0) = 0 and /(0+) = limyyo "2 exists, but also if there exists
r > 0 such that f(t) ~ t’fort¢0

The formula remains true for complex numbers s with Re(s) > a,
provided we replace [, F(o)do by [;* F(s+ o)do (or, more
generally, as the complex line integral of F(s) along any ray
emanating from s and contained in the half plane Re(s) > a).
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Proof.
Since g(t) = f(t)/t has the same exponential order as f, the
Laplace transform G(s) of g is defined for Re(s) > aif

fo1 g(t)e~stdt exists for such s. The latter is equivalent to the
existence of f01 g(t) dt, which is true by assumption.
The formula an then be proved as follows:

G(s) = —L{tg()} = —L{1(D)} = —F(s)
— G(s) = G(s0) — / F(o)do = G(so) + / " F(o)do

for sp, s > a. Letting so — oo, we obtain G(s f F(o)do using
the known fact limg, ... G(So) = 0; cf. exerC|se O
Exercise

Suppose F(s) = L{f(t)} is defined for Re(s) > a, a € [-, 0).
Show that I|m5_>OC F(s) = 0; cp. Exercise 24 in [BDM17], Ch. 6.1.
This implies, e.g., that no nonzero polynomial can be a Laplace transform.
Hint: Use the uniform convergence of [, f(t)e~ on

Re(s) > a+ 1 (resp., for a= —oo on Re(s) > 0).
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Example
From L{sint} = 52+1 , using integration in the codomain, we find
again
L sin :/ _do =T _arctans = arccot s for s > 0.
t s o2+1 2

From this in turn, using integration in the domain, we can compute
the Laplace transform of the sine integral:

L{Sit} = E{/ SmT }_arc?ts for s > 0.

As remarked before, these formulas also hold for s € C with
Re(s) > 0.
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The Laplace Transform and Convolution
We have seen that the Lapace transform of a sum of two functions
is the sum of their Lapace transforms. How about their product?
For the product it is not true, since

1/s = L£{1} = £{1?2} # £{1}? = 1/s? as functions.
But we can try to determine a different product (f, g) — f x g that
satisfies £{f x g} = L{f} - £{g}. Suppose F = L{f}, G= L{g}.

F(s)G(s)—(/ f(t)e Sf*dn)(/ olt)e Sdetz)
/ / f(t)g(t2)e™ St +8) dt, dt
f1 fg
:/ / f(t)g(r — ty)e”*"dr dty
f1:0 T:[1

(Subst. 7 = { + b, dr = dto)

:/ / f(t1 )g(T —t )675T dty dr
=0 t1:0

(Fubini’s Theorem)
= L{h(7)}
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with h: [0,00) = C, 7+ [y f(t1)g(r — t;) dt;.

Definition (convolution on C[%>))
Suppose f, g: [0,00) — C are piecewise continuous. The

convolution (product) of f and g is the function f x g: [0,00) — C
defined by
(f = g)( / f(r)g(t— 1)
Remark
In Real Analysis there are several different types of convolutions

in use. The present definition is tailored to the Laplace transform.
Clearly the convolution product is bilinear (i.e., linear in each argument).

Exercise

Show that the convolution product is commutative and
associative, i.e. fxg=g=«fand (fxg) « h= fx*(gx* h) hold for all
piecewise continuous functions f, g, h on [0, co).

Theorem

If F(s) = Lf exists for Re(s) > a and G(s) = Lg exists for

Re(s) > b then H(s) = L(f x g) exists for Re(s) > max{a, b} and
satisfies

H(s) = F(s)G(s) forRe(s) > max{a, b}.
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[égfl?;et}igtrlwasl The identity H(s) = F(s)G(s), Re(s) > max{a, b}, is true by
Thomas definition of H, provided we can show the existence of L{f x g} for
Honold Re(s) > max{a, b} and justify the use of Fubini’s Theorem.
Clearly f x g is piece-wise continuous as well (even continuous).
Properties Since piecewise continuous functions are bounded on every finite

interval [0, M], there exist constants K, L such that |f(t)| < Ke#
and |g(t)| < LeP forall t > 0.

— (P g)(t |</ if(r ||g(t—7'|d7</ KL e ebt=7)d7

= KLebt/ e@0Orqr
0

{KLteb’ ifa=b,

KLebt 21 — g =< it g2 b,

From this it is clear that f «+ g has exponential order at most
max{a, b}, and hence H(s) = L{f = g} exists for
Re(s) > max{a, b}.
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Proof cont'd.
Regarding Fubini’s Theorem, it suffices to show that the
2-dimensional Lebesgue integral

f(t)g(t)e " B)d (1, )
R2

exists. (The integral to which we have applied Fubini’'s Theorem
differs only by a change-of-variables from this.) Since f and g are
piecewise continuous, the corresponding finite integrals over

[0, R]? exist for every R > 0, and as shown in Calclus Il it then
suffices to find a universal bound for

/ (t1)g(t)| e S TR (1, ) = (/f (ty)|e" df1) (/g (t)| e dfz)

[0

(“integration by exhaustion”). Since the Laplace integrals of f and
g converge absolutely for Re(s) > max{a, b}, this is trivial: Just
take the product of the corresponding limits for R — oo. Using
If(t)] < Ke?, |g(t2)| < LeP% we can also derive the explicit

bound O

(s—a)(s—b)"
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Example
The convolution of exponentials is given by

ted ifa=>b
eat*ebt_{ ’

bt

<= ifa#b.

This follows from the preceding computation.

Example

Find the inverse Laplace transform of F(s) = S

(s2+1)%
Solution: One way to solve this problem is to use the convolution
theorem and the known Laplace transforms of sin, cos:

9 S o 1 s I
L {(S2—|—1)2}_£ {ww}—smt*cost

t t t
= / sint cos(t — 7)dr = cost/ sin 7 cos 7d7 + sin t/ sin® rdr
0 0 0

t t .
: T 1. tsint
+sint [2 7 S|n(27)]0 =

cost {—1 COS(2T):| .
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et Inversion of the Laplace Transform
Thomas Changing a function f: [0,00) — C on a discrete subset of [0, c0),
Honold which must be countable, doesn't affect L{f(t)} = [, f(t)e='dt.

= The Laplace transform cannot be one-to-one.

However, we have the following

Theorem

Suppose fi, f: [0,00) — C are piecewise continuous and

Fi(s) = L{fi(t)} is defined for Re(s) > a; (i = 1,2). If there exists
s € C with Re(s) > max{ay, ax} and x > 0 such that

Fi(s+ kx) = Fa(s + kx) for all k € N, then fi(t—) = &(t—) and
fi(t+) = K(t+) forallt > 0, and hence f, arises from f; by
changing the values on some discrete subset of [0, o).

Notes
¢ The conlusion of the theorem implies a; = a, and F = F».

Properties

e The assumptions of the theorem are satisfied in particular if
F1 and F coincide on their common domain Re(s) > max{ay, a}.

e If 1, f, satisfy the assumptions of the theorem and are
continuous, we must have f; = f,.



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Properties

The proof uses the following lemma, whose proof is a bit technical
and omitted.

Lemma
If fy, f, satisfy the assumptions of the theorem then

t t
/f1(7)d7:/ fK(r)dr forallt € [0,00).
0 0

Proof of the theorem.

The lemma implies that g(t fo fi(r)dr = fo fo(7)dr for

t € [0, 00). The function g |s contlnuous and a stralghtforward
generalization of the Fundamental Theorem of Calculus implies

f(t4) = hw% h(t+) fort>0,
A(t=) = im w — h(t—) fort>0,

completing the proof of the theorem. O
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Remark

There is also an explicit inversion formula for the Laplace
transform known, but this formula uses complex line integrals and
is of practical use only when combined with the residue theorem
of Complex Analysis. For now we omit it.
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The Basic Idea
The Laplace transform is particularly helpful for solving IVP’s
corresponding to linear ODE’s with constant coefficients and a
right-hand side (“forcing function”) f(t), whose Laplace transform
exists (i.e., f need not be continuous, let alone be an exponential
polynomial). If the ODE has order 2 (the most important case for
applications in physics/electrotechnics), the IVP looks like

y'+by' +cy=1£(1), y(0)=y, y'(0)=n,
where b, ¢, yo, y1 € R are given constants.

The solution method consists of 3 steps:

© Using differentiation in the domain, translate the IVP for y(t)
into an algebraic equation for the Laplace transform

Y(s)=L{y(t)}.
@® Determine Y(s) by solving this algebraic equation.
© Use Laplace Transform inversion to find y(t) = £7'{Y(s)}.

The solution y(t) is the unique continuous Laplace-inverse of
Y (s) and hence well-determined in Step 3.
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thomas Solve the IVP y’ +2y = —1, y(0) = 1 with the Laplace Transform.

Honold Solution: Setting Y(s) = £{y(t)}, we have

l%y%0}+2£%yunrz—£ﬁ},

Splr‘]’i%gIVP’s SY(S)—}/(O)+2Y(S):—1/S,
with the
el sY(s)=1+2¥(s) = ~1/s.
1-1/s  s-1 A B
Y(s = -2, 2
— Y= Tsst2) s Tsi2
with A = % o™ -1/2,B= %|s:_2 =3/2.
11 3 1
= YO ="35"3572
_ 1.3
:>Y(t)**§+§e
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Example
Solve the IVP y” + y = sin(wt), y(0) = y’(0) = 1 with the Laplace
Transform.

Solution: Setting Y(s) = L{y(t)}, we have

> B B _ w
s°Y(s) —sy(0) — y'(0) + Y(s) = L{sin(wt)} = Fro
2Y(s)—s—1+Y(S) = 0.
s°Y(s)—s—1+Y(s) Froe
s+1 w
Y =
= Y6 1 (8% + 1)(s% + w?)
Now there are two cases to consider:
w # +1:
:>Y(s)fs+1+ w 1 W 1
82 +1 w?—182+1 w2182+ w?
. w o 1 .
= y(t):cost+5|nt+w2_1 sint — 7 sin(wf)
2 _
=cost+ Cu—giw‘lsinl‘— sin(wt).
w

—1 w2 —1
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Example (contd)
w = +1: Here we have

(S)_s+1 1 s+t 1T 1 881
TSl (112 241 28+1 2 (24 1)

1
= y(t):costJrsinH:%sint:FEtcost

B cost—f—%sint—%tcost forw =1,
N cost+1§sint+1§tcost forw = —1.

Explanation: The above decomposition of 1/(s? + 1)? and its
inverse Laplace transform were found by playing around with the
known Laplace transforms £{cost} = s/(s*> + 1),

L{sint} = 1/(s2 +1). Use

s §—1 _ 1
£{tc05t} dS A W—@* (52+1 2,f|’0m Wh|Ch |t |S
obvious.

The standard way to compute £ { (Camd } is to use complex

1 _ A
partial fractions (32+1)2 = o (s+1) =5+ = )2 + s+1 + (s+1)2
together with - SJF = L {e*}, (S:F] =L {tei”} One obtains

B=D=-1/4, A= —i/4, C = +i/4, .
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Exercise (advanced)
covnalVEs |t appears that we can obtain the solution for w = +1 by viewing
Laplace the solution for w # +1 as a two-variable function y(w, t) and
Transform . . . . 3 : )
computing lim,,_,+1 y(w, t) with the aid of LHospital’s Rule. Can

you prove this rigorously? (Compare also with the proof of Part 3
of our big theorem on fractional power series solutions of
2nd-order linear ODE’s near regular singular points.)
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Continuous Forcing

The preceding two examples had a continuous forcing function
f:[0,00) — C (viz. f(t) = —1, resp., f(t) = sin(wt)). In such a
case the sharpened version of the Existence and Uniqueness
Theorem for linear ODE’s applies and guarantees that there
exists a unique solution y(t) on [0, co) satisfying any given initial
conditions y(0) = yo, y'(0) = y1 (and, similarly, for initial times

fo > 0). As argued before the examples, the solution method
using the Laplace transform produces this solution, provided y(t)
has a Laplace transform Y(s) and £='{Y(s)} can be found. For
this it is sufficient that f(t) has a Laplace transform; see the
subsequent theorem.

If the forcing function f satisfies f(0) = 0, its trivial extension to R
(by setting f(t) < 0 for t < 0) is continuous as well, and hence
maximal solutions of corresponding initial value problems are
defined on R. Such solutions do not necessarily vanish on
(—o0,0); this is the case iff the initial values at {, = 0 are

Yo=y1=0.
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Theorem

Suppose f: [0,00) — C is continuous and of exponential order.
Then the same is true of any solution y : [0, 00) — C of

y" + by’ + cy = f(t), and hence Y(s) = L{y(t)} is defined in
some half plane Re(s) > a.

Proof.

In the homogeneous case f(t) = 0 solutions are exponential
polynomials and the assertion is obvious. In the general case it
follows by inspecting the variation-of-parameters formula for the
solution (cf. our earlier discussion of analytic solutions of
2nd-order inhomogeneous linear ODE’s) and using that
“exponential order” is inherited by products and integrals. Since
the ODE’s considered here have constant coefficients, the
Wronskian appearing in the formula is a nonzero multiple of
e—bt_)
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Discontinuous Forcing
Now consider the more general IVP

y'+by' +cy=1»£(t), y(0)=yo, y'(0)=y (%)

with constants b, ¢, yo, y1 € R and forcing function f: [0, 00) — C,
whose Laplace transform F(s) exists in some half plane

Re(s) > a. For the following discussion we assume that f is
piecewise continuous and of at most exponential order.

Because y” cannot exist at discontinuities of f (as can be shown),
we must adapt the definition of a solution to this more general
situation.

Definition

By a solution of (x) we mean a C'-function y: [0, c0) — C with the
following properties:

© /(1) exists at all points t € [0, o) where f is continuous, and
y'(t)+ by'(t) + cy(t) = f(t) holds for those points t;

® y(0) = yo, y'(0) = y1.
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Thomas ¢ In the definition the values of f at its discontinuities do not

Honold .,

matter, and hence need not even be defined.
¢ For a solution y the derivative y”” must be piecewise

ol VP continuous (with the same exceptional set as f), as the
wihthe representation y’'(t) = f(t) — by'(t) — c y(t) shows together
e with the assumption that y is a C'-function.

= L{y” + by’ + cy} can be computed using the
differentiation-in-the-domain formulas.

® A priori a solution y determines solutions in the original
sense only on the open intervals (#-_1, f) between adjacent
discontinuities of f (including (0, t) and, if there is a largest
discontinuity t,, also (f,, 00)). However, the endpoints can be
included since y” has one-sided derivatives in the endpoints,
viz. y{(tk—1) = limggs_, Y (1), ¥ (&) = limsy y” (1), which
satisfy the ODE as well.
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Theorem
@ /f the forcing function f is piecewise continuous, the IVP (%)
has a unique solution y.

@ I the Laplace transform of f exists then the Laplace transform
method can be applied and produces the solution y.

Proof.

(1) The Existence and Uniqueness Theorem first gives a unique

solution y; of the IVP (x) on [0, 1], then a unique solution y» of the

ODE on [, &2] with initial values ya(t) = y1(t1), ya(t1) = yi(t1),

and so forth. Defining y as yx on [f_1, t] yields the desired

solution of (x) on [0, o). Conversely, the requirement that y be a

C'-function forces the initial conditions of yx and yx.+ at  to

match and hence determines y uniquely.

(2) Piecewise continuity of y” ensures that Y(s) = L{y(t)} can

be computed as usual from the given data:

SPY(S) —syo —y1 + b(sY(S) — yo) + ¢ Y(5) = F(s)

F(s)+syo+byo+ s

— Y(s)= 2+ bs+c = Gls), say.

