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Prof. Thomas Honold

Spring Semester 2024
Homework 1

Differential Equations (Math 285)

H1 We have considered the ODE y′ = −x/y as an example in the lecture. Actually
there are four ODE’s, viz. y′ = ±x/y and y′ = ±y/x, which look very similar.
Draw direction fields for the other three ODE’s and determine their solutions in
both implicit and explicit form (if possible).

H2 Determine all points (t0, y0) ∈ R2 such that there is a unique solution on [t0,∞) of
the IVP y′ =

√
|y|, y(t0) = y0 (“the value at time t0 determines the values at all

future times t > t0”).

H3 Let t0, y0, y1 ∈ R. Show that the IVP

y′′ = −y, y(t0) = y0, y
′(t0) = y1

has a unique solution.

H4 For each of the following ODE’s, determine at least one nonzero solution by using
the “Ansatz” y(x) = a eαx or y(x) = b xβ.

a) y′′ = y2;

b) y′′ − 5y′ + 6y = 0;

c) y′′ − 5y′ + 6y = ex;

d) y′′ − 1
2x
y′ + 1

2x2
y = 0;

e) (2x+ 1)y′′ + (4x− 2)y′ − 8y = 0;

f) x2(1− x)y′′ + 2x(2− x)y′ + 2(1 + x)y = 0.

H5 Do two of the three exercises on the pendulum equation in [BDM17], Ch. 1.3
(Exercises 23–25 in the 11th global edition).

H6 Optional Exercise

Solve the functional differential equation f ′ = f−1, where f−1 denotes the com-
positional inverse of f ; i.e., f : I → I (I ⊆ R an interval) should be bijective,
differentiable, and satisfy f ′

(
f(x)

)
= f

(
f ′(x)

)
= x for all x ∈ I.

Due on Thu Jan 25, 9 am
The optional exercise can be handed in until Thu Feb 29, 9 am.

Instructions For your homework it is best to maintain 2 notebooks, which are handed in on alternate

Fridays. You may also use A4 sheets, provided they are firmly stapled together.

Don’t forget to write your name (English and Chinese) and your student ID on the first page.

Homework is handed in on Thursdays before the informal discussion session starts (late homework won’t

be accepted!) and will be returned on the next Thursday.

Answers to exercises must be justified; it is not sufficient to state only the final result of a computation.

Answers must be written in English.

For a full homework score it is sufficient to solve ca. 80 % of the mandatory homework exercises. Optional

exercises contribute to the homework score, but they are usually more difficult and you should work on

them only if you have sufficient spare time.



Solutions (prepared by TA’s and TH)

1 (A) y′ = x/y: Rewriting the ODE as yy′ − x = 0 and integrating gives 1
2
y2 − 1

2
x2 =

Figure 1: Direction field of y′ = x/y

C ∈ R. Replacing C by C/2 turns this into y2 − x2 = C (implicit form), y(x) =
±
√
x2 + C (explicit form). Explicit solutions have domain R if C > 0 and domains(

−∞,−
√
−C
)
,
(√
−C,∞

)
if C ≤ 0. (For C = 0 the solutions, viz. y(x) = ±x,

formally are not defined at 0, since the domain of y′ = x/y excludes the x-axis.)

(B) y′ = y/x: The solutions are y(x) = Cx, C ∈ R, with domains (−∞, 0), (0,∞). Again
the exclusion of x = 0 is artificial and due to the special form of the ODE. (It would
be included if we rewrite the ODE as xy′ − y = 0.) That all solutions have been
found, follows from (y/x)′ = (xy′ − y)/x2 = 0, which implies y/x = C is a constant.

(C) y′ = −y/x: The solutions are y(x) = C/x, C ∈ R, with domains (−∞, 0), (0,∞).
That these are all solutions follows from (xy)′ = y + xy′ = 0, which implies xy = C
is a constant.