= y(t) = L7Y{G(s)} (i.e., the unique continuous preimage). [



o Remarks

Introduction to . F
e Y(8) = Ye(s) + Ya(s) with Yi(s) = s, Yils) = gl
Thomas © Y, (s) is the Laplace transform of the solution y,(t) of (x) with
Honold initial values y,(0) = y,(0) = 0.
® Y(s) is the Laplace transform of the solution yj(t) of the
associated homogeneous ODE with initial values yy, y1.

e W ® The denominator of Yy(s), Yx(s), viewed as a polynomial in
Laplace s, is precisely the characteristic polynomial of ().
O Y (s ) is a rational function of s, and hence
yn(t) = L7 Yp(s)} can be determined from the partial

fractlon decomposition of Yj(s). This provides an alternative
method to determine the general solution in the
homogeneous case.

O i f(t) =, c;it™em! is an exponential polynomial, Yy(s)
and Y(s) are rational functions of s as well, so that y,(t), y(t)
can be determined in the same way using partial fractions. If
f(t) is not an exponential polynomial, the Laplace-inverse of
Y»(8) may nevertheless be known, providing a method to
solve additional instances of such ODE'’s.

These observations generalize mutatis mutandis to higher-order ODE'’s.
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The Laplace transform of the Heaviside function

u(t):{1 if t >0,

0 ift<O.
is C{u(t)} = £{1} =1/s.
Here we use the convention that the Laplace transform of a
function defined on R (and vanishing on (—o0, 0)) is that of its
restriction to [0, oo). Conversely, we can view any function
f:[0,00) — C as a function on R by setting f(f) = 0 for t < 0. The
extended function is piecewise continuous and of exponential
order a iff the original function is.

Now consider a rectangular forcing function of unit height, i.e.,

tas(t) = 1 ifa<t<b,
a7 N0 ift<aort>b,

with a, b € R satisfying 0 < a < b.
rap Can be expressed in terms of the Heaviside function as

rap(t) = u(t — a) —u(t — b) = ua(t) — up(t)

(except for t = b, where the right-hand side is u(b — a) — u(0)
=1-1 =0, but this change doesn’t affect the Laplace transform).
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Using linearity of the Laplace transform and the translation in the
argument formula, we obtain

e—as _ e—bs
L{rap} = L{ua} — L{up} = e *L{u} — e PL{u} = — s
In particular, if the upward step is at t = 0 (a = 0) then
rab(t) =r10p(t) = (1 —e™%)/s.
Example (discontinuous forcing)
Solve the IVP /() + y(t) = 4+ 7O <E<T i initial

0 fort>1,
conditions y(0) = y’(0) = 0 with the Laplace transform.

Solution: Since yy = y; = 0, the Laplace transform of the
left-hand side is (s? + 1) Y(s), and that of the right-hand side is

,C{I‘()J} = (1 — e_s)/S.
= Y(s)=

1—e”®
s(s2+1)°

Using partial fractions (1 =1 - (s +1) — s - s), we obtain

Y(s)=(1—e) (l - 5211) .
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Example (cont'd)
Since £ {‘5 — 8 } =1 — cos t, this gives

5241

y(t)=1—cost—uq(t)[1 — cos(t —1)]

)1 —cost for0<t<1,
) cos(t—1) —cost fort>1.

—0.5 1

Figure: The solution y(t) (in red), its derivative y’(t) (in blue), and
the forcing function f(t) (dotted)

Note that both sections of y(t) are periodic oszillations. For the
section on [1, c0), we alternatively have cos(t — 1) — cost =

2sin t+12 1 snt*(;;” = 2sin (%) sin (t — %) ~ 0.965sin (t — %)
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Example (discontinuous forcing)

1 forte[0,1]U[2,3]U[4, 5]
0 otherwise,

y(0) = y’(0) = 0 with the Laplace transform.

Solution: Since yy = y4 = 0, again Y(s) has the simple form

F(s) _ F(s)
$2+3s5+2 (s+1)(s+2)

Solve the IVP  y"+3y' +2y =

Y(s) =

with F(s) = L{f(t)}, where
f(t) = [uo(t) — w1 ()] + [u2(t) — us(t)] + [ua(t) —us(t)].

1 e—S e—23 e—SS e—4s e—5s
= F(§)=— -+ ————+— — —,

S S S S S S

1—e S+ 6723 _ 3*33 + 6745 _ 6753
= Y(s) =

s(s+1)(s+2)
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Eicfmgii' The partial fractions decomposition of the denominator is
Thomas 1 11 1 1 1 1 1
Honold - 4 _—_rl__ —t o2t )
s(s+1)(s+2) 2s s+1+23+2 {2 ¢ *3g¢ }
Writing g(t) = 3 —e~!+ J =2, the solution is
Splving IVP’s
"#”23;;2 y(t) = 9(t) —ui(t)g(t — 1) + ua(t)g(t — 2) — ua(t)g(t — 3)+
+ua()g(t —4) —us(t)g(t —5) = -+
0.3
02 [ Y ST A oo
0.1 1

Figure: y(t) (in red), y’(t) (in blue), and 0.2 f(¢t) (dotted)
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Example (continuous forcing)
t for t € [0,1],
Solvethe IVP  y"+y=(¢2—t forte(1,2],
0 otherwise
for general initial values y(0) = yo, ¥'(0) = y1 with the Laplace
transform.
Solution: The solution is y(t) = yp(t) + yo cost + yi sint, where
yp(t) is the particular solution with y,(0) = y,(0) = 0.
As before, Y(s) = L{yp(t)} has the form  Y(s) = 5 with
F(s) = £{f(t)}
=L{t(u(t)—u(t—1)+@—-t)(ut—1)—u(t-2))}
= LA{tu(t) —2(t—Nu(t—1)+ (t — 2)u(t —2)}
1 2e % g2
2 e e

1—2e S4e28 _ 2 1 1
:}Y(S):w:(1—2e S+e S)(82_32<|>1>
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Example (contd)
Since & — = = L£{t—sint}, this gives

2T P+
Yp(t) =t —sint —2uy(t) [t =1 —sin(t — 1)] + ua(t) [t — 2 —sin(t — 2)]
t—sint ifo<t<At,
=¢2—t+2sin(t—1)—sint if1<t<2
2sin(t—1) —sint —sin(t—2) ift>2.
1.0 4
0.5
1
—0.5 1

Figure: yp(t) (in red), y,(t) (in blue), y, (t) (in green), and £(t) (dotted)



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Solving IVP’s
with the
Laplace
Transform

Impulsive forcing
cf. [BDM17], Ch. 6.5
Imagine that in our first example we replace the forcing function
f(t) =r10.1(t) by £.(f) = (1/€)ro..(t), € > 0 (a rectangle with basis ¢
and height 1/¢, hence still of area 1), and let € | 0 (or at least
consider very small ¢).
Such forcing functions are important for applications, where they
describe time-dependent forces acting over a short period of time
and such that the total impulse of the force is constant (for
mechanical systems), or electric impulses of high intensity over a
short period such that the total voltage of the impulse is constant
(for electric circuits).
The solution of the IVP y”" + y = (1/¢)ro., ¥(0) = y'(0) =0 is
1;(1—cosl‘) if0<t<e,
Ye(t) =31 .
< [cos(t —€) —cost] ift>e
Since cos(t — €) — cost = 2sin (t — §) sin (§), the “limiting solution” is

e .. sin(t —€/2)sin(e/2)
y(t) = lim y(t) = lim 2

=sint fort > 0.
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Since y.(0) = 0, this also holds at t = 0.

Observation
If we assign to the “limit function”

5(t) =limf.(t) = Iin8(1/e)ro76(t) =

el el

+oo ift=0,

0 if t £0,
the Laplace transform £{5(t)} = 1, then
y(t) =sint=L"" {sz‘+1 } can be obtained directly with the usual
solution method.

Of course we know that there is no ordinary function on [0, co)
with Laplace transform 1. In fact the Laplace integral of 5(t) is
zero for all s, because the single value 5(0) = 400 doesn’t matter
for integration.

But it turns out that we can work with () in a meaningful way,
provided we leave the definition of 5(¢) as an ordinary function
aside, use f.(t) in place of 5(t) in all computations, and obtain the
value corresponding to (t) by letting € | 0. The precise
mathematical term for such “generalized functions” is “distribution”,
and the present discussion should be viewed as a simplified (and
sometimes non-rigorous) account of Dirac’s 5-distribution.



Math 285 It is custom to use rectangular functions that are symmetric about
itroductionto the origin in the final definition of 5(t), because then the resulting
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Equations distribution reflects local properties at zero (on both sides) of the
Thomas functions it is applied to.
Honold Lo
Definition

Dirac’s Delta function is the distribution (“generalized function”)
defined on R by 5(t) = lim¢o £(t) with

Solving IVP’s
with the

1 u(t+e)—u(t—e
aneorm () = 5o rce(t) = (t+e) 5 (t=e),

As a simple example for the ideas involved in the definition of
Dirac’s Delta function we prove the following two properties:

0/_Zé(t)dt:1.

® If f: R — C is piecewise continuous then

/OO f(1)8(t — to) dt = w;

— 00

in particular, if f is continuous in fo then [ f(t)5(t — to) dt = f(fo).
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Proof.
(1) Since f_°°oo f.(t)dt = 1 for every € > 0, we also have

[mé(t)dt:2$[wfg(t)dt:1.
(2) We have

00 1 fo+e
/ (O —to)dt= o [ f(t)dt
J —o0 2¢ fo—e

fo 1 fote f(th— f
:l/ f(f)—f(fo—)dl‘%—* f(t)—f(to+)df+w.
26 ty—e 26 f 2
Since
oK) - f(to—)dt‘ < emax{|f(t) — f(ty—)| 1t — e < t < o}, the

first summand tends to zero for € | 0, and similarly for the 2nd
summand.

— [ f(8)8(t — fo)dt = lim.jo [ F(1)E.(t — o) dt = (o= bH)
In order to work with 5(t) symbolically in the context of the
Laplace transform, we need further properties:
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O L{5(t—1 } = e~ 5b for t; > O;
O L{5(t)} =1 (the constant function s — 1);
O v'(t) = 5(t )-

Proof.
(8) For e < ty the function t — f.(t — %) vanishes on (—oc, 0).

:>/ fe(t—to)e‘S'dt:/ f.(t — ty)e st dt,
0 —o00

which for € | 0 converges to e =50, since t — e~ is continuous.;
cf. Property 2 and its proof.

(4) This follows by letting &, | 0 in (3).

(5) We have
; 0 if t < —e,
/ f(r)dr =4 te ifte [—ed,
- 1 ift >e.

= f 8(7)dT = lim¢o f f.(7)dr = u(t) (except for t = 0).
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Notes
* Since lim o L{f(t)} = 1/2, Property 4 cannot be concluded
in the usual way. (For this one needs to use the one-sided
analog of £.(f) as in the example.) If we want the
translation-in-the-domain formula also hold for 5(t), we must
define £{5(t)} =1.

e Some people define the value of the Heaviside function at
t = 0 as u(0) = 1/2. With this definition, Property 5 holds
alsoatt=0.

Example
Find the solution of the initial value problem

y"—4y' +4y =358(t—1)+58(t—2); y(0)=y'(0)=1.

Solution: Applying L to both sides of the ODE and using
Property (3) gives

SPY(s)—s—1-4(sY(s)—1) +4Y(s)=3e *+e 2
(s —45+4)Y(s)=s—-3+3e 5+ %
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Example (cont'd)

e ¥(s) = s—3 N 3e® N e 28
S (s-2P  (s-22  (s-2)
1 1 3e° e 28

“s-2 (s—2¢ (s—2¢7 (s—2p

y(t) = e® — te? + 3uq(t)(t — 1) 4 uy(t)(t — 2)e2(—2).

The meaning of this solution is the following: If y.(t) denotes the
solution of the IVP

y' =4y’ +4y =31 (t-1)+1f(t-2); y(0)=y'(0)=1, (IVP,)

we have lim¢o ye(t) = y(t). Hence for small ¢ the solution of
(IVP.) is well approximated by y(?).
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The use of the convolution

We may view Y,(s) = szfg)ssl»c as a function of F(s), (and hence of

the forcing function f(t). This functional relation can be written as

Yo(s) = H(s)F(s) with H(s)=(s®+bs-+c)".

The function H(s) is called transfer function of the ODE (or the
physical system described by the ODE). The name comes from
the fact that we can consider the solution y(f) as “output” of the
system when the forcing function f(t) (e.g., a mechanical
force/electric impulse) is applied as “input”.

The convolution theorem gives
t

Yo(t) = / h(t — 7)f(7)dr
0

with h(t) = £~{H(s)} = £~ {m . Thus h(t) (the so-called
|mpulse response”) is the solution for f(t) = &(¢) (“unit impulse at
time t = 0”), and the solution y,(t) in the general case is the
convolution of the impulse response and the forcing function.
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A first-order autonomous (time-independent) linear ODE
system has the form

y=Ay+b, withAecC™" beC".

As in the case of higher-order scalar ODE’s, we will include
in the discussion the case of a time-dependent continuous
“source” b(t), i.e., consider more generally y’ = Ay + b(t)
or, written out in full,

~

=

ayy ... an\ [y by (t)
= : AN RS
ay ... amn Yn bn(t)

~

)
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Motivation
ODE systems of the form just described often occur when
modeling physical systems with a number of separate but
interconnected (“coupled”) components. Examples are provided
by spring-mass systems and LRC electric circuits. We just
reproduce the two introductory examples from [BDM17], Ch. 7.1.

Example ([BDM17], p. 279)

A 1-dimensional two-mass, three-spring system under the
influence of external forces is described by the 2nd-order ODE
system

mx{(t) = —(ki + k2)X1 + kaXxa2 + F1(t),
mxy (t) = kexy — (k2 + k3)x2 + Fa(t),

where X1, X» denote the coordinates of the masses, ki, k>, k3 the
spring constants, and F+(t), F»(t) the (time-dependent) external
forces.

This 2 x 2 linear system can by reduced to a 4 x 4 first-order
linear system by the the usual method of order reduction, i.e., we
introduce two further variables x3 = x{, x4 = x5.
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X{ = X3,
X = Xg,

Introduction

X3 =Xy = —(ki + k2)/m - x1 + (ka/m)x2 + Fi(t)/m,
Xy = X5 = (ko/m)x1 — (k2 + k3)/m - X2 + Fa(t)/m,

or, in matrix form,

/

X 0 0 1 0\ [x 0
x| | o 0 0 1ffel |0
X3 ke kg o] [ ()
X4 ko _kith o0 0) \x Fely




Math 285
Introduction to
Differential
Equations

Thomas
Honold

Introduction

Example ([BDM17], p. 280)

The current /(t) and voltage V/(t) in a parallel LRC circuit satisfy
the 2 x 2 first-order homogeneous linear system

, 4
v
C RC’
where L, R, C denote the inductance/resistance/capacitance of

the inductor/resistor/capacitor.
In matrix form this system is

(Q/‘ (05 ) (Q

V(1) =
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Courtesy of our textbook [BDM17]
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Facts Already Known

© Any IVP Y = Ay + b(t) Ay(fh) = Yo has a unique maximal
solution, which is defined whereever all coordinate functions
of b(t) are defined. In particular, if b(t) = b is constant then
the solution of the IVP is defined on R.

® The solutions of any homogeneous system y’ = Ay form an
n-dimensional subspace S of the vectorial function space
(CM® (consisting of all maps f: R — C").

@ If &(t) is a fundamental matrix of y’ = Ay (i.e., the columns
of ®(t) form a basis of the solution space S of y’ = Ay), the
general solution of an associated inhomogeneous system
y = Ay +Db(f)is

y(t) = &(1) <co + /tt¢(s)1b(s) ds) , CoeC

Alternatively, if a particular solution y,(t) of y’ = Ay + b(f) is
known, the general solution of y’ = Ay + b(t) is
y(t) = ®(t)co + yp(t), co € C".
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Facts Already Known (Cont'd)
While the preceding properties hold more generally for
time-dependent systems y’ = A(t)y + b(t) (provided all coefficient
functions aj(t), bi(t) are considered for Property 1), the next
property is a special feature of the time-independent case.

@ The matrix exponential function ¢ — et = 3752 £ Ak
satisfies ®'(t) = Ad(t), ®(0) = I,, and hence provides a
fundamental matrix for the system y’ = Ay.

Problem
How to find an explicit fundamental matrix fory’ = Ay ?
Equivalently, how to actually compute At ?

Any two fundamental matrices ®1, ®, are related by

®4(t) = d,(t)C for some invertible C € C™*". The matrix C is the
change-of-basis matrix from the ordered basis of S formed by the
columns of @ (t) to that formed by the columns of ®,(¢). It is
given by C = ®,(t))~'®4(ty) for any f, € R.

Hence one fundamental matrix is as good as any other, and for
any fundamental matrix ®(t) we have ®(t) = eA'®(0), or
S(H)d(0)~" = Al
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Honold
o If A is a diagonal matrix, say with entries Aq,..., A, then
Vi A Vi MY
Y An) \Wn AnYn-

So the system is “decoupled” into the n scalar ODE’s y/ = \y;,
1<i<n.
= The general solution is

)% (t) Cq et et Cq

Yn(1) cpen! eMt ] \cp

From this we see that the diagonal matrix with i-th entry e*!
(considered as a matrix function of t € R) is a fundamental matrix.
Setting t = 0 gives the identity matrix. = This must be e?! !
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Independent verification

A w e (M
exp |t = il
)\n k=0
k
o tk )\1
k=0
k= Okl)‘k

An

At

00 k
k= Okl)\

Thus the problem is solved for diagonal matrices.
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A conceptual approach (cont’d)

For a general matrix A we would like to find a coordinate
transformation y(t) = Sz(t), or y = Sz for short, which puts y’ = Ay
into simpler form (diagonal form, if possible). Of course, we must
check whether the transformed system has the form z’ = Bz at all.
The matrix S must be invertible, i.e., the columns of S must form
an (ordered) basis of C". The matrix S then switches from this
basis to the standard basis of C".

y=Sz — y =82 — zZ=S"'yY =S 'Ay=S""ASz

— The new system has the desired form 2’ = Bz with B = S~'AS.
We have met this situation in Linear Algebra, from which we recall
the following:

e A B c C™" are similar if there exists an invertible matrix
S € C™" such that B = S~'AS.

e A c C™"is diagonalisable if A is similar to a diagonal matrix.

e S—'AS is a diagonal matrix iff the columns of S, which form
a basis of C"/C, are eigenvectors of A. The corresponding
eigenvalues, are the diagonal entries of S~'AS, in order.
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A conceptual approach (cont’d)
Conclusion: If A is similar to a diagonal matrix

M
B =
An
and, secondly, we can compute the corresponding transform
matrix S, whose i-th column v; must be an eigenvector of A for

the eigenvalue )\;, then we can solve y’ = Ay completely.
The general solution will be

C1 e>\1t
yit)=8| : |=cieMvi+--+coetlvy,
chet
where S = (v4]...|v,), and a fundamental system of solutions will
be t s eMlvy, ..., t s el
The vectors vy, ..., Vv, form the ordered basis of C" corresponding

to the coordinate transformation y = Sz (which should be viewed
as a coordinate transformation of C" that gives rise to a
corresponding transformation of functions).
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A conceptual approach (cont’d)
The fundamental matrix of y’ = Ay just determined is

e)\1[
¢(t) = (eA‘tV1 | ‘e |e)‘”tv,,) =S
e)\nt
It follows that
er
Al =o(t)o0)'=S s
eAnt

This can also be verified directly from the series representation:

)\1 /\1
S—'AS = — A=S s
)\n /\n
—_————
B
— Ak =(SBS ")(SBS')..-(SBS~') = SB¥S



Math 285
Introduction to

Differential
Fawtons = A conceptual approach (cont'd)
Thomas
Honold
A = aphat
. k=0
_s (i L B") s (%)
k!
k=0
e)qf
_ 3831371 =S . 371
eAnt

For the step tagged (x) we have used continuity of matrix
multiplication, which implies that for a convergent sequence
Xk — X of matrices X, € C"™*" we have SX, — SX, and similarly

stf1 — XS*1 .
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the 1st-order system

0= (50 = (5 o) G2):

which arises from y”’ + y = 0, has matrix exponential function

t 0 1\| [ cost sint
exp -1 0/| \—sint cost)"’

Now we use the present approach to rederive this result.

Thomas
Honold

Introduction

The characteristic polynomial of A = ( % {) is

w0 = [ Y- o)

so that the eigenvalues are Ay =1, Ao = —i.

i1

A—il_’_1 .

. Atil=

i 1
-1 i

_>i1
00

—i 1
0 0




Math 285
Introduction to
Differential
Equations

Thomas
Honold

Introduction

Example (contd)

It follows that the eigenspace E; (the right kernel of A — il) is
spanned by v¢ := (1,i)T, and E_; by v = (1, —i)". The matrix
S = (1 1) then diagonalizes A, viz.

1T 1\ 01\ /1 1\ 1 [—i—1 i
i —i -10 i—-i)  —2i\ —i 1 -1 -1
_if2 0\ _[(i O
—2\0-2) \0 i
Our previous discussion yields that

yi(t) = et <11> , Ya(t)=e7" (_11>

form a fundamental system of solutions of y’ = ( % {) .
The corresponding matrix exponential function is

elt et 1 1\ 1 et et —i -1
jeit —jeit i —i T o \ ielt —jeit —-i 1

_ cost sint
~ \ —sint cost |-
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T * |t is not necessary to compute v,; we can just take v, = V.

Honold More generally, Av = \v (A real, \, v complex) implies

AV=AV=Av=)V=)\V.

* Areal fundamental system of y' = ( % §) y can also be
Inoducon obtained by extracting from y+(t) the real and imaginary part
(more generally, provided A is real, from each pair of
complex conjugate solutions the real and imaginary part of
one of them).

® There is the simple matrix identity

exp [t (_01 (1))] = cost ((1) ?) +sin ¢ <_01 8) = (cos t)l+(sin t)A.

We will see later that in general n x n matrix exponentials
can be expressed as finite sums eA = 371 ci(t)AX. This is
surprising at the first glance, since e*! was defined by an
infinite sum, and it does not mean that the matrix exponential
series terminates after a finite number of summands.
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Example
We determine a fundamental system of solutions of y’ = Ay for

2 -2 -16
A= 0 1 6 | e R3S,

0 0 -2

This matrix was one of the examples for eigenvalue/eigenvector
computations of Math257 in Fall 2023. The triangular structure of
A greatly facilitates the computations.

X-2 2 16
0 X-1 -6
0 0 X+2

=(X-2)(X-1)(X+2)=X>-X>—4X +4.

:>)\122,)\2:1,)\3:72.
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Example (contd)
Now we determine the corresponding eigenspaces E, :

M=2: 0 -2 16
A-21=[0 -1 6

0 o0 -4
This matrix has rank 2 and right kernel R(1,0,0)T.

Ao =1¢ 1 -2 -16
A-1=|0 0 6
o 0 -3

This matrix has rank 2 and right kernel R(2,1,0)".

A3 = —2:

4 —2 -16 2 -1 -8
A+2l=( 0 3 6| =>[0 1 2
0 0 0 0 0 0

This matrix has rank 2 and right kernel R(—3,2, —1)T.

In summary, we have shown E> = R(1,0,0)", E; = R(2,1,0)T,
andE_p = R(-3,2,-1)T.
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Example (cont'd)

Since the eigenvalues are distinct, the 3 eigenvectors found must
be linearly independent and hence form a basis of R3. (This is
also clear from the triangular form of the corresponding matrix S.)

A fundamental system of solutions of y’ = Ay is then

1 2 -3
y1(t)—32t(0>7 Vz(t)—e’( 1 ), ys(t)—eZ’( 2).
0 0 1

Afternote

It is instructive to show directly that if v = (v, vo, v3)T € C2 is an
eigenvector of A € C3*3 with corresponding eigenvalue A then
y(t) = eMv solves y’ = Ay :

eMV1 ! )\e)‘tV1
Y= (et | =X | =Ay(t) =Ay().
e V3 AerMvg

because eMv € E, as well.
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Example (optional)

This example builds on the discrete analog y,.1 = Ay, (arising
from the problem to determine the number of bit strings of length
n of Hamming weight divisible by 3) considered in Math257 in Fall
2023.

Consider the linear 1st-order ODE system

The matrix A = (
2023.
Since we had already determined a basis of C3 consisting of

eigenvectors of A, we can write down a fundamental system of
solutions immediately.
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Example (cont'd)
Inspecting the example, we obtain the general solution of the
given system as

y1(8)
5 (1)
y3(t)

= 62t

1
1
1

+ Cge_“’t

1

w

2

W

with ¢y, ¢, ¢z € C, where w = e2™/3 = *‘%“/5

A fundamental matrix is

d)(t) = (621V1 |e_“tV2|e_“’2tv3) =

e2t

and the canonical fundamental matrix is

€

At _

1
1
1

1
w

)

2

1
2

w
w

e—wl‘

, 1
+CsC_Wt w2
w
2
e—wt e~ w t
2
wefwi w267w t
2
w267wt we wt
1 1 1
1 w WP
1 w? w
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Example (cont’d)
The matrix

wz w

1 1 1
S = (V1|V2|V3) = (1 w w2> = (V1 |V2W2)
1

satisfies SS = 315 (check it!), and hence (using w? = w=! = @)

< 1 (1LY M
371:53:5 1 W w =3 V; .
1 w  W? v;
This gives
(1 1 e?t 11 1
At 3 1 w W e vt 1 W w
1 W w et 1w W?
1 _ _
=3 (ez’ viv] 4 el vou) 4 et vgvg)

N

1 111 1w w (1w e
=3 111 +e w1 B+ w1 w
111 w? w1 w w? 1
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Alternative representations are

1 2 100 1 : 001 1 . 010
eAt _ 7(62!+e—w?+e—w {) 010 +§(62?+we—wl+w2e—w I) 100 +§(e2f+w26—wf+we—w {) 001
3 00t 010 100

o , P g
- %(ezr -t g+ SRR 3 YA+ e e ue AL,

Finally, note that the matrix S simultaneously diagonalizes A and
eAl. So we also have

1 0 1 2
A=(1 1 0]=8 —w s
0 1 1 —w?
111 1 W2 w 1 w w?
2111 ] —wlw 1 B -l 1 wl]].
111 W w1 w w? 1

w| =



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Introduction

Definitions
and Examples

© The eigenvalues and eigenvectors of A = (

Example (contd)
This time (Spring 2022) | made two further notes on the example,
which are reproduced here in detail:

101
11? can of

01
course be determined without any knowledge about circulant
matrices. The following argument avoids computing xa(X).

Since A has constant row sum 2, \{ = 2 is an eigenvalue of
A with associated eigenvector vy = (1,1, 1)T. The remaining
eigenvalues can be determined from

M+ Ao+ A3 = tr(A) =3,
AMAgAg =det(A)=1+14+0-0-0-0=2.
This gives Mo + A3 = A\2A\3 = 1, so that Ao, A3 are the roots of
X2 X+1—O|e /\2/3_1i1\/§
1-iv3
2
A— ol = 1

T
oo

o
—_
I
Go -




Math 285
Introduction to
Differential
Equations

Thomas
Honold

Introduction

Definitions
and Examples

Example (cont'd)
© (contd)

For this note that it suffices if vo is orthogonal to two rows of
A — ol

Because A is real, the eigenvector v3 associated with

A3 = A mustbe vy =V, = (1,%@, *‘*T‘V@)T

For this note that Av = Av implies Av = Av = Av = \v = \V.
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Introduction to

Differential
Eapetitoms ® A real fundamental system of solutions of y’ = Ay (different
Thomas from that formed by the columns of eA?) can be obtained from

ponad the given complex fundamental system by extracting the real

and imaginary part of the complex solution:

1
Introduction Y1 (t) — ezt 1 ,
Definitions 1
and Examples
1 ‘ 1
Vo(t) = Re [e ™! [ w || = Re |e/2e=1V31/2 | ¢2mi/3
w2 oAmi/3

cos(v/31/2)
— el/2 (cos(\/gt/2 + 471'/3)) ;

cos(v/3t/2 4 21/3)
1 sin(v/31/2)
y3(t) =Im le”t (w)] = —¢l/? (sin(\fSt/2+47r/3)) .
w? sin(v31/2 + 27/3)

The same works mutatis mutandis for any real n x n matrix.
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Honodt Recall that the solution space of an n-th order scalar
homogeneous linear ODE a(D)y = 0 (with constant coefficients)
is generated by the exponential polynomials tXe* with A € C a
root of a(X) and k a non-negative integer less than the
(algebraic) multiplicity of .
Order reduction gives the 1st-order n x n system
General
5?'5';'; of v\’ 0 1 0 . 0 Vi
Ve 0 0 1 0 Yo
Yn—1 o 0 ... 0 1 Yn—1
Yn —ay —& ... —ap-2 —an- Yn

The coefficient matrix A is the companion matrix of the
polynomial a(X) = X" + a, 1 X"~ '+ .-+ a1 X + a and has
characteristic polynomial equal to a(X); cf. Linear Algebra.
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In the special case under consideration there is a fundamental
system of y’ = Ay consisting of vectorial functions of the form

y(t) = (tkeAt7 (tke)\t)/7 o (tkeAt)(nq)) :

which have exponential polynomials p(t)e*! with A an eigenvalue
of A and polynomial factor p(t) of degree less than the algebraic
multiplicity of A\ as entries.

This motivates the ,Ansatz"
y(t) = eMvg + teMvy -+ 1" TeMyy, g, v e C,
for eigenvalues X of A of algebraic multiplicity m to solve y’ = Ay.
Y (1) = deMvg + (1 + A)ePvy + (2t + AP)eMvp + - +
+ (M=)t 2 4 A" ey
= (Avg + vy )CM + (Avy + 2V2)te”\' + -+
+ (AWm_o 4+ (M= 1)WVm_1) 1" 2eM 4 vyt M
Ay(t) = eMAvg + teMAVy 4 - + 17 MAV,_4
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= y(t) solves y’ = Ay iff

Avy = \vg + vy,
Avy = vy + 2v,,

AV, o = AV o+ (M —1)Vp_q,
AVm_1 = AVp_1.

This can be rewritten as (A — Al,)vg = vq, (A = Al)vy = 2vs, ...,
(A= MpVp2=(m—1)y_1, (A= Al;)Vp_1 =0 and is equivalent to
Vi = %(A —Mp)kvy for1 <k<m-—1, (A—A,)"v=0.

In particular, vo must be taken as a generalized eigenvector of A
for the eigenvalue .

On the next slide we recall the most important facts about
generalized eigenvectors, which were derived in Linear Algebra.
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Generalized Eigenspaces
Suppose A € C™" has characteristic polynomial

r

xa(X) = [T x =)™

i=1

with A1, ..., A, distinct. Thus A;, 1 < i < r, are precisely the
eigenvalues of A and m; the corresponding algebraic
multiplicities.

e Avectorv e C"\ {0} is said to be a generalized eigenvector
of A associated to the eigenvalue J; if (A — \il;)™v = 0. The
solution space of (A — Ail,)™x = 0 (right kernel of the matrix
(A — Xil,)™), which also includes 0, is called generalized
eigenspace of A for \; and denoted by G, ;

e dim(Gy,)=m;for1 <i<r;
° (Cn:G)\1®G)\2€B"'EBG)\r.

The latter means that every vector v € C" has a unique
representation v =vy + Vs + - -- + v, with v; € G,,.
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® G, 2 E,, and A is diagonalizable iff Gy, = E,, for all
ie{1,2,...,r}.
e If \; is a simple root of xa(X) (i.e., m; = 1), eigenvectors and
generalized eigenvectors of A associated to )\; are the same
thing (and thus G, = Ey,).
Seneral * In general, writing \; = A and m; = m, we have the chain of
y = Ay subspaces

E) = rker(A—Al,) C rker(Af)\In)2 C - Crker(A=Ml,)" = G,.