2 As discussed in the lecture, the solutions of y′ =
√
|y| form the 2-parameter family

y(t) =


−1

4
(t− c1)2 if t < c1,

0 if c1 ≤ t ≤ c2,
1
4
(t− c2)2 if t > c2.
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Figure 2: Direction field of y′ = y/x

One or both of c1, c2 may be infinite (c1 = −∞, c2 =∞).
Claim: Solutions are uniquely determined for all t ≥ t0 iff y0 = y(t0) > 0.
If y0 > 0 then near t0 the solution must have the form y(t) = 1

4
(t−c2)2 with c2 determined

from 1
4
(t0 − c2)2 = y0, i.e, t0 − c2 = 2

√
y0 and c2 = t0 − 2

√
y
0
. (Note that c2 must be

smaller than t0 in this case.) Thus y(t) is determined for all t ≥ t0.
If y0 = 0 then y(t) is not uniquely determined, since y1(t) = 0 for t ≥ t0 and y2(t) =
1
4
(t− t0)2 for t ≥ t0 are two different solutions.

If y0 < 0, then near t0 the solution has the form y(t) = −1
4
(t − c1)2 form some c1 > t0

(determined as in the case y0 > 0), and hence y(c1) = 0. Thus we are back in the previous
case and the solution is not unique.

3 If y(t) (with domain R) solves the given IVP then z(t) = y(t + t0) solves the IVP
z′′ = −z, z(0) = y0, z

′(0) = y1. From Example 10 in the lecture we know that the unique
solution of this IVP is z(t) = y0 cos t+ y1 sin t. Hence

y(t) = z(t− t0) = y0 cos(t− t0) + y1 sin(t− t0)

is unique as well.

4 a) y(x) = bxβ =⇒ y′′(x) = bβ(β − 1)xβ−2
.
= b2x2β

The only nonzero solution is β = −2, b = 6, i.e., y(x) = 6x−2. (For this we use that
b1x

β1 = b2x
β2 holds for all x in an intervall of positive length iff b1 = b2 ∧ β1 = β2,

provided that both b1, b2 are nonzero.
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Figure 3: Direction field of y′ = −y/x

The other “Ansatz” doesn’t work, because eαx and (eαx)2 = e2αx aren’t scalar multiples
of each other if α 6= 0.

b) The Ansatz y(x) = b xβ doesn’t work, because in this case y′′ − 5y′ + 6y involves xβ,
xβ−1, xβ−2, which don’t cancel.

For y(x) = aeαx we obtain

y′′ − 5y′ + 6y = α2aeαx − 5αaeαx + 6aeαx = (α2 − 5α + 6)aeαx,

which can be made zero by taking α as a root of X2 − 5X + 6, i.e., α ∈ {2, 3}. For
a = 1 this gives the two solutions y1(x) = e2x, y2(x) = e3x. Every linear combination
y(x) = a1 e2x + a2 e3x, a1, a2 ∈ R, is then a solution as well.

c) Again it is clear that y(x) = b xβ doesn’t work. For y(x) = aeαx we see from b) that
we need to solve

(α2 − 5α + 6)aeαx = ex.

This can be done: Set α = 1 and solve (α2 − 5α + 6)a = 2a = 1 for a, i.e., a = 1/2.
A solution is therefore y(x) = 1

2
ex.

d) Clearly only the 2nd Ansatz can work, and in fact it does (w.l.o.g. set b = 1):

y′′ − 1

2x
y′ +

1

2x2
y = β(β − 1)xβ−2 − βxβ−1

2x
+

xβ

2x2
=

(
β2 − 3

2
β +

1

2

)
xβ−2 = 0

if β is a root of X2 − 3
2
X + 1

2
, i.e., β ∈ {1, 1

2
}. Thus y1(x) = x, y2(x) =

√
x are two

solutions, and, more generally, y(x) = a1x+ a2
√
x, a1, a2,∈ R are solutions.
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e) Here y(x) = eαx works (the constant a is arbitrary and can be set to 1):

(2x+ 1)α2eαx + (4x− 2)αeαx − 8eαx =
(
(2x+ 1)α2 + (4x− 2)α− 8

)
eαx = 0.

Since eαx 6= 0, the polynomial

(2x+ 1)α2 + (4x− 2)α− 8 = (2α2 + 4α)x+ α2 − 2α− 8

must be zero, since it vanishes for infinitely many x, and hence

2α2 + 4α = α2 − 2α− 8 = 0.