* C"=Gy, ®Gy, @ - ®G,, can be rephrased as follows:
C"/C has a basis consisting of generalized eigenvectors of
A.
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Theorem
Suppose A € C™" and B = {v4,...,Vv,} is a basis of C"/C
consisting of generalized eigenvectors of A.

@ /fv; € B is associated to the eigenvalue \; of A and

y;: R — C" is defined by

m;—1
1 1 )
v =>" Htk eM(A — N 1n)kv;,
k=0
thenys, ..., ¥y, form a fundamental system of solutions of
y’ = Ay.

® The matrix exponential function of A is

ts e = (yi(D)]. .. lyn(t)) (vi]... |v,,)71.
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Proof of the theorem.
We have already seen that the functions y; solve y’ = Ay.
It remains to show that they are linearly independent. We have

y/'(t) = e>"‘th + teA’tW1 + -+ tmi—1 e/\"th’.,1

for certain vectors wy, ..., Wy, _4 € C".

= ¥;(0) = ;.

Since vy, ...,V, are linearly independent, so are y1,...,Yn.
This proves (1);

(2) is an instance of the formula eA! = ®(t)®(0)~".
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Example
We determine a fundamental system of solutions of

y/_G _31)y; cf. [BDM17], p. 336.

Here the characteristic polynomial is

XA(X) =X2—4X +4=(X-2)% sothat A= (] ') has the
single eigenvalue A = 2 with algebraic multiplicity m = 2.

— The corresponding generalized eigenspace must be C?, and,
using for B the standard basis of C? the theorem gives

yi(t) =& (8) 4+ te?t (-11 —11> <g)> _ o2t (2)) Lt <_11) |
() =" (?> et (11 11) <?> =< (?) + e (11>

as fundamental system of solutions.

We must have ®(t) := (y(t)|y2(t)) = e?!, since

®(0) = (y1(0)ly2(0)) = (4 9), and e’ is characterized by this
condition among the fundamental matrices of y’ = Ay.
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Example (cont'd)

1 —1 (1 O ot (—1  —1
:>exp{t(1 Sﬂ—e (O 1>+l‘e 1 1
621 _ teZt _t62[
- ( te?t 62t+t62’>'

The eigenspace E; is 1-dimensional and generated by (1, —1)T,
so that we can replace one of y1, Y2, say yz, by the “simpler”
solution y(t) = e2!(1, —1)T. (This amounts to applying the
theorem to the basis (1,0)7, (1, —1)T of C? instead.)

The corresponding fundamental matrix is

eZt _ teZt _te2[ 1 1 eZI _ teZt eZt
( te?t eZt—i—tez’) ( 0 —1 ) - < tet —eZt)'



Math 285
Introduction to
Differential
Equations

Thomas
Honold

General
Solution of
y = Ay

Notes on the theorem

@ The required basis B can be calculated by determining, for

each i e {1,...,r}, abasis of the solution space of
(A — \ilp)™x = 0. This is done with the usual algorithm
based on Gaussian elimination.

® If the basis vectors vy, ..., v, are indexed in such a way that
Vi, Vo, ..., Vy, form abasis of Gy,, Vi, +1, Vi 425 - - -, Vi, +mp
a basis of G,,, etc., then S = (v4]...|vp)

“plock-diagonalizes” A in the following sense:

A
1 A2 . . .
S 'AS = ) with A; € C™>™mi,

A,

Moreover, the characteristic polynomial of A; is (X — A;)™.
The block-diagonal form expresses the fact that f4 maps the
generalized eigenspaces of A to itself:

(A= Mp)™ =0 = (A—Al,)"Av = A(A — Al,)™v = 0.
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Notes on the theorem cont'd
© A different way to calculate e?! is as follows: From the

preceding note we have

A1 eA1’
A=S S —=ech=5 s
A, ehrt

Further, since (A; — A\;1)™ = 0, where | = I, we have

eA,‘[ — e)\;“eA,‘f—)\;“ — (e/\itl)et(A,‘—)\,‘ |)

mi—1

m;—1
mety 1.
DT CER D B CERY
k=0 k=0

The exponential series terminates, since (A; — \; 1) = 0 for
k > m.

The solutions y;(t) in Part 2 of the theorem are in fact the
columns of eA’S, as is clear from Part 3 of the theorem.
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Notes on the theorem cont’d
® (cont'd)

This can also be seen directly as follows: If v; is the j-th
column of S and belongs to the eigenvalue A;, we have

=1
eAtV/' — e)\,'“e(A—)\,'l)fvj — e)\,'[ Z Hltk(A _ )\I' I)kV/
k=0 """

m;—1

=My %tK(A — Ailkv;. (since (A — A )™v; = 0)
k=0

This is precisely y;(t), as defined in Part 2 of the theorem.
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Notes on the theorem cont’d
© The vectors wy = (A — \ilp)kv;, 0 < k < m; — 1 (with

W, = V;), which need to be calculated in order to obtain y;(t),
are itself generalized eigenvectors associated to \; and
hence can serve as members of the basis B, provided they
are nonzero. (If you find the reasoning circular, change to
“serve as members of another basis B’ consisting of
generalized eigenvectors of A”.)

Suppose that the sum defining y;(f) terminates with the
summand 7, tkeMtwy, i.e., wy # 0, W1 = 0. Then the
vectors in the chain wg, w1, ..., Wy are linearly independent.
This can be seen as follows: Writing N = A — \jl,;, we have
Nws = ws. 1. If ¥ csws = 0, we can apply N to this sum
and from Z’s(:o CsWs.x = CoWy = 0 conclude that ¢y = 0.
Then we apply N¥~' and obtain ¢; = 0, etc.

If Kk = m; — 1, the chain forms a basis of G,,. If k < m; — 1,
this is not the case, but we can use several such chains,
starting with other vectors v, € Gy,.
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The following facts, which are readily proved, provide the key
Thomas .
Honold to success of this approach.

® The last nonzero vector of each chain is an eigenvector
corresponding to the eigenvalue \;.

® The vectors in a union of chains (belonging to the same
Aj) are linearly independent iff the corresponding
eigenvectors (last vectors of the chains) are linearly

General independent.
S * There exists a basis of G, that is a union of chains, and

the number and lengths of the chains in such a basis
are uniquely determined.

The number of chains is equal to the geometric multiplicity of
Ai, and the lengths of the chains can be determined from the
dimensions of rker(A — \; D, 1 < k < m;.

The matrix respresenting fa w.r.t. such a basis is in Jordan
Canonical Form (see subsequent section), with the
number/sizes of the Jordan blocks equal to the
number/lengths of the chains.
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Notes on the theorem cont’d
@® (cont'd)

The preceding observation motivates the following
“depth-first” strategy for obtaining a basis of Gy, :

First determine the smallest non-negative integer k such that
rker ((A — \iln)K) = G, (equivalently, rker((A — Ail)¥) has
dimension my;), and a vector w € G,, satisfying

(A — M\l 'w # 0. Include the vectors wo = W, Wy, ..., Wx_1

as defined above in the basis. If kK < m;, start over and
determine the largest non-negative integer k’ for which there
exists a vector w' € G, such

that (A—jl,)% ~'w’ is linearly independent of (A — \1,)<~'w.
Include wy = w', wi, ..., wj,_, as defined above in the basis; etc.
Clearly the procedure terminates, and it can be shown that it
yields a basis of G,,. The corresponding fundamental
solutions of y’ = Ay have the simple form

tk 1

yo(t) :eAftW0+te/\’tW1 + -+ (k—11) Wk 1,

tk2

yi(t) = eMwy + teMwa + -+ gy Wi,

Yk—1 (t) = C)\’th,1 , eftc.
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@ (cont'd)
Thus a chain of length k gives rise to k fundamental
solutions yo(t), y1(t), - - ., Yk—1(t) having, in order, k
g;zz;;l o summands, kK — 1 summands, ..., and finally 1 summand. A
y/ = Ay fundamental system of solutions of y’ = Ay obtained from a

union of such chains is essentially the simplest possible.
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Example
We determine a fundamental system of solutions of y’ = Ay for
the matrix
—26 49 74
A= -8 16 25 |.
-4 7 10

This matrix was also considered as an example for
eigenvalue/eigenvector computations in Math257 of Fall 2023.

X+26 —49  -74 X-2 0 -7X-4
aX)=| 8 X—-16 -25|=| 0 X-2 -2X-5
4 -7 X-10 4 -7 X-10

= (X —2%X—-10)+4(X —2)(7X +4) = 7(X — 2)(2X +5)
=X3-3Xx-2
= (X —2)(X + 1)

Then, as before we compute the corresponding eigenspaces.
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Example (cont'd)
= A\ = 2, A2 = —1 (with multiplicity 2).

AN =2

—28 49 74 4 -7 -8
A-21= -8 14 256 | - | 0 O 9
-4 7 8 0 0 18

This matrix has rank 2 and right kernel R(7,4,0)T.
)\2 =—1:

—25 49 74 4 -7 —11 10 —1
A+l = -8 17 26 | -1 0 3 3 ]1—-(01 1
-4 7 1 3 0 -3 00 O

This matrix has rank 2 and right kernel R(—1,1, —1)T.

= The eigenvectors of A span only a 2-dimensional subspace
of R®, and hence A is not diagonalizable.

As basis basis of R3 we can take the two eigenvectors

vi = (7,4,0)T, vo = (—1,1,-1)T, and a further vector v3 solving
(A + |)V3 = V,. Then (A + |)2V3 = (A + |)V2 =0, sothatvs € G_j.
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Example (contd)

—1 4 -7 —11]1 10 —1

1 -1 0 3 33| =101 1
-1 3 0 -3|6 00 O
A solution is v3 = (2,1,0)".

A fundamental system of solutions of y’ = Ay is then

U 1
yi(t) = evy = e (4) , Yoy =etvp=e! ( 1 ) .
0 —1

(eigenvectors give rise to fundamental solutions in the same way
as before), and

-8 17 25

—25 49 74
4 7 11

2
1
0

y3(t) = eitV3 + te~! (A + |) V3 = eitV3 + l‘eftVQ

2 —1
=e (1] +te?| 1 ].
0 —1

The canonical fundamental matrix is (observe that y3(0) = v still
holds!) eA" = (y+1(t)ly2(t)lys()) 8" = -+
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Determine the general solution of y’ = Ay for

2 1 90 1 19
—1 -2 -23 0 0 -46

A_| 0 0 80 o0 -2
|l -6 1 9.4 1 19
1 0 —-10 -2 -2

0O 0 60 0 10

A has the eigenvalue 4, since Aes = 4e4. Thus ya(X) is divisible
by X — 4, which also follows immediately from expanding
det(X lg — A) along the 4th column:

—2-X 1 9 1 19
1 —2-X  -23 0 46

xa(X) = (4—X) 0 0 -8-X 0 12
1 0 1 —2-X —2

0 0 6 0 10-X

Next we add X + 2 times first row to the second row in order to
obtain a column with only one nonzero entry.
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Introduction to

R X2 1 9 1 19
Thomas _X2_4X_5 0 9X-5 X+2 19X -8
Honold XA(X):(4_X) 00 —-X—-8 0 _12
10 -1 -X-2 _2
00 6 0 —X+10
—X2_-4X-5 9X-5 X+2 19X-38
‘ 0 —-X—8 0 12
=(X=4) 1 1 —X-2 -2
General 0 6 0 *X+1O
Solution of
V' =h _X2_-4X-5 9X-5 1 19X-8
0 -X-8 0 -12
=(X-4)(X+2) ] 1 s
0 6 0 —X+10
—X2-4X—-4 9X-5 1 19X -8
0 -X-8 0 -12
=(X-4)(X+2) 0 1 o
0 6 0 —X+10
-X-8 —12

=(X-4)(X+2)°
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Example (cont'd)
The final result is

XA(X) = (X — 4)(X +2)3(X? — 2X — 8) = (X — 4)2(X + 2)*.

— The eigenvalues of A are Ay = 4 with multiplicity 2 and
Ao = —2 with multiplicity 4.

A =4
-6 1 90 1 19
-1-6-230 0-46 1 0 -10 -6 -2
A_d]— 0 0-120 0-12 . 01 30-3 7
-6 1 90 1 19 0-6-240 —-6-48
1 0 -10-6 -2 0 0o 10 0 1
0 0 60 0 6
10-10 -6 -2 10-10 -6 -2
_}01 30—357_>O1 30 -3 7
00 -60 —216 —6 00 10 0 1
00 10 0 1 00 0O 1 0

:>V4: <V1 :(0,070,1,0,0)1—, Vo :(17_4;_1a07051)T>
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Example (cont'd)

Ao = —2:
01 901 19 {0 100 o
-1 0 -23 0 0 —46
00 -600 —12 01 901 19
A+21= — | 01 361 7
—6 1 961 19
00 —-24 00 —48
10 -100 —2 00 6 00 12
00 6 00 12
10-100 -2 10-100 -2
o 01 901 19 . 01 901 19
00 -660 —12 00 100 2
00 100 2 00 010 O

= V_,=(v3=(0,-1,0,0,1,0)T, v4 = (0,—1,-2,0,0,1)7)
Thus A has only 4 linearly independent eigenvectors and is not
diagonalizable.

The theory developed tells us that vq, v, v3, v4 can be extended

to a basis of C® by two generalized eigenvectors vs, vg associated
to Ao = —2.
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0O 0 3 0 0 72
0 1 —147 0 -1 —295
. 0O 0 -3 0 0 -72
(A+2l7=1 36 o 363 0 72|
0 1 3 0 1 7
0O 0 3 0 0 72
General
S 00 216 00 432
00 -84 0 0 1728
- 00 216 0 0 432
A+2D"=1| 516 0 216 216 0 432
00 0 00 0
00 216 00 432

We see that (A+21)3 has rank 2 and a 4-dimensional right kernel.
= W := rker ((A + 21)3) is the generalized eigenspace for
A2 = —2 and we don’t need to compute (A + 21)*.



Math 285
Introduction to
Differential
Equations

Thomas
Honold

General
Solution of
y = Ay

Example (contd)
A “nice” basis of W is obtained by selecting a vector wy; € W
satisfying (A +21)?w; # 0, e.g., w; = e, = (0,1,0,0,0,0)".

1 0
0 -1
0 2 0
— W1 = €2, Wy = (A+2I)e2 = 11 W3 = (A+2|) e, = 0
0 1
0 0

can be taken as the first 3 basis vectors.

The 4th vector can be taken as an eigenvector linearly
independent from ws, e.g., wy = v4 = (0, —-1,-2,0,0,1)".
For S = (vi|vz|wq|wz|ws|ws) we then have

4 0/ 0 0 0] O
04/ 0 0 0| 0
tpe_ | O O[22 0 0] O
STAS=1lo 0| 1 2 of o
00/ 0 1 —2| 0
00/ 0 0 0]-2
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. reflecting that v¢, vo, w3, wy are eigenvectors of A and
Aw; = —2w; + Wo, AW, = —2W5 + W3,

A fundamental system of solutions of y’ = Ay is

yi(t) = e*vy =¢*(0,0,0,1,0,0)",

Ya(t) = e4’v2 =e*(1,-4,-1,0,0,1)7,

ya(t) = e 2wy + te 'wo + S1P e 2wy
( 2t o2t _ 12‘2 —2t 0 te 2!, %t26—2t70)T
va(t) = e 2wy + te?

= (e7®, - _2',0,6_27 te_2t70)T,

ys(t) = e*2fw =e21(0,-1,0,0,1,0)7,
ye(t) = e 2wy = e24(0,-1,-2,0,0,1)".