The unique solution is α = −2, showing that y(x) = e−2x solves the given ODE.

f) Here y(x) = xβ works (the constant b is arbitrary and can be set to 1):

x2(1− x)β(β − 1)xβ−2 + 2x(2− x)βxβ−1 + 2(1 + x)xβ

=
(
x2(1− x)β(β − 1) + 2x(2− x)βx+ 2(1 + x)x2

)
xβ−2 = 0.

=⇒ The first factor, which is

(−β2 − β + 2)x3 + (β2 + 3β + 2)x2 = −(β − 1)(β + 2)x3 + (β + 1)(β + 2)x2,

must be the zero polynomial. The unique solution is β = −2, giving the solution
y(x) = x−2 of the ODE.

5 Ex. 23 (a) The relation between angular, angular velocity and linear velocity is:

v = ωR = R
dθ

dt

Therefore, the kinetic energy T can be represented as:

T =
1

2
mv2 =

1

2
m(R

dθ

dt
)2 =

1

2
mL2dθ

dt

(b) The potential energy V of the pendulum can be represented as:

V = mgh = mg(L− Lcosθ) = mgL(1− cosθ)

(c) The total energy E can be represented as:

E = T + V =
1

2
mL2(

dθ

dt
)2 +mgL(1− cosθ)

Hence,
dE

dt
=

1

2
mL2(2

dθ

dt
)
d2θ

dt2
−mgL(−sinθ)dθ

dt

The total energy E is invariant with time. Therefore,

dE

dt
=

1

2
mL2(2

dθ

dt
)
d2θ

dt2
−mgL(−sinθ)dθ

dt
= 0
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Simplify the above equation:
d2θ

dt2
+
g

L
sinθ = 0

Ex. 24
(a) According to the definition of angular momentum, it can be represented as:

M = L(mv) = mL(R
dθ

dt
) = mL2dθ

dt

(b) According to the principle of angular momentum conservation,

dM

dt
= −(mgsinθ)L

Therefore,
dM

dt
= mL2d

2θ

dt2
= −(mgsinθ)L

Simplify the above equation:
d2θ

dt2
+
g

L
sinθ = 0

Ex. 25 (a) The free-body diagram is shown below:

Figure 4: pendulum

(b)(c) Apply Newton’s Law of motion in the direction tangential to the circular arc.

F = mgsinθ = ma

a = −dv
dt

= − d

dt
(ωL) = −Ldω

dt
= −Ld

2θ

dt2

Therefore,

F = mgsinθ = −m(L
d2θ

dt2
)

Simplify the above equation:
d2θ

dt2
+
g

L
sinθ = 0
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6 Since the derivative and compositional inverse of a power function is again a power
function, the power function

”
Ansatz“ f(x) = bxβ of H4 is reasonable. Since y = bxβ ⇐⇒

x = (y/b)1/β, we obtain the condition

bβxβ−1 = f ′(x) = f−1(x) = (x/b)1/β = b−1/βx1/β

for such a solution. This can only hold if β − 1 = 1/β and bβ = b−1/β. Thus β should

satisfy the quadratic equation β2 − β − 1 = 0, i.e., β = 1±
√
5

2
, and b should satisfy

b1+1/ββ = bββ = 1. If β is negative, there is no real solution. For the positive root
β = 1+

√
5

2
we obtain b = (1/β)1/β and hence the solution

f1(x) =

(
−1 +

√
5

2

)−1+
√
5

2

x
1+
√
5

2 , x ∈ [0,+∞).

Since β > 1, f1 is differentiable at x = 0 with f1(0) = f ′1(0) = 0.
There is a second solution on (−∞, 0), which can be obtained using the Ansatz f(x) =
b(−x)β. Here f ′(x) = −bβ(−x)β−1, f−1(x) = −(x/b)1/β = −(−x/−b)1/β = −(−b)−1/β(−x)1/β,

(requiring b < 0), so that again β2 − β − 1 = 0, and (−b)ββ = −1. Now β = 1−
√
5

2
must

be the negative root, and b = −(−1/β)1/β. This gives the solution

f2(x) = −

(
1 +
√

5

2

)−1−
√
5

2

(−x)
1−
√
5

2 , x ∈ (−∞, 0).

According to the available literature the solution f1 on [0,+∞) is unique, but I do not
know this for f2 and also whether there are further solutions with other domains.
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ZJU-UIUC Institute
Prof. Thomas Honold

Spring Semester 2024
Homework 2

Differential Equations (Math 285)

H7 Solve the initial value problem y′ + 4y = 8e−4t + 20, y(0) = 0 and determine
y∞ = limt→∞ y(t) for the solution.