Note that only the vectors in the basis vi, Vo, W1, W2, W3, W4 OF,
equivalently, the matrix S is required to compute the fundamental
system.
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Example (cont'd)

Finally we determine the canonical fundamental matrix of y’ = Ay

in the usual way (with the

0 e4t te—?[
0 746‘“ e—2t _ %th—Zt
eAt . 0 —CM 0
- e4t 0 l‘e‘Z’
12,2t
0 0 ét €
0 0
e—Zf re—ZI
_{9—2{ _%{26—2{+e—2r _
B 0
- 7641'972{ tefZI
refZT %t2672{
0 0

help of SageMath):
e 0 0
Cfe2 g2t g2

0 0 -2
e 0 0
=2 e 0

0 0 2

3t‘ +e“ A 0
R e R e I

—e“ 2% 0 0
3(972? ! e4f _ ef2f eM refo
%t2672{ B refQI 0 %[2672?
eAt _ 9—2{ 0 0

0 101 0 0
0-410-1-1
0-100 0-2
1t 001 0 0
0 000 1 0
0 100 0 1

Tt 26" - 0g
Ry A AR
2t 27
7re’2’+29“'—2e’zr

et el -2

294 -2t
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For diagonalizable matrices A there is an alternative method for
obtaining a paricular solution of y’ = Ay + q, which expresses the
source q(t) in terms of eigenvectors of A and solves the resulting
1-dimensional systems.

In the case under consideration we have

at) = (3) =5 (1) - 5 (1)) =0+ a0

and we can solve y’ = Ay + q;(t) entirely in the corresponding
eigenspace.

For A1 = i one-dimensional variation of parameters gives a
particular solution z¢(f) = c(t)y+(t) with

—i 1 . —i —i t 1 o i _
C(t):/ 52 dS—E[ISe Ste S]O:E(lte fre—1),

which simplifies (and changes z;(t) = 5 (1). Similarly, for
A2 = —i we obtain zo(t) = z¢(t) = 7‘ ( ;). Superposing the
individual solutions gives yp(t ) zi(t) + z2(t) = (1), as before.
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How to Compute e?! in General?

© A is diagonalizable.
If S~'AS = D then

e tk
—1_Ate __ —1pk
S~ 'eMS = E —k!S A*S

k=0
At
(o] tk € !
:Zka: :eDt'
k=0 k! e/\nt
This gives
e>\1t e)\11l
eA=9 S eAly(0)=S S~ 'y(0).
e)\,,t eAnt

Writing S = (v1]. .. |vp), the right-hand identity says that the
general solution of y’ = Ay is y(t) = cie*ivy + - - + cpePriv,
with ¢ determined from Sc = ¢yvy + - - - 4+ ¢,v, = y(0).
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DiEIiiE] This reaffirms our earlier observation that from a basis
Equations . . .
vy,...,V, of C" consisting of eigenvectors of A one obtains a
Thomas . , . .
Honold fundamental system of solutions of y’ = Ay by multiplying

each eigenvector v; with the corresponding (scalar)
exponential function e

® A has only one eigenvalue ).
In this case we have xa(X) = (X — X)" and (A — Al,)f =0
for k > n by the Cayley-Hamilton Theorem.

— eAt — e(>\I—',-A—>\I)t — eAI[e(A—)\I)t
@ 1_ N t2 5 tn—1

i =eM I+t A=)+ (A= A"+ +
'I\E/lf;;ronemials ( ) 2' ( ) (n - 1 )I

(A=A

® The general case
One possible solution is to compute the Jordan canonical
form J of A and a matrix S satisfying S~'AS = J. Then
eAl = Sed'S—1, and the computation of e¥! reduces to that of
ed! for the Jordan blocks J;. The matrices e*!! in turn can be
computed by the method in (2).
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Example (taken from [Str14])
We solve the two systems

Dy [ 21 gy [ -2 1
y—Ay—< 1 _2>y, y—By—(_1 _2>y

and the corresponding IVP’s with y(0) = (6,2)".

A has characteristic polynomial

xa(X) = X2 +4X + 3 = (X+1)(X + 3) and eigenvalues
A =-1,)=-8.

Corresponding eigenvectors are v{ = (1,1)T, vo = (1, -1)T.
= The general solution of the first system is

y(t) = cre! G) +Cge3’( _1 >, cr,c€C

(and the general real solution is obtained by requiring ¢q, ¢; € R).
The coefficients of the special solution with y(0) = (6,2)" are
determined by solving

(1 1)(2)=(5) wnenaves (2)=(3)-
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Example (cont'd)

o —t 1 _3t 1 . 4e_t + 26_31
— y(t) — 4e (1 + 26 _1 - 467t B 2673t .
B has characteristic polynomial
Xa(X) = X2 +4X +5= (X +2—i)(X +2+i) and eigenvalues

AM=—-2+1,=-2—1.
Corresponding eigenvectors are obtained by solving

@ (5 )0 e w-()

and similarly for Az, giving vo = (1, —i)T.
(Note that vo = vy, so that no computation is necessary.)
= The general solution of the second system is

y(t) = cre(721 (1) + cpel 2711 ( —1i ) , 1,0 €C.



Math 285
Introduction to
Differential
Equations

Thomas
Honold

Computing
Matrix
Exponentials

Example (cont'd)
As before, the coefficients of the special solution with
y(0) = (6,2)" is determined by solving

1 1\ (c) _ (6 o o\ (3-i
(1)@ mawe (-6
_ (24t 31 (—2—i)t ( 3+1
= Y()=e <1+3i)+e (1—31)
_ (—2+iyt [ 3—1
e (32
_ 2t 6cost+ 2sint
- 2cost—6sint/)”
Note

In these examples it was easier to solve the given ODE system
directly without recourse to matrix exponentials. Conversely, we
can use the solutions to find the matrix exponentials by means of
the formula eA’ = &(t)®(0)~", which switches any known
fundamental system of y’ = Ay into the standard one represented
by the matrix exponential; cf. the exercises.
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Exercise

a) Show that for A € C™" the matrix exponential e’ and an
arbitrary fundamental matrix ®(t) are related by
(1) = e (0).

-2 1
b) ForA_< 1 _o

fundamental system determined in the lecture.

> compute e?! using a) and the

c) For the matrix in b), alternatively compute e?! using the
series representation and the decomposition

(7 2)==(T0)
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Example

As an example of a system with a non-diagonalizable coefficient
matrix we consider

, -2 1

C has the eigenvalue A = —2 with algebraic multiplicity 2 and
geometric multiplicity 1. (The corresponding eigenspace is
c(1,0)".)

Here we compute ¢! directly using the method for a single
eigenvalue:

2
eCt:e—the(C+2l)t:e—2tl(1 1>+t< 1>+;2|< 1) L
a1 1) _ e 2 te=?t
1 0 e2)"
It follows that the general solution in this case is

y(t)=e 2 (01 ;th@) , ¢,ceC.

_
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A New Method to Compute e?!

Theorem
Suppose A € C™" satisfies

a(A):aOIn+a1A++adAd:O

for some a(X) = ap + a1 X + - - - + agX? € C[X].

@ The entries ej(t) of the matrix exponential eA' = (e;(t))
solve the scalar ODE a(D)y = 0.

@® The matrix exponential e*! admits the representation
Al = ol +ci()A+ -+ Cy_1 (t)Ad_1,
where ck(t) is the solution of the IVP
a(D)y = 0 A ((0).¥(0)...... ¥~ "(0)) = e,

the standard unit vector in C° of the form (0,...,0,1,0,...,0).
N——
k
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In other words, cy(t), ¢i(1), ..., c4—1(t) is the special fundamental
system of solutions of a(D)y = 0 whose Wronski matrix W(0) at

t = 0 is the d x d identity matrix. (This also shows W(t) = e®,
where C is the companion matrix of a(X)).

Corollary

Suppose A has r distinct eigenvalues M1, . .., A, and minimum polynomial
pa(X) =TT (X =A™ = X9+ g1 X9+ -+ s X + po. Then
the entries ej(t) of eA! and the (uniquely determined) functions

ck(t) in the representation eAt = "2~ ¢, (t)Ak have the form

r
Z f/(t)eA;T
i=1

for some polynomials f;( X) € C[X] of degree < m; — 1. The same
assertion holds, mutatis mutandis, for xa(X) in place of ua(X)
(except that for n > d the functions ck(t) are no longer uniquely
determined by the requirement eAt = "7~ ¢, (t)A¥ and must be
defined as in Part (2) of the theorem).

Note
If a(X) properly divides xa(X) then the bound for deg f;(X) in
terms of ua(X) is stronger.



Math 285 Proof of the theorem.

M Derontal (1) Writing &(t) = ¢!, we infer from ®'(t) = Ad(t) that

Equations

Thomas a(D)(D(t) = a(A)fb(t) = a(A)eAt

Honold

for all polynomials a(X) € C[X].
If a(A) = 0 then a(D)®(t) = 0 and, since differentiation acts
entry-wise on ®(t), further a(D)e;(t) = 0for1 <i,j<n.

(2) Defining ®(t) as the indicated representation of eA!, we have
(1) = co(D)ln + ci (A + -+ + cq_1 (AT,
®'(t) = ch(t)ln + ¢ ()A+ - - + cy_1 (AT,

Computing
Matrix
Exponentials

oD (t) = V(N + V(A + -+ LD (AT
If the functions c;(t) solve the given IVP’s then
a(D)d(t)=0 and ®(0)=A'foro0<i<d-1.

Since t — el satisfies these conditions as well, we must have
(1) = eAl. O
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For the last step of the proof note that the matrix IVP

a(D)d(t) = 0 A d*)(0) = A¥ for 0 < k < d — 1 amounts to n?
scalar IVP’s for the entries e;(t), which are specified in terms of
the entries (AX);.

The corollary is an immediate consequence of the theorem in
view of ua(A) = 0 and the known structure of the solution space
of ua(D)y = 0, and similarly for ya.

Example

We compute again eA’ for A = ( % ).

Since A2 = —I,, we can take a(X) = X2 + 1, d = 2 in the theorem
(in fact X2 + 1 is just the characteristic polynomial of A), which
yields the 2nd-order ODE y” + y = 0 for ¢p(t) and ¢4 (t).

Since cos t and sin t solve this ODE and satisfy the required initial
conditions (i.e, the Wronski matrix of cos t, sin t is already (}9)),
we obtain

—sint cost

e”t = (cos t)la + (sin t)A = ( cost  sint ) .
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Example

Let P € C"™*" be a projection matrix, i.e., P? = P.

Here we can take a(X) = X% — X = X(X — 1) corresponding to
the ODE y” — y’ = 0. A fundamental system is 1, ¢!, and the the
required initial conditions are satisfied by co(t) = 1, ¢i(t) = e — 1.

— Pl =1,4 (' - 1)P.

This result can also be derived directly from the series representation of
eP!, using the observation that P> = P imlies P” = P forall n > 1.

Note

The characteristic polynomial of xp(X) has degree n and leads to
a more complicated formula for eP! if n > 2. For example,
projection matrices P € C3*2 of rank 1 and 2 have characteristic
polynomials X2(X — 1) and X(X — 1)2, respectively, which lead to
representations

Pl— g4+ tP+(—1—t+e")P? resp.,
Pl—l3+ (—2+2¢' — te")P + (1 — e’ + te")P?.

Since P? = P, both representations collapse to e”* =1, + (e! — 1)P.
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Example
We compute the matrix eponential of
—26 49 74
A= -8 16 25 |.
-4 7 10

This matrix is not diagonalizable, as we have seen earlier, and the
example is meant to illustrate the fact that the new method for
computing matrix eponentials works just as well for
non-diagonalizable matrices.

From the earlier example we use ya(X) = (X — 2)(X + 1)? (which
happens to coincide with pa(X) in this case, but this fact is not
needed for the computation).

A fundamental system of solutions of the corresponding ODE is
yi(t) = €2, yo(t) = e !, y3(t) = te™!, which satisfy the initial

conditions
y1(0) - y2(0)  y3(0) 1 1 0
®0)= [ y;(0) w(0) w0 |=(2 -1 1
¥{'(0) ¥ (0) y4(0) 4 1 -2
For this observe that y4(t) = (1 — t)e ", y§/(t) = (t — 2)e .
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Introduction to

[ész;?igii' The required initial conditions W(0) = I3 are then satisfied by the
Thomas transformed system W(t) = @(t)®(0)~', so that we need to invert
Honold the matrix ®(0). Applying the standard algorithm gives

(1 2 1
q>(0)—‘:§ gfg 7; :

This matrix contains the coefficients of cy(t), ¢i(t), c2(t) with
respect to e?!, e, te~! in the respective column (look at the 1st
row of the matrix equation W(t) = ®(t)®(0)~", which is

Computing (Co(t), Cq (t), Cg(t)) = (eZt, e*t, te*')¢(0)*1), and we finally obtain

Matrix
Exponentials

eAl = 1(e? 18~ ’+6te”)|3-|— (2¢? —2e”+3te”)A+%(em—e"—Ste’t)A2

-7 14 21 8 —14 -21 -4 7 1
-4 812 | +et| 4 -7 12 | +tet| 4 -7 -11
000 0 0 1 -4 7 11

§
(—7e2t+8e’ Ate™t 14 —1de !t + Tte! 2162’—21e[+11te’)

4e? 4 de T4 4tet 8eH —Te ! —Tte ! 12e2 —12e7!—11te!].
—4fet 7te™! e+ 11te!
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Example (contd)
One should compare the costs of this computation to the one
using the JCF. In the earlier example we had computed the JCF

21 0 O
J=| 0| -1 1
o 0 -1
of A and S satisfying S~'AS = J. From this we can continue as
follows:
7 -1 2 | 0 0 7 -1 2\
=4 1 1 0[e " te! 4 1 1
0 -1 0 0| 0 et 0 -1 0
7 -1 2 2| 0 0 -1 2 3
4 1 1 0le ! te! 0 o -1
0 -1 0 0| 0 et 4 -7 —11

The total costs are certainly no less than those of the new method.

eAt _ SeJtsf1
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What Goes Wrong for
y =A(t)y?

The exponential matrix

is well-defined but does not satisfy &eB(t) = B/(t)eB(") in general.
= y(t) = e/ A4 does not necessarlly solve y’ = A(t)y.

Reason: When differentiating ¢B() termwise, we need the relation
4B(t)k = kB(t)k~1B'(t) = kB'(t)B(t)<~", but we have only

SB(1)2 = B(t)B/(t) + B'(1)B(1),

4B(1)° = B'(1)B(t)* + B(1)B'(t)B(t) + B()°B'(t), etc.
A special case
If A(t) and B(t) = Bg + ft s) ds commute then y(t) = eB(
solves y’ = A(t)y.
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Exercise
Suppose A € C™ ™ has n distinct eigenvalues Ay, ..., Ap. Show
that

n
eAt _ Z e>"'t€,-(A),
i=1
where (;(X) = HI’.’:1 i i(%ifj are the Lagrange polynomials
corresponding to Aq,..., Ap.
Hint: Show that ®(t) = "7, e!/;(A) solves the IVP
(1) = Ad(t) A ®(0) = I,

Exercise
Consider the two time-dependent linear systems

, 1t , 1t
y—A1(t)y—(t 1)y and y—Az(t)v—(O 0>v.

Compute the matrix exponentials E;(t) = exp (fot A(s) ds),
i=1,2, and show that E1(t) forms a fundamental matrix of the
corresponding system but Ex(t) does not.
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Motivation

FOURIER’s Problem

Describe the heat flow in a long and thin rectangular plate, when
some known temperature function is applied to one of the short
sides and the long sides are kept at constant temperature.

For simplicity, the plate is assumed to be infinitely long and thin,
and given by the region

P={(x,y) e R%-1<x<1,y>0}.
For a stationary solution, the temperature z(x, y) at (x, y) € P°
(i.e., for -1 < x <1, y > 0) has to satisfy
g + gzyi =0 (Laplace’s Equation)
The boundary conditions will be
z(x,0) =f(x) for -1 <x <H{,
z(-1,y)=2z(1,y)=0 fory >0,

where f: [-1,1] — R gives the temperature on the short side (the
other short side is considered as infinitely far away).


http://www-history.mcs.st-andrews.ac.uk/Biographies/Fourier.html
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The Vibrating
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L2-Convergence 2 A
Pointwise
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Figure: Fourier's Problem
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FOURIER assumed further that f(x) = f(—x).