H8 Solve y′ − 2y = ect, y(0) = 1 and graph the solution for

a) c = 2; b) c = 2.01.

What do you observe?

H9 The Heaviside function u: R→ R is defined by

u(t) =

{
0 if t < 0,

1 if t ≥ 0.

Express b(t) (cf. picture) in terms
of u(t), solve the initial value
problem y′ + 2y = b(t), y(0) = 0,
and determine y∞ (cf. H7).

H10 a) Write the following complex numbers in polar form:

(i)
√

3 i + 1; (ii)
√

3 i− 1; (iii) i−
√

3.

b) Determine the general solution of the following ODE’s:

(i) y′ + y = cos
(√

3 t
)
; (̄ii) y′ − y = cos

(√
3 t
)
;

(iii) y′ −
√

3 y = cos t+ sin t.

c) Suppose A : I → C, t 7→ A1(t) + iA2(t) is differentiable (i.e., A1 = ReA and
A2 = ImA are differentiable). Show that I → C, t 7→ eA(t) is differentiable as
well, and

d

dt
eA(t) = A′(t)eA(t).

Hint: Start with eA(t) = eA1(t)+iA2(t) = eA1(t)eiA2(t) = eA1(t) cosA2(t)+i eA1(t) sinA2(t).

H11 a) Show that in the 3rd model mv′ = mg − kv2 for a falling object released at
height s0 the terminal velocity vT of the object at time of impact is given by

vT =

√
mg

k
·
√

1− e−2ks0/m.

Hint: Consider the velocity as a function v(s) of the distance s traveled. Show
that y(s) = v(s)2 satisfies the ODE my′ = 2mg − 2ky.

b) The limiting velocity of a falling basketball (m = 620 g) has been estimated
at 20 m/s. Using this data, graph vT as a function of s0. For which heights s0
does the basketball reach 50 %, 90 %, and 99 % of its limiting velocity?

1 PLEASE TURN OVER



H12 a) Let fλ(t) = eλt for λ ∈ R. Show that {fλ;λ ∈ R} is linearly independent in
RR.

Hint: Suppose there exists r ∈ Z+ and distinct numbers λ1, . . . , λr, c1, . . . , cr ∈
R such that

c1e
λ1t + c2e

λ2t + · · ·+ cre
λrt = 0 for all t ∈ R. (?)

Assuming λ1 < λ2 < · · · < λr and cr 6= 0, divide this equation by eλrt and let
t→ +∞ to obtain a contradiction.

b) For λ ∈ C the functions fλ(t) = eλt belong to the vector space CR of all
complex-valued functions on R (with scalar multiplication by complex num-
bers). Show that {fλ;λ ∈ C} is linearly independent in CR.

Hint: The proof outlined in a) breaks down in the complex case. Instead
differentiate the identity in (?) j times, 0 ≤ j < r, and set t = 0.

c) Let cλ(t) = cos(λt), sλ(t) = sin(λt). Show that {cλ;λ ∈ R, λ ≥ 0} ∪ {sλ;λ ∈
R, λ > 0} is linearly independent in RR.

Due on Thu Feb 29, 9 am

Exercises H12 b) and H12 c) are optional.
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Solutions

7 According to the particular solution formula,

yp(t) = e−4t
∫ t

0

(8e−4s + 20)e4s ds

= (8t− 5)e−4t + 5

=⇒ y(t) = Ce−4t + yp(t)

= Ce−4t + (8t− 5)e−4t + 5, C ∈ R.

Plug the initial condition y(0) = 0 into the general solution:

y(0) = Ce−4∗0 + (8 ∗ 0− 5)e−4∗0 + 5 = 0

=⇒ C = 0

=⇒ y(t) = (8t− 5)e−4t + 5

y∞ = lim
t→∞

[
(8t− 5)e−4t + 5

]
= 5

. (It can also be seen directly that the particular solution yp(t) satisfies already yp(0) = 0.)

8 a)
∵ c = 2

∴ y′ = 2y + e2t

According to the particular solution formula,

yp(t) = e2t
∫ t

0

e2se−2s ds = te2t

y(t) = te2t + C1e
2t

Plug the initial condition y(0) = 1 into the general solution

y(0) = 0 ∗ e2∗0 + C1e
2∗0 = 1

=⇒ C1 = 1

=⇒ y(t) = (t+ 1)e2t

b)
∵ c = 2.01

∴ y′ = 2y + e2.01t

According to the particular solution formula,

yp(t) = e2t
∫ t

0

e2.01se−2s ds = 100e2.01t − 100e2t

y(t) = 100e2.01t + (C2 − 100)e2t

3



Plug the initial condition y(0) = 1 into the general solution

y(0) = 100e2.01∗0 + (C2 − 100)e2∗0 = 1

=⇒ C2 = 1

=⇒ y(t) = 100e2.01t − 99e2t

0 50 100 150 200 250 300 350 400

t

5

11.3424

17.6848

y

10307 The curve of y(t) when y(0)=1

c=2

c=2.01

0 1 2 3 4 5 6 7 8 9 10

t

0

1

2

3

4

5

6

y

109 The curve of y(t) when y(0)=1

c=2

c=2.01

Therefore, there is no significant difference between these two functions, provided t is
not too large. On the other hand, we have

100 e2.01 t − 99 e2t

(t+ 1)e2t
=

100 e0.01 t − 99

(t+ 1)
,

and the quotient grows exponentially. Hence for large t the solution of b) is signifi-
cantly larger.
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9 We have b(t) = u(t− 1)− u(t− 4) for t ∈ R (this also holds at t = 1 and t = 4).

y′ = −2y + b(t)

b(t) =

{
0, if t < 1 or t ≥ 4

1, if 1 ≤ t < 4

When t < 1, b(t) = 0
=⇒ The equation is y′ + 2y = 0, which is homogeneous.

∴ y(t) = C1e
−2t, C1 ∈ R

y(0) = C1 ∗ e0 = 0 =⇒ C1 = 0

∴ y(t) = 0

When 1 ≤ t < 4, b(t) = 1
=⇒ The equation is y′+ 2y = 1, which is inhomogeneous and has yp(t) = 1

2
as particular

solution.

∴ y(t) = C2e
−2t +

1

2
, C2 ∈ R

y(1) = C2e
−2∗1 +

1

2
= 0 =⇒ C2 = −1

2
e2 (Continuity at t = 1)

∴ y(t) = −1

2
e2−2t +

1

2

When t ≥ 4, b(t) = 0
=⇒ The equation is again y′ + 2y = 0.

∴ y(t) = C3e
−2t, C3 ∈ R

y(4) = C3e
−2∗4 =

1

2
(1− e−6) =⇒ C3 =

1

2
(e8 − e2) (Continuity at t = 4)

∴ y(t) =
1

2
(e8 − e2)e−2t

y∞ = lim
t→∞

y(t) = lim
t→∞

1

2
(e8 − e2)e−2t = 0

10 a) (i)
√

3 i+ 1 =
√

3 + 1 ei arctan(
√
3) = 2 ei

π
3

(ii)
√

3 i− 1 =
√

3 + 1 ei(π+arctan(−
√
3)) = 2 ei

2π
3

(iii) i−
√

3 =
√

3 + 1 e[π+i arctan(−
√
3
3
)] = 2 ei

5π
6
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b) (i) Complexifying this ODE leads to z′ = −z + ei
√
3 t. If z(t) solves the complex

ODE, yp(t) = Re z(t) will be a particular solution of y′ + y = cos(
√

3 t).

Since (ei
√
3 t)′ = i

√
3 ei
√
3 t, it is reasonable to guess that there exists a particular

solution of the form z(t) = C ei
√
3 t with C ∈ C.

z′(t) = Ci
√

3ei
√
3t = −(Cei

√
3t) + ei

√
3t ⇐⇒ Ci

√
3 = 1− C ⇐⇒ C =

1

1 + i
√

3

=⇒ z(t) =
1− i

√
3

4
(cos (

√
3 t) + i sin (

√
3 t))

∴ yp(t) = Re z(t) =
1

4
cos (
√

3t) +

√
3

4
sin (
√

3t)

So the general (real) solution of y′ + y = cos(
√

3 t) is

y(t) = C1e
−t +

1

4
cos (
√

3 t) +

√
3

4
sin (
√

3 t), C1 ∈ R.