He was interested especially in the case of a constant
temperature > 0 (*heating”), which we can take w.l.o.g. as
f(x)=1.

Fourier’'s Solution
We start with the “separation ansatz” z(x,y) = a(x)b(y).

Plugging this into Laplace’s Equation gives

82z  H*z

G 5z = &/ 00bY) + (0B (1) = 0

At points (x, y) with z(x, y) # 0 we can rewrite this as

a'(x) __b'(y)
a(x) b(y)

— Both sides must be constant, i.e., there exists C € R such that

a'(x)=-Ca(x), b’(y)=Cb(y) forall (x,y)e P°.

Assuming z(x, y) is not identically zero, the first boundary
condition implies a(—1) = a(1) = 0.
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Linear Algebra

Fourier’s Solution contd
= a(x) and a”(x) must have opposite signs
— C > 0, and we can set C = K? with K > 0.

The general real solution of the two resulting ODE’s is

a(x) = ¢y cos(Kx) + casin(Kx), ci,0 € R,

b(y) = cse® + ce™, cs, 4 € R.
Since f(x) = z(x,0) = a(x)b(0) should be an even function, we
must have ¢, = 0.
Since the temperature should drop to zero for y — +oo (from
physics or just common sense) we must have ¢; = 0.
Since a(1) = a(—1) = 0, K must be an odd multiple of 7/2.

(2k—1)7y

= z(x,y)= ae_fcos(w) , acR, k=1,2,....
Since superposition preserves solutions, any function of the form

z(x,y) = are ™2 cos(nx/2) + ap e >™/2 cos(3mx/2)
oo+ ape @™/ 2 cos((2n — 1)mx/2)
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Fourier's Solution contd

with ay, ..., a, € R will then also be a solution of Laplace’s
Equation and satisfy the boundary conditions
z(-1,y)=2z(1,y) =0, as well as

f(x) = z(x,0) Zakcos(2k1”).

The function f(x) = 1, however, is not of this form, since any
(finite) linear combination of the functions cos (m) vanishes
at x = 1.

Question: What to do?

FOURIER assumed the existence of an infinite series
representation

x) =1 :iakcos(M) for -1 <x <1,
P

and showed how to compute ax from this and the additional
assumption that this series can be integrated termwise.



wan2ss - Fourier's Solution cont'd
ntroduction to

tqmtore  Lemma
Thomas For k,| € Z+ we have
Honold
1 .

. _ _ 0 ifk+#1
Fourier’s (2k—1)mx (21—1)mx dx = )
Problem \/_‘1 cos ( 2 ) Cos ( 2 ) {1 ifk = |.

Proof.
Making the substitution t = wx/2, dt = (w/2) dx, the integral
becomes

2 / " cos((2k — 1)t) cos((2] — 1)t) dt
T ) _ry2

2 s
- ;/0 cos((2k — 1)t) cos((2/ — 1)t) dt

_ ;/ﬂ cos((2k — 1)t) cos((2/ — 1)t) dt.

—T

The latter integral is well-known to have the value 0 for k # | and
m for k = I; cf. exercises. O
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lemma implies

/_11 f(x) cos ((2/_21)”) dx
= / Z ay cos (7(2’( 1)”) cos (L 1)”) dx

1 k=1
—Zak/ cos (W) cos (W) dx = a.

In particular for f(x) = 1 we obtain (the values f(+1) do not
matter here)

1 2 B 1 4(71)/71
o (21-1)rx _ . (2—-1)mx _ .
a"/,1 C°S< 2 )dx [(2/-1)w5'”< 2 )L @/ —1)r

Fourier’s
Problem
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Fourier's Solution contd
Thus FOURIER arrived at the series representation

COS — — — COS —— + — COS —cos—— .-

4 X 1 37X 1 S5nx _1 7mX
2 3 2 5 2 7 2

and concluded from this that

4o ()T —@k—tymyj2 . (2K —1)mx
BTN T s

(e’”’/2 cos X 1 e3m/2 cos Smx
2
+

1 5 S5rx 1 7mX
—5my/2 —Tmy/2
Cos 2 7 € Ccos 2 )

solves the Laplace equation in P° (assuming that z(x, y) can be
differentiated termwise with respect to x, y) and satisfies the
boundary conditions z(+1,y) = 0for y > 0, z(x,0) = 1 for
—-1<x<1.
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It remains yet to prove:

© the identity

4 o (2k+ 1) |
*Ekz: k+1 2 o TT<x<t
@® the function
z(x,y) = SEEI 2 o L{ZU”, (x.y)eP

™o

is well-defined for all (x, y) € R? with y > 0 and satisfies
Az(x,y) = 0 for those (x, y).

Property (2) is quite easy and will be proved right now.

Property (1) is more difficult and a proof was only found by
DIRICHLET some 20 years after FOURIER had submitted his
manuscript Theory of the Propagation of Heat in Solid Bodies. It
is a consequence of a general theorem on the point-wise
convergence of Fourier series, which we will derive later.
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Figure: Partial sums of FOURIER’s cosine series

Note that all functions f,(x) = cos G*L™  x ¢ R satisfy

f(x + 2) = —f(x) and hence fx(x + 4) = fx(x). Hence the same
is true of the limit function f. In particular, the series does not
represent the function f(x) = 1 outside [—1, 1] (only for about half
of the points x € R).
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Proof of Property (2).
It suffices to show that the series defining z(x, y) and the
corresponding series of partial derivatives up to order 2 converge
uniformly on every subset Hs; = {(x,y) € R?;y > 6}, 6 > 0, of the
domain H = {(x,y) € R?; y > 0} (the open “upper half-plane”).
This shows that z(x, y) is well-defined, and the Differentiation
Theorem gives that 9%z/0x?, 92z/dy? (and the Laplacian as well)
can be computed term-wise. Since the terms
zk(x,y) = iﬁe—(zk“)ﬂ’ﬂ cos BEED™ satisty Azy(x,y) =0
by construction, the same is then true of z(x, y).
We give the proof only for the series representing 92z/0x?. (The
remaining proofs are virtually the same.)

o0

D

k=0

822}(()(7}/)

ox?

Mz I07e

=~
I

o

(2k+ 1) 2

4(—1 )k e_(2k+1)ﬂ_y/2 cos (2k ‘I‘ 1)7TX (_ (2k ‘l’ 1)271'2

(=) (2k + 1)m e~ BkID™Y/2 o5 (

4

2k + 1)mx

)
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Proof contd.
= For (x, y) € Hs we have

>

k=0

2 o0
0 Zk (x y ‘ Z (2k + 1)e —@KN)mo/2 o o
k=0

since the exponentials decrease faster than (2k + 1)73, say.

Hence >.2, Falx) jg majorized on H;s by a convergent series,

ox2
which is mdepenaent of x and y. This implies uniform

convergence on Hs, as asserted (by Weierstrass’s Criterion).

Note

In the case under consideration it would have been sufficient to
show that the majorizing series doesn’t depend on x, because

0°z/0x? is computed by considering y as a fixed parameter. To
make the same argument work for both §%z/9x? and 92z/9y?,

one needs indpendence of x and y.

O
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Diferentl The Vibrating String Problem
Thomas A homogeneous string of length L > 0 is stretched along the line

segment 0 < x < L, y = 0 of the (x, y)-plane and fixed at both
ends. Attime t = 0 it is displaced from this “equilibrium position”
e Vibrating to an “initial position” y = f(x), 0 < x < L, which satisfies
String f(0) = f(L) = 0, and an “initial velocity” y = g(x) in the y-direction
Froblem is applied to it. The function g should also satisfy g(0) = g(L) = 0.
From then the string is left at the disposal of the elastic forces
acting on it and “vibrates” around the equilibrium position.

Problem
Determine the “elongation function” y(x,1),0 < x < L,t>0
describing the movement of the string over time.

y(x, t) must be a solution of the 1-dimensional wave equation

Linear

Py a0y
or 7 ox2’

with ¢ > 0 a physically determined constant (tension-to-density
ratio of the string).
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y(x,t) must satisfy the boundary conditions

y(O,t):y(L,t):O, t>0,
y(Xvo):f(X)v YI(Xvo):g(X)'

y= f(z)

equilibrium L

Figure: Vibrating string problem with g(x) =0
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D. BERNOULLI’s solution
First we determine the solutions of the special form
y(x,t) = a(x)b(t).
Proceeding as in FOURIER'’s solution, we obtain the pair of
2nd-order ODE’s
a'lx) _ 10t _ e
a(x) ¢® b(t) ’

where K > 0 is a real constant.
= a(x) = ¢y cos(Kx) + czsin(KXx),
b(t) = c3cos(cKt) + casin(cKt) with ¢y, ¢o,C3,04 € R.

The boundary condition y(0, t) = y(L, ) = 0 translates into
a(0) = a(L) = 0 and implies

ct=0 and Ke{n/L2r/L37/L,...}.
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D. BERNOULLI’s solution cont'd

Strictly speaking, we only obtain K € Z(x/L), but the all-zero
solution (K = 0) can be omitted, and £K give scalar multiples of
the same solution.

= All functions of the form

u kmx
y(x,t) = ;sm 1

are solutions of yy = ¢? yx satisfying the first boundary condition
y(0,1) = y(L.t) = 0 and

n . kmx
0) = Zak sin -

_cm Z Kby sin <X k7TX

ckrt
L

K
(ak OSCL + bk sin ), ax, bk € R,

D. BERNOULLI then claimed (without providing the necessary
justification for convergence and term-wise differentiability of the
series) that the solution to the vibrating string problem is
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D. BERNOULLI’s solution cont'd

. . knx ckrt . cknt
t):;sm;i(akcos Lﬂ + by sin Lﬂ>’

where ay, by are determined from f(x) = Y32, a sin ¥7* and
9(x) = <= S0, kb sin 7% respectively.

Question
Does every continuous function f: [0, L] — R with f(0) = f(L)
have a representation as a sine series of the above form?

Note that the problem for g(x) is the same.

Requiring f and g to be continuous comes from the physical
interpretation. Note, however, that at least f need not be
differentiable, since we want to model situations like plucking a
string, which corresponds to a piece-wise linear function f(x).

Negative answer

There exist continuous functions which are not represented by
their Fourier series at every point. Piece-wise C'-functions,
however, and hence virtually all physically meaningful functions,
are represented everywhere by their Fourier series.

=0
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D’ALEMBERT’s solution

This solution is completely different from BERNOULLI’'s and starts
by making the variable substitution

E=x+ct,p=x—ct, ie, z(&n)=y(FE+n), %(E—n).

1 1
= Z§:§yX+?Cyta

]
Zen = (Ze)n = 5%ex — 202t

1 /1 1 1 /1 1
=5 <2yxx + 2Cytx) ~ 56 (2yxt + 2Cytt)
1 1
=2 <yXX - CZYU) )

provided that y, and hence z, are C2-functions.

Hence y(x, t) solves the 1-dimensional wave equation iff
an(g, ’17) =0.
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D’ALEMBERT's solution cont'd
The solution of z¢, = 0is

z¢(&,m) = ¢(8),
z(&,m) = ®(§) +Vv(n) (with &'() = (<))
d(x +ct) + W(x — ct).

<

= y(x,t) = d(x +ct) + ¥(x — ct)
with arbitrary C2-functions ¢: [0, +oc) — R and W: (—oo, L] — R.
The boundary conditions for y(x, t) translate into

() +V(—t)=d(L+t)+W(L—t)=0 fort>0,
d(x) + W(x) = f(x), ®'(x) - V'(x) =g(x)/c for0O<t<L

The first set of equations imply

O(t+2L) =d(L+t+L)=-W(L—t—L)=-V(-1)= (),
W(—t—2L)= —o(t+2L) = —&(t) = W(—t) fort>0.

— We can extend ¢, ¥ to 2L-periodic functions with domain R.
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Introduction to

Differential With this definition the first set of equations then hold for all t € R.

Sl On account of periodicity, it suffices to verify this for t € [-L,0)
Thomas
ronet O(t) = &t +2L) = d(L+ 1+ L) = —W(L—t — L) = —W(—1),
O(L+1) = —W(—L—t) = —W(L 1),
er?n\éibra“ng where t+ L =L+t > 0 was used.

Problem

Further, since ¢ and ¥ are determined only up to an additive
constant and ¢(0) + ¥(0) = 0, we can normalize to

®(0) = W(0) = 0.

Then the second set of equations gives

O(x) — W(x) = /g £)de,

d(x) = (f(x / a(¢ dg)
V(x) = > <f(x) - E/o g(g)dg) for0 < x <L

These identities can be made to hold for all x € R, provided ...
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... we extend f, g first to odd functions on [—L, L] (possible, since
f(0) = g(0) = 0) and then 2L-periodically to the whole of R.
Reason: With this definition we have for x € [-L,0)

O(X) = ~W(—x) = _% (f(—x) —~ 15 /0 h g(£)d£>
- @ + l/ox g(=n)(=dn) = @ + 15 /OX 9(n)dn,

as asserted. For general x the second identity then follows from
the 2L-periodicity of both sides, using
1225 g(e)de = [*, g(€)de = 0. The third identity (and hence the

fi)r(st) is proved similarly.

= y(x,t) = ®(x + ct) + V(x — cf)

1 1
=2<f(X+Ct)+f(x—ct)+/

x+ct

x—ct

g(é)d£> :

for0 < x <L, t>0.Thisis D’ALEMBERT’s solution.
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e BERNOULLI’s solution also has the form
Thomas

homas y(x,t) = &(x + ct) + W(x — ct), as can be seen by rewriting
it using the formulas

1

The Vibrating sin ¢4 cos ¢o = ( (p1 + ¢2) —sin(¢1 — ¢2))»
String
e sin ¢4 sin ¢p = %(cos(@ + ¢2) — cos(p1 — ¢2))

in the following way:

— . kmx ckmt . Ckrt
y(x,t) = Zsm % <ak cos 10 4 by sin 7T)

k=1 L L
1 & . km(x+ct) kr(x + ct)
= é; (aksln[_ _bkCOST
’
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Notes cont’d

e Although in the derivation of D’ALEMBERT’s formula we have
implicitly assumed that f is a C2-function and g is a
C'-function, the formula remains true for functions f, g
whose derivatives have jump discontinuities, such as
piece-wise linear functions.

e D’ALEMBERT'’s formula can be physically interpreted as the
superposition of two waves with initial states ®(x) and V(x)
moving at constant speed in opposite directions.

e BERNOULLI’s Fourier series solution, although conceptually
more complicated than D’ ALEMBERT’s solution, has the
additional benefit of revealing the “harmonic analysis” of the
vibrating string.
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Among others, the following two variants of the definition of a
Fourier series are most commonly found in the literature.

Definition

@ The Fourier series of an absolutely integrable 2r-periodic
function f: R — R is the series

ap > .
> + kz:; (ax cos(kt) + by sin(kt)),

where ax (k=0,1,2,...)and b, (k=1,2,3,...), the
so-called Fourier coefficients of the series, are defined by

=1 /0277 (t) cos(kt) dt, by — - /O% (1) sin(kt) dt .