(ii) Here we have z′ = z + ei
√
3 t and can use the same “Ansatz” as in (i).

z′(t) = Ci
√

3ei
√
3t = (Cei

√
3t) + ei

√
3t ⇐⇒ Ci

√
3 = 1 + C ⇐⇒ C =

1

−1 + i
√

3

=⇒ z(t) = −1 + i
√

3

4
(cos (

√
3t) + i sin (

√
3t))

∴ yp(t) = Re z(t) = −1

4
cos (
√

3t) +

√
3

4
sin (
√

3t)

So the general solution of y′ − y = cos(
√

3 t) is

y(t) = C1e
t − 1

4
cos (
√

3 t) +

√
3

4
sin (
√

3 t), C1 ∈ R.

(iii)

y′ −
√

3 y = cos t+ sin t⇐⇒ y′ =
√

3 y +
√

2 sin
(π

4
+ t
)

Complexifying this ODE leads to z′ =
√

3 z +
√

2 ei(
π
4
+t) =

√
3 z + (1 + i)eit and,

since we have complexified a sine, this time yp(t) = Im z(t) will give a particular
solution of the original ODE. Using the “Ansatz” z(t) = C eit, C ∈ C, we obtain

z′(t) = Ci eit =
√

3C eit + (1 + i)eit ⇐⇒ Ci =
√

3C + 1 + i

⇐⇒ C =
1 + i

−
√

3 + i
=

(1 + i)(−
√

3− i)
4

=
1−
√

3

4
− 1 +

√
3

4
i

=⇒ yp(t) = Im

[(
1−
√

3

4
− 1 +

√
3

4
i

)
eit

]

= −1 +
√

3

4
cos t+

1−
√

3

4
sin t

= −
√

2

4
cos
(π

4
+ t
)
−
√

6

4
sin
(π

4
+ t
)

6



So the general solution of y′ −
√

3 y = cos t+ sin t is

y(t) = C1e
√
3 t − 1 +

√
3

4
cos t+

1−
√

3

4
sin t

= C1e
√
3 t −

√
2

4
cos
(π

4
+ t
)
−
√

6

4
sin
(π

4
+ t
)
, C1 ∈ R.

c) Using the rules for differentiating real-valued functions (in particular, the rule d
dt
eA1(t) =

A′1(t)e
A1(t), which is an instance of the chain rule), we have

d

dt

[
eA1(t) cosA2(t)

]
= A′1(t)e

A1(t) cosA2(t)− eA1(t) sinA2(t)A
′
2(t),

d

dt

[
eA1(t) sinA2(t)

]
= A′1(t)e

A1(t) sinA2(t) + eA1(t) cosA2(t)A
′
2(t),

and hence

d

dt
eA(t) =

(
A′1(t)e

A1(t) cosA2(t)− eA1(t) sinA2(t)A
′
2(t)
)

+ i
(
A′1(t)e

A1(t) sinA2(t) + eA1(t) cosA2(t)A
′
2(t)
)

= (A′1(t) + iA′2(t))
(
eA1(t) cosA2(t) + i eA1(t) sinA2(t)

)
= A′(t)eA(t).

Of course, this also proves that t 7→ eA(t) is differentiable.

11 a)

mv′ = mg − kv2 ⇐⇒ m
dv

ds

ds

dt
= mg − kv2 ⇐⇒ mv

dv

ds
= mg − kv2

Assuming y(s) = v(s)2, we have dy
ds

= 2v dv
ds

.
By substituting this into the equation mv dv

ds
= mg − kv2, we get

my′ = 2mg − 2ky

=⇒ y′ = −2k

m
y + 2g.

(Note added on Mar 2, 2024: Students have pointed out that the above computation is
confusing, because v′ means v′(t) and not v′(s), and y′ means y′(s). We can avoid this
by writing m dv

dt
= mg−kv2 instead of mv′ = mg−kv2 and m dy

ds
= 2mg−2ky further

down. While it is custom in applied mathematics to use v(t), v(s) simultaneously,
you should be aware that given v(t) the second is a derived notion, actually meaning
s 7→ v(t(s)), where t(s) denotes the inverse function of s(t). It is “speed parametrized
with respect to arc length”, so-to-speak.)

According to the general solution formula,

y(s) = Ce−
2k
m
s + e−

2k
m
s

∫ s

0

2ge
2k
m
λ dλ = (C − mg

k
)e−

2k
m
s +

mg

k

∵ v(0) = 0

∴ y(0) = C − mg

k
+
mg

k
= 0 =⇒ C = 0

7



=⇒ y =
mg

k
(1− e−

2k
m
s)

=⇒ v =
√
y =

√
mg

k

√
1− e− 2k

m
s

=⇒ vT = v(s0) =

√
mg

k

√
1− e− 2k

m
s0

Remark: The general solution of y′ = −2k
m
y + 2g can also be obtained using the

observation that y ≡ mg/k is a particular (constant) solution.

b) When m = 620 g,

vl = lim
s→∞

√
mg

k

√
1− e− 2k

m
s = 20

=⇒
√
mg

k
= 20

Assuming that g = 10 m/s2, we have 2k
m

= 1
20

=⇒ vT = 20

√
1− e− 1

20
s0

(i)

vT = 50% vl =⇒
√

1− e− 1
20
s0 = 50% =⇒ s0 = −20 ln

3

4

(ii)

vT = 90% vl =⇒
√

1− e− 1
20
s0 = 90% =⇒ s0 = −20 ln

19

100

(iii)

vT = 99% vl =⇒
√

1− e− 1
20
s0 = 99% =⇒ s0 = −20 ln

199

10000

The graph of vT (s0) = 20
√

1− e− 1
20
s0 as a function of s0 is shown below, with three

points indicating the corresponding s0 for which the basketball reaches 50%, 90%, and
99% of its limiting velocity.

0 10 20 30 40 50 60 70 80 90 100

s
0
(m)

0

5

10

15

20

25

30

v
T
(m

/s
)

The curve of v
T
 when the limiting velocity is 20m/s(m=620g)

(5.75,10)

(33.21,18)

(78.34,19.8)
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Since we have used an approximation of g with only 1 significant digit, we cannot
expect the values of s0 to be more accurate. All we can say is that the basketball
reaches 50%, 90%, 99% of its limiting velocity for heights of approximately 6 m, 30 m,
80 m, respectively.

12 a) Dividing (?) by eλrt and solving for cr gives

cr = −c1e(λ1−λr)t − c2e(λ2−λr)t − · · · − cr−1e(λr−1−λr)t. (1)

Since λi − λr < 0 for 1 ≤ i ≤ r − 1, we have limt→+∞ e(λi−λr)t = 0 for 1 ≤ i ≤ r − 1.
Hence the right-hand side of (1) tends to zero for t→ +∞, while the left-hand side is
a non-zero constant. This obvious contradiction proves that the functions fλ, λ ∈ R,
are linearly independent over R.

b) In the complex case λi = αi + iβi (αi, βi ∈ R) we have

eλit = eαit+i(βit),
∣∣eλit∣∣ = eαit.

Assuming that αr > αi for 1 ≤ i ≤ r−1 and cr 6= 0, we can still divide (?) by eαrt and
obtain a contradiction in a similar way. But, since different λi’s may have the same
real part, this is not sufficient for a proof of linear independence.

However, we can argue as follows: Differentiating (?) r − 1-times gives the system of
identities

c1e
λ1t + · · · + cre

λrt = 0,
c1λ1e

λ1t + · · · + crλre
λrt = 0,

c1λ
2
1e
λ1t + · · · + crλ

2
re
λrt = 0,

. . .
c1λ

r−1
1 eλ1t + · · · + crλ

r−1
r eλrt = 0.

Setting t = 0 gives for c = (c1, . . . , cr) the linear system of equations Ac = 0 with
coefficient matrix

A =


1 1 . . . 1
λ1 λ2 . . . λr
λ21 λ22 . . . λ2r
...

...
...

λr−11 λr−12 . . . λr−1r

 .

Now A is a Vandermonde matrix and hence invertible; cf. any Linear Algebra book.
(One can also compute the determinant of A recursively: Subtract Column 1 from the
remaining columns and then expand along the first row. This leaves an (n−1)×(n−1)
determinant, which has the factor (λ2 − λ1)(λ3 − λ1) · · · (λr − λ1) (since the columns
have the factors λj − λ1). After taking the factors out, the Vandermonde form (with
2nd row (λ2, . . . , λr)) can be restored using suitable elementary row operations. By
induction it then follows that det(A) =

∏
1≤i<j≤r(λj−λi), which is obviously nonzero.)