™ ™
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Definition (cont'd)

® The Fourier series of an absolutely integrable 2r-periodic
function f: R — C is the series

oo
Co + Z (Ckeikt + C_kefikt) ,
k=1

where ¢k (k =0,+1 £+ 2,...), the complex Fourier
coefficients of the series, are defined by

1 27 )
Ck= = / f(t)e K dt.
27T 0
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Notes
e f:R — Chas period Lif f(t+ L) = f(t) for all t € R. The

substitution s = 2xt/L, transforming L-periodic functions into
27-periodic functions, can be used to define Fourier series
(and develop the corresponding theory) for complex-valued
functions of any period L > 0. The corresponding L-periodic
cosine, sine and exponential functions are cos(2rwkt/L),
sin(2rkt/L) and e2™K/L respectively, and the formulas for
the Fourier coefficients are

L
ak = % / f(t) cos(2rkt/L) dt,
0
2 L
bk = Z/ f(t)sin(2rkt/L) dt,
0
1 [t .
Ck = f/ f(t)e2mk/L gt
L Jo

® The integral of an L-periodic function over any interval of
length L is the same; cf. exercises. Thus, for example, we
can obtain the Fourier coefficients ay, bg, Cx in the previous
definition also by integrating over [, 7] instead of [0, 27].
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 Integrating over [—, 7] instead of [0, 2x] has the advantage
that it yields immediately the following result:

™

go= /ﬂ f(tycos(kt) =0 if F(—t) = —K(t),

Linear Algebra -7

L

b= [ Hoysin(k) =0 if F(—t) = F(t)

T™J—x

i.e., the Fourier series of an odd periodic function is a pure
sine series, and the Fourier series of an even periodic
function is a pure cosine series.
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Notes cont’d

e Variant (1) of the definition also makes sense for complex
valued functions f, and the Fourier series obtained by both
definitions are in fact the same!

In order to see this, recall that a series 3"~ f, is defined as
the sequence (gs) of partial sums g, = >°,_, f. Hence it
suffices to verify ¢y = ap/2 and

cke'K + c_ke K = gy cos(kt) + by sin(kt). We have

1 2r Kt 1 27 o
1 ikt gr— [T Kt) — isin(k
o= 5- /O f(t)e M at = /O (1) (cos(kt) — isin(kt)) dt

1 .
= E(ak — lbk),
Cp= 7 f(t)e dt = 1(a + iby)
—k — or Jo - > k k)
and hence

) ) ax . - . ibg . »
Ckelkt + C,ke_lkt _ ?k(elkt +e 1kt) . ?k(elk[ e 1kt)

= ay cos(kt) + by sin(kt), as desired.
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[é‘cf]fj;figii' We compute the Fourier series of the putative limit function of
" FOURIER’s cosine series, which has period 4 and is defined on
omas

Honold [0,4) by
F(x) = 1 !f71<x<1,
—1 if1<x<3,

and verify that both series coincide (which is a nontrivial fact!).
Here L = 4, and the Fourier series of f has the form

Algebra

aop

>+ Z ak cos(kmx/2) + by sin(kmx/2).

k=1
Since f is even, we have by = 0 for all k. For kK € Z we have

3
_ % / (x) cos(kx /2) dx
—1
1 1 1 3
= 5/ cos(k7rx/2)dx—|—§/ —cos(kmx/2)dx
—1 1

1 1 3

=3 {kz?TSin(kwx/Q)} 1_1 -5 [kzsm(kva/2)]

1
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It follows that

0 ifk=0 (mod 2),
a=4 % ifk=1 (mod4),
—iw ifk=3 (mod 4).

Linear Algebra k
N .

This also holds for k = 0, since a; = %fi f(x)dx = 0.
= The Fourier series of f is

4 mx A4 Brx 4 Brx 4 T
7_‘_COS 2 37‘(‘COS > 57TCOS > 771_COS 2 ey

the same as FOURIER'’s cosine series.
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Exercise
Suppose that f: R — C is L-periodic and integrable over [0, L].
Show that f is integrable over any interval [a,a+ L], a € R, and

a+L L
/ f(x)dx:/ f(x)dx.
a 0
Exercise

Show that the Fourier coefficients ay, by, cx of any function f are
related by

o 2 2 1 2 2
— >
Co = 5 and |ck|” + |c—k] 5 (|ak| + |bk| ) for k > 1.
Exercise

What can you say about the Fourier coefficients ay, bk, ¢k of an
L-periodic function f: R — C that satisfies

a) fix+L/2)=f(x)forallx cR?
b) f(x+L/2) = —f(x)forall x e R?
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Exercise

Suppose f: R — C is L-periodic and satisfies one of the
symmetry properties f(xo — x) = f(Xo + Xx) or

f(xo — x) = —f(xo + x) for some x; € R. What can you say about
Xo and the Fourier coefficients of f ?

Linear Algebra
N .
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Inner Product Spaces

The dot product X -y = X1 ¥4 + Xo)2 + - - - + Xn¥n ON R™ can be
generalized in two important ways:

@ Let V be a vector space overR. Amapo: Vx V —Ris
called inner product on V if it satisfies the following axioms:

(IP1) o(x,y+y') =o(x,¥)+0o(x,y’) and o(x,cy) = co(x,y)
forall x,y,y’ € Vand c € R, i.e., o is linear in the
second argument;

(IP2) o(y,x)=0o(x,y)forall x,y € V;

(IP3) o(x,x) > 0forall x € V with equality iff x = 0y.

@ Let V be a vector space over C. Amapo: Vx V — Cis
called inner product on V if it satisfies Axioms (IP1), (IP3)
above and the following replacement for (IP2):

(IP2)) o(y,x) =o(x,y)forall x,y € V.
Property (IP2’) implies o(x, x) € R for x € V, so that (IP3) is
meaningful also for complex inner product spaces.
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Thomas @ The standard example of a real inner product space is
V = R" with o(X,y) = X - y. Another important example is
V=C(la b]) i e., continuous real valued functions on [a, b))

with o(f, g) = f f(x
® The standard example of a complex inner product space is
V = C" with

Linear Algebra
205 e

o(X,¥) =X Y :=X1y1 + XoYo + - + Xp¥n.

Another important example, especially from the Fourier
series perspective, is V = C([a, b]) (now this denotes the
vector space over C of all continuous complex-valued
functions on [a, b]) with

b
o(f,g) = (f.g) = / Tx)g(x) dx
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Difrena Inner Product Spaces—Basic Theory
Thomas The basic theory is the same for all real and complex inner
Honold product spaces, and mimics that of the standard example R"

discussed earlier.

(1) \a(x,y)\2 <o(x,x)o(y,y) forall x,y € V with equality iff x
and y are linearly dependent (Cauchy-Schwarz Inequality).

® d(x,y) =o(x — y,x — y) defines a metric (“distance”) on V.
This metric is translation-invariant and arises from the
“length” function |x| = ||x]|| := y/o(X, x) in the same way as

the Euclidean metric on R” from |x| = /X2 + - - - + x3.

Linear Algebra

® x, y are said to be orthogonal (perpendicular) if o(x,y) = 0.
By (IP2) resp. (IP2’), this relation is symmetric. If o(x,y) =0
theno(x + y,x +y) = o(x,x) + o(y, y) (Pythagoras’ Theorem).

@ The orthogonal projection of b € V onto the line spanned by
ac V\ {0} (Raresp. Ca) is defined as proj,(b) = \*a where
A* is the (unique) solution of o(a, b — Aa) = 0. Since o is
linear in the 2nd argument, we obtain

o(a, b) — A*o(a,a) = 0, and hence proj,(b) = 2{&-2)

o(a,a

a.

Ra?



atgless @ (cont'd) In the case of a complex inner product space we

Introduction to

R have proj,(b) = ZE’;Z; a, so that the order of a, b in the

numerator usually matters!

proj,(b) uniquely minimizes the distance from b to a point on
Raresp. Ca.

Thomas
Honold

@® Orthogonal projection generalizes to finite-dimensional
subspaces U of V. If uy,..., u, is a basis of U, the
orthogonal projection of b € V onto U is defined as
projy(b) = Y-y Afu; where ()., A7) is the (unique)
solution of the system

r
O’<Ui,b2/\jUj)—0, 1<i<r.
j=1

Again, proj,(b) uniquely minimizes the distance from b to a
point in U.

Linear Algebra

0@ f dim V = n < oo, there exists an orthonormal basis of V,
i.e., a basis vi,..., v, satisfying

1 ifi=],
U(V"’V"):{o if i .
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Approximation by Trigonometric

Polynomials
We consider the vector space V (over C) formed by all 27-periodic
functions f: R — C, which are (Lebesgue- )integrable over [0 27]
(and hence over all intervals of length 27), and satisfy f | dx < o0
(so-called square-integrable periodic functions); e.g., x — 1/v/x
is integrable but not square integrable over [0, 2], while x — x~1/3
and x — In x are both integrable and square integrable over [0, 27].

V comes with the “inner product”

(t.g) = /o " X)) dx.

Strictly speaking, V is not an inner product space, since there are
2r-periodic functions f # 0 satisfying (f, f) = 0, for example the
characteristic function of 2x7Z. However, we can identify f, g € V if
f(x) = g(x) almost everywhere and consider the vector space V
formed by the resulting equivalence classes [f]. Setting

(If],[g]) = (f, @), the space V becomes a “real” inner product
space, since (f, f) = 0 implies f = 0 almost everywhere and
hence [f] = [0]. The space V is also denoted by 1.2([0, 27]).
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Square-integrability of f, g is needed for showing that
JEF(x)g(x) dx exists.
We have seen that V (strictly speaking, V) forms a metric space

relative to the mean-square distance (also called L?-distance)
defined by

27
do(f,9) = If gl = VF— g, F—g) W x)2 dx.

Definition
A function g € V of the form

n

9(x) = (ak cos(kx) + b sin(kx)) Z cre'

k=0 k=—n

with ak, bk, ¢k € C is called a trigonometric polynomial of degree
at most n (exactly n, if one of ap, b, or one of ¢,, c_, is nonzero).
Note that the 27-periodic trigonometric polynomials are precisely
the functions in the span TP of 1, cos X, sin X, cos(2x), sin(2x), ...
or, alternatively, in the span of {¢!**; k € Z}. Likewise, the
27-periodic trigonometric polynomials of degree < nform a
subspace TP, of V (and of TP).



Math 285 For each function f € V, the Fourier coefficients ay, by, ¢, and
iieduction© hence the Fourier series of f, n are well-defined. The partial sums

Equations of the Fourier series,

Thomas

Honold ao

Spf = + Z ay cos(kx) + by sin(kx) = Z cke™ e TP,

k=1 k=—n
are called Fourier polynomials and have the following
“best-approximation” property:

Theorem
Linearmgebjin Suppose fe VandneN.

L

@ The Fourier polynomial Syf is the unique trigonometric
polynomial in TP, minimizing the mean-square distance to f :

If = Suflly < If —gll, forallg € TP, \ {Saf}.

® We have

n
I = Safll3 = Il — ISafl5 = IF]3 — 27 > el

k=—n
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Proof.
(1) From the general theory of inner product spaces we know that
the distance between f and the functions in the subspace

U = TP, which has dimension r = 2n + 1 (cf. Worksheet 2,
Exercise H11), is minimized by the orthogonal projection of f onto
TP,, which relative to any basis gy, ..., g, of TP, is obtained by
solving

.
<gi7f—2/\/g/‘> =0 for1<i<r.
=

The solution is uniquely determined, since the Gram matrix
((g,-,g,->)1<,./.<r is invertible. (This is due to the fact that TP,

consists of continuous functions and hence can be viewed as a
subspace of V. For the special basis {e**; —n < k < n} itis
directly proved below. For arbitrary subspaces U C V it fails.)

If the basis functions are orthogonal and have length > 0, we
further get

,
(v =Y Ng) = (g1 1) ZA,g,,g, (91, ) = N9 9.
j=1

e, X=(9,1)/(gg)
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Proof cont'd.

The proof is finished by showing that the Fourier polynomial S,f is
equal to the orthogonal projection of f onto W = TP,,.

For the proof we use the basis of TP, consisting of the
exponentials e**, —n < k < n, which turns out to be the most
convenient:

2w
o o 0 forl#k
ikx Lilx i(/ k)Xd 3
(™) /o © X {Zw for I = k.

— The exponentials are mutually orthogonal, and the coefficient
of ¢ in the orthogonal projection of f onto TP, is equal to

ikx 2
M = 217 i e R f(x)dx = cx.
Hence the orthogonal projection is >p_ , cke!®™ = S,f, as
asserted.
(2) Since f — S,f L S,f, Pythagoras’ Theorem gives
IFI3 = [If = Safll3 + [ISnf|l3 and
ISnfllz = Sk 1——n CkCie™, &) = 2m 3k, ol O
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Corollary (BESSEL'’s Inequality)
For any f € V we have

T

[e’e] 1 2
2 2 2
cl® = ckl” < — f(x)|°dx .
>led = 3 faft< 5 [ 110

keZ

Notes
¢ Bessel's Inequality implies in particular that

limk_ 100 Ck = limk_, 100 C_k = 0 (or, equivalently,

limg_soo @ = limg_soo bk = 0)

In fact equality holds in Bessel’s Inequality, as we will see
subsequently. However, Bessel’s Inequality generalizes to
any sequence gi, g2, 93, - - . of mutually orthogonal functions
gn € V with ||gs|15 = (gn, gn) > 0 in the form

o {(gn: ){f, gn) T a2
Y g = 0= [ ooftax

n=1

and for such sequences equality need no longer hold.
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Notes cont'd
¢ |t goes without saying that the theorem and it’s corollary
(Bessel’s Inequality) hold in the more general setting of
L-periodic functions. The inner product space view provides
in fact the best mnemonic for the various Fourier coefficient
formulas. We illustrate this for the orthogonal system of
L-periodic functions formed by cx(x) = cos(2knx/L), k > 0,
and sk(x) = sin(2kwx/L), k > 1.
The Fourier series of an L-periodic function f: R — C is

—

ao

2

<<Co,Co )+ 2 < Ck,Ck
(oo f) (L) .oLf
(Co,C0)  (1,7) o 1dx
ok f) fo ) cos 2k7rx/L )dx
(o o) f cos?(2kmx /L) dx
sk, f) fo )sin(2kmx /L) dX
(Sk,86) fo sin?(2kmx /L) dx

)+ {86 ) sk(x)) )

(Sk, Sk)

L/ f(x)d

L/f ) cos(2kmx/L)dx,

/f sin(2kmx /L) dx
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L2-Convergence of Fourier Series

The following functions are used in the convergence proofs of
Fourier series (for both point-wise convergence and
L2-convergence).

Dp(x) = Ze —1+22cos kx)

k=—n
n+1)x
= M, (DIRICHLET kernel)
sin §X

Fa(x) = £ (Do(x) + Di(x) + - + Doy (x)

1 (sin(3nx) ?
=— <2> . (FEJER kernel)

n sin %X
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Figure: Some Dirichlet kernels

—x > Dy(z)
—ax+ Dj(x)
—x > Do)
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10
-z Fy(z)
—x e Fy(z)
—z - Fip(z)

6 -

4 -

Figure: Some Fejér kernels
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Proofs of the formulas

2n i2n+1)x _ 4 i(n+1)x _ o—inx
_ _—inx iX\k __ _—inx € _ € €
Dp(x) =e™' ;(el )i=e eix — 1 o eix — 1
B el(n+1/2)x _ o—i(n+1/2)x B sin((n—|— %)X)
N eix/2 — g—ix/2 N sin 31X

N1 Gitk+1)x _ g—ikx eX(el™ — 1) e—i(n—1)x(einx —1)

nFn(X):Z oiX _ 1 = (ex —1)2 - (eiX —1)2

k

(1 _ e—inx)(einx _ 1) _ einx + e—inx )
ix/2 _ a—ix/2)2 T (aix/2 _ a—ix/2)2

(e e ) (e e )

(M2 emine/2)2 (sin(;nx) )2

(ex/2 —e—x/2)2 ~ \ “gin x
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Lemma
The Fejér kernels have the following properties:

O F.(x)>0forallneN, x e R;
(2] f Fp(x)dx =2 foralln e N;

O im0 fZ” "Fo(x)dx = 0 forall r in the range 0 < r < .

Property (3) is equivalent to

limp_oo /7 Fn(X)dx = [T Fn(x)dx = 27 for 0 < r < 7 and says
that for large n the mass with density function x — Fp(x) dx on
[—m, ] is concentrated near x = 0.

Proof.
(1) is clear from the closed formula for F(x); (2) follows from

/%eikde— 2r ifk=0,
0 |0 ifk#0,

which shows foz’T Dj(x)dx = 27 and implies the corresponding
result for Fp,; (3) follows from the estimate F(x) < W for
r<x<2m—r(or—r<x<r.



Math 285 Theorem

Introduction to

Differential Suppose f € V (i.e., f is 2r-periodic and square-integrable over
Equations [0 27‘(]

Thomas ’

horclc @ Forevery e > 0 there exists a trigonometric polynomial

g € Vsuchthat|f—gl|, <e.

@ lim,_ ||f — Shf|l, =0, i.e., f is the limit of its Fourier
polynomials in the metric space (V, db) (“L3-limit”,
‘mean-square” limit).

Linear Algebra

® Bessel’s Inequality holds with equality, i.e.,

2w
Z|ck|2:2i/ |f(x)[Pdx. (PLANCHEREL’s Identity)
T Jo
KeZ

Remark
The following more general form of Plancherel’s Identity is also true:

2
> Tk = ZL/ f(x)g(x)dx for f,g € V, (PARSEVAL’s Identity)
T Jo
KEZ

where cx, di denote the Fourier coefficients of f and g, respectively.
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Proof.
First we show that (1), (2) and (3) are equivalent. The key to this
is the formula

n
1f = gll3 > I — Saflls = [Ifl3 —27 > |exl?,
k=—n

which holds for all g € TP,. (Recall that S,f provides the best
approximation to f in TP, in the L2-metric.)

If ||f — g|l < eand g € TPy, then ||f — S,,f||§ <eforalln> N, so
that N can be taken as the response to ¢ in the proof of (2).
Hence (1) implies (2). The converse is trivial, and that (2) and (3)
are equivalent is immediate from the formula.

For the proof of (1) we use the concept of (periodic) convolution of
two functions, which for f, g € V is defined by

()9 = 5= [ fnatx-pay.

It is easy to see that the function f x g: R — C is 27-periodic and
square-integrable as well, and that the convolution operation
VxV—=V,(fg)— fxgisbilinear, associative, and commutative.
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Proof cont'd.
In particular we have

1 27
2

fxelf =

2m
(e ay e [yl ay = ot

This shows that the Fourier coefficients of f are eigenvalues of the
“multiplication map” V — V, g — f x g and implies

n n
f*Dn: Z f*eik)(: Z CkeikX:Snf

k=—n k=—n
1 n—1 1n—1
fxF,= E;f*Dk = E%Skf

The function o,f = 1 3070 S,f, which is obviously a trigonometric
polynomial, is called n-th Fejér polynomial of f. The preceding
computation shows that the Fejér polynomials have the integral
representation

27
anf(x):f*F,,:Fn*fzzl/ f(x — ¥)Fa(y)dy .
T Jo
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Proof contd.
Since - f02” Fn(y)dy = 1, this gives

1

21
L /0 (F(x) — f(x — y))Faly) dy

F(x) = onf(x) = 5

Now assume first that f is continuous. Then there exists M > 0
such that |f(x)| < M for x € [0,2x]. For 0 < r < = we then have

2w
100 = auf(0] < g [ 1700 = 1= ) Fa)ay

1 r 27rr
<= [ 1H0) = f(x = y) [ Faly dy+—/
r

27 J_

(Since the integrand is 27-periodic, integrating over [0, r] and

[27 — r,27] amounts to integrating over [—r, r].)

The 1st summand can be made arbitrarily small (i.e., < ¢/2) by
choosing r sufficiently small, since f is uniformly continuous and
o J. Fn(y)dy < 1.

By Property 3 Fejér kernels, the 2nd summand can then be made
arbitrarily small by choosing n sufficiently large.

y.
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Proof cont'd.

= o,f converges uniformly to f, since this estimate holds
independently of x.

But then o,f converges to f also in the L2-metric, as the estimate

If — onfll, = \/ /0 " 1F(X) — ouf(x)2dx

< V21 max{|f(x) — onf(x)];0 < x < 27}

shows.

Finally, it can be shown that an arbitrary function f € V can be
approximated in the L2-metric by continuous 27-periodic
functions, i.e., given € > 0 there exists a continuous function

h e V such ||f — h||, < /2. The preceding argument then yields
n € N such that ||h — oph|| < €/2, and the triangle inequality for
the L2-metric further ||f — oyh|| < e. Since oph is a trigonometric
polynomial, this concludes the proof of (1). O
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Example

We apply the Parseval identity to FOURIER’s introductory
example. Clearly the 4-periodic function f defined by

if —1 <
f(x):{1 f—1<x<t,

-1 if1<x<3,

(the values at +1 don’t matter for the mean-square
approximation, so we can define them in any way) is

square-integrable with f 2dx = 4. We have seen that the
Fourier coefficients ak, bk are zero except for asx1 = %

Since |ck|? +|c_«|? = 3 (\ak|2 + |bk|2), the Parseval identity gives
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L2-Convergence

Example

We compute the Fourier series of the “repeating ramp”
function g: R — R defined by g(x) = |x| for —m < x < 7 and
2m-periodic extension. (Since |—7| = |n|, the 27-periodic
extension is well-defined.)

Y T
—47 —37 —27 - s 2m 3 4

Figure: The repeating-ramp function

Since g(x) = g(—x), the Fourier series of g is likewise a
pure cosine series with
1 s 2 s
ax = — 9(x) cos(kx) dx = / X cos(kx)
0

i — T

2 {Xsin(kx) N cos(kx)}7r B {0 for k > 2 even,

k k2 —-4_ for k odd,

0 k2
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Example (cont'd)

Moreover, ap = 2 [ xdx = 7.
— The Fourier series of g is

T 4 cos X cos(3x) n cos(5x) n cos(7x) L
2 7 32 52 72 '

In this case Parseval’s identity gives

772 1 > 16 1 4 2 1 i 2 7T2
T+§kzz()7w2(2k+1)4_§ - 9x) dx—;/o Xdx =3
> 1 N w
- Ymrm-55 1) %

From this one can easily derive EULER’s formula for the sum of
the reciprocals of the 4th powers as follows:
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Example (contd)
It follows that

il_ﬁi¥_ﬁﬁ_ﬁ
et 1542 (2k+ 1) 1596 90°

This complements }"7°, n=2 = #2/6, and similar identities can be
derived for the sums Y °° n=2", r =3,4,5,....

But more is true: Since g is continuous and piece-wise C', the
Fourier series of g represents g everywhere, i.e., we have

X=X % (cosx N cos(3x) N cos(5x) N cos(7x) L )

32 52 72

for x € [—m, «]; cf. the subsequent theorems.

You are invited to substitute a few particular values of x into this
series and discover further interesting identities.
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Theorem (FEJER)
Suppose f: R — C is 2r-periodic and the one-sided limits

f(x+) = lim f(x'), f(x=) = lim f(x)

X' x X'1x

properly exist for all x € R. (It suffices to require this for
x € [0,27), of course.)

© Foreveryx e R we have  lim o,f(x) = Tk x-)
— 00
In particular, if f is continuous at x then
limp_yo0 onf(X) = f(X).
® If f is continuous everywhere then (o,f) converges to f
uniformly on R.

Note

The conditions on f imply that f is integrable (in fact even
Riemann integrable) and bounded, hence square-integrable. But
it is still too weak to conclude point-wise convergence of the
Fourier series of f. However, if the Fourier series converges in x,
it must have the limitin (1), i.e.,

liMp—yo0 Sn(X) = limpyee on(X) = 3 (F(x+) + f(x—)); cf. exercises.
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Equatons We have already shown (2) in the course of the proof of the
Thomas previous theorem. The argument to prove (1) is similar. For

Honold 0 < r < = we have

2m
onf(X) = 217 /0 f(X — y)Fa(y) dy

L))

Folwie Since f is bounded, the middle integral can be made arbitarily
eoneee small in absolute value by choosing n sufficiently large (possibly
depending on r); cf. Porperty 3 of Fejér kernels.

The left integral can be rewritten as

[ 0= yran)ay = [ (00 9) -t )mn)ay 41060 [ Fatpray,
0 0 0

Here, the 1st summand can be made arbitrarily small in absolute
value by choosing r appropriately (since

Jo En(y)dy < [ Fn(y)dy = ), and the 2nd summand can be
made arbitrarily close to f(x—)r by choosing n sufficiently large
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Proof of Fejér's Theorem cont’d.

(since Fn(x) = F(—x) and hence [, Fo(y)dy = fEan(y) dy =«
for n — o0).

A similar argument applies to the 3rd integral.

In all it follows that

Jnf(X) _ f();_) o f();+)

can be made arbitrarily small in absolute value by choosing n
sufficiently large. This completes the proof of (1).
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Point-wise Convergence of

Fourier Series
If x € R is such that f(x+) and f(x—) exist, we can define
one-sided derivatives of f in x as

/ [R—
Fot) = tim TV ZIOR) gy gy ) = 1X)
X' x X' —Xx X'1x X' —x
provided that these limits exist.

Theorem (DIRICHLET)

Suppose f: R — C is 2r-periodic and the one-sided limits
f(x+) exist for all x € R.

If x € R is such that the one-sided derivatives f'(x+) exist
as well, then

f(x+)+ f(x—)
e

In particular, if in addition f is continuous at x then

5 o) =
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The proof of Dirichlet’s Theorem is considerably more involved
than that of Fejér's Theorem and will not be given in this lecture.
Instead we state and prove a weaker version of Dirichlet's Theorem.

Theorem

Suppose f: R — C is 2w-periodic and continuous, and there
exists a subdivision 0 = xo < X1 < --- < X, = 2w of [0, 27] such
that the restriction of f to [x;_1, ] is a C'-function for 1 < i < k.
Then the Fourier series of f converges uniformly to f on R.

Proof.
Partial integration over [x;_1, X;], where the functions involved are

continuous, yields for k € Z \ {0}
Xi ) 1 ) Xj Xi )
/ f(x)e ™ dx = — [ f(x)e ® —/ f'(x)e *dx | .
Xi—1 —ik Xi—1 Xi—1

Summing these identities for 1 </ < r and dividing by 27 gives

Ce= - 7 f(x)e **dx = 1 /27r f'(x)e ™ dx = L
k= 271' 0 o 27T]k 0 - k k>

since f(27) = f(0); here ¢, denote the Fourier coefficients of f'.
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=
[NES

p 1
S oled= Y Sl @) [ T %

keZ\{0} kezZ\{0} kez\{0} keZ\{0}

The two sums on the right-hand side are < oo, and hence the
same is true of >, 7\ 1oy |Ckl-

rigebra = The Fourier series >_, ., cxe!®™ converges uniformly (and
s absolutely) on R, say to g(x), since it is majorized by the
convergent series ., |Ck|.

—> We can integrate the Fourier series term-wise and obtain that
g has the same Fourier coefficients as f:

27 ) 2m ) )
g(X)eflkX dx = / Z Clellxeflkx dx
0

lez

2
= Z c// (=X 4x = 27 .
0

lez
Moreover, by the Continuity Theorem g is continuous as well.

0
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Proof cont’d.
It remains to show that two continuous 2x-periodic functions
which have the same Fourier series must be equal.

By a previous theorem, f and g are equal to the L2-limit of their

: common Fourier series, and hence ||f — g||, = 0 or, equivalently,

— f(x) = g(x) almost everywhere.

oo But for continuous functions this can hold only if f = g, because
f(x0) # 9(xo) implies f(x) # g(x) in some interval (xo — 9, X0 + 0)
of positive length. O]
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[éicfmgiil The subject of this exercise is a more down-to-earth proof of the
Thomas fact used in the last step of the proof of the preceding theorem:
horclc Two continuous, 2r-periodic functions f and g having the same

Fourier coefficients must be equal.

© Reduce the statement to the following: A continuous,
2 -periodic function f having all Fourier coefficients equal to
zero must be the all-zero function.

e @® Show that all Fejér polynomials o,f of such a function f are
s zero.

Convergence

©® Assume w.l.o.g. f(xo) = ¢ > 0 and hence f(x) > ¢/2 in some
interval (xo — r, Xo + r) of positive length. Use the convolution
representation

21
onf(30) = 5 /0 (X — ¥)Faly) dy

and the three properties of Fejér kernels stated earlier to
derive a contradiction for large n.
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Example

The theorem applies to the repeating-ramp function and gives the
identity

x| = L X4 cos(3x) N cos(5x) N cos(7x) N x € [om]
T2 A\ e 52 72 ’ i

announced earlier.

Example (Partial fractions of the cotangent)

As a further example we consider the function f;: R — R defined
by fa(x) = cos(ax) for x € [—m, 7] and 2x7-periodic extension.

For a = k € Z the function f,(x) = cos(kx) is its own (one-term)
Fourier series and nothing interesting can be concluded.

For a € C\ Z the situation is more interesting, because f; is then
a “new” function.

Figure: The function x — f; (x)
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Example (cont'd)
Since f; is even, we have b, = 0 for all k.

ax = g/ cos(ax) cos(kx) dx
0

™

-1 ™
=— / cos(ax + kx) + cos(ax — kx) dx
0

™

_1 lsin((a+ K)x) sin((a— k)x)r

at+k + a—k

R ((—1)ksin(a7r) . (—1)"sin(aﬂ)>

T a+k a—k

= The Fourier series of f; is

%*i (a+k aik> cos(kx)].

—1

Sln

™

Since f4(x) is continuous and piece-wise C', the theorem gives
that this series is equal to cos(ax) for x € [—m, 7].
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Example (cont'd)
Thus we have for a € C\ Z and x € [—m, 7] the identity
sin(am) |1 = \k 1 1

- a+2( 1) <a+k + o ) cos(kn) | -

cos(ax) =

Setting x = 7 gives

m cos(ar) 1 ad 1
t — L E) E —1)k -
ree (aﬂ-) sin a7r a P ) < + a— k)

(aeC\72)

This famous identity, supposedly due to EULER, is known as the
partial fractions decomposition of the cotangent.
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tnaioa  As an example for Dirichlet's Theorem we compute the Fourier
Thomas series of the function h: R — R defined by h(x) = (= — x)/2 for
Honold 0 < x < 27 and extended periodically.

| I e e

Figure: The function represented by the Fourier series of h

Convergence

‘Since his odd, we have a, = 0 for all k.

1 (T r—x .
bk = ;/0 5 sin(kx) dx
1 (_(w — x) cos(kx)

27 1 27

~ 2% /. cos(kX)dX)

2k
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Example (cont'd)
Hence the Fourier series of his .., *%) "and we obtain from
Dirichlet’s Theorem the series representation

0 ifx=0Vx=2nr.

kising(kx) _ {(w —x)/2 if0<x<2n,

1

Recall that we have derived this result already when discussing
uniform convergence.
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Exercise
For a sequence (a,) of complex numbers the associated
sequence (c¢,) of CESARO means is defined by

@ ta+---+an
- .

n

a) Show that lim,_.. an = A € C implies lim,_, o, ¢, = A.

b) Give an example of a divergent sequence (a,) for which the
sequence of Cesaro means converges.

Since the Fejér polynomials o,f are Cesaro means of the Fourier
polynomials, Part a) shows that that the convergence of the
Fourier series of f at x implies limp_ oo onf(X) = limp_ 0o Spf(X).

Exercise
Prove the properties of the periodic convolution operation
VxV—=V,(fg)— fxgmentioned in the lecture.
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We wish you every success in the final examination!
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Final Examination

Date/Time/Venue
Sun May 26 2023, 14:00-17:00

Instructions to candidates
¢ This examination paper contains six (6) questions.

¢ Please answer every question and subquestion, and
JUSTIFY your answers.

e For your answers please use the space provided after
each question. If this space is insufficient, please
continue on the blank sheets provided.

e This is a CLOSED BOOK examination,
except that you may bring 1 sheet of A4 paper
(hand-written only) and a Chinese-English dictionary
(paper copy only) to the examination.
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