It follows that c1 = c2 = · · · = cr = 0, i.e., the functions fλ, λ ∈ C, are linearly
independent.

c) Let λ1, . . . , λr, µ1, . . . , µt ∈ R and a1, . . . , ar, b1, . . . , bt ∈ R be such that 0 ≤ λ1 <
· · · < λr, 0 < µ1 < · · · < µt, and

a1cλ1 + · · ·+ arcλr + b1sµ1 + + · · ·+ btsµt = 0 in RR. (2)

9



Since cos(λx) = 1
2
(eiλx + e−iλx), sin(λx) = 1

2i
(eiλx − e−iλx), we have cλ = 1

2
(fiλ + f−iλ),

sλ = 1
2i

(fiλ − f−iλ). Inserting this into (2) gives a complex linear combination of the
functions fλ, which is equal to zero. By Part b), all the coefficients must be zero.

If λ1 = 0 then, since c0(t) = 1 = f0(t), the function f0 appears in the complex linear
combination with coefficient a0, and hence a0 = 0.

If λ1 is not equal to any of the numbers µ1, . . . , µt, then both fiλ1 , f−iλ1 appear in the
complex linear combination with coefficient a1/2, showing that a1 = 0.

Arguing similarly for λ2, . . . , λr, µ1, . . . , µt, we see that the only remaining case is
λi = µj for some i, j. W.l.o.g. we may assume λ1 = µ1 = λ. Then the coefficient of
f±iλ in the complex linear combination is clearly the same as in

a1cλ1 + b1sµ1 =
a1
2

(fiλ + f−iλ) +
b1
2i

(fiλ − f−iλ) =
a1 − ib1

2
fiλ +

a1 + ib1
2

f−iλ.

It follows that a1−ib1
2

= a1+ib1
2

= 0 and hence a1 = b1 = 0.

In all we have shown that (2) implies a1 = · · · = ar = b1 = · · · = bt = 0, i.e., the
functions cλ, λ ≥ 0, and sλ, λ > 0, are collectively linearly independent.
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ZJU-UIUC Institute
Prof. Thomas Honold

Spring Semester 2024
Homework 3

Differential Equations (Math 285)

H13 Determine the general solution of the following ODE’s in terms of y(0) (three
answers suffice).

a) dy/dt = ey+t; b) dy/dt = ty + y + t;
c) dy/dt = (cos t)y + 4 cos t; d) dy/dt = tmyn (m,n ∈ Z).

H14 For the following ODE’s, solve the corresponding IVP with y(0) = 1.

a) dy/dt = −4ty; b) dy/dt = t y3; c) (1 + t)dy/dt = 4y.

H15 Determine all maximal solutions of t2 y′ = y2 and decide for which points (t0, y0) ∈
R2 the IVP t2 y′ = y2 ∧ y(t0) = y0 has no solution/exactly one solution/more than
one solution.

H16 a) According to worldometers.info, the world’s population on Ju1y 1, 2020 was
about 7.79 billion, with a 1.05 % increase since July 1, 2019. Use this data
to determine a new logistic model for the world’s population growth, and
compare with that of the lecture. What is the limiting population according
to the new model?

b) Show that the graph of y(t) = a/(d e−at + b) (a, b, d > 0) is point-symmetric
to its inflection point.

Hint: A superb way to solve this exercise is to observe that the mirror image
of a solution curve w.r.t. its inflection point represents a solution as well and
use the uniqueness of solutions of associated IVP’s.

H17 a) Explain how to adapt the analysis of the harvesting equation in the lecture to
y′ = ay2 + by + c with a, b, c ∈ R and a > 0.

b) Sketch the solution curves of (i) y′ = y2 − y + 1, (ii) y′ = y2 + 2y + 1, (iii)
y′ = y2 + y − 2 without actually computing solutions. Steady-state solutions
and inflection points (if any) should be drawn exactly.

H18 The ODE y′ = a(t)y − b(t)yn, n ∈ R \ {0, 1} is called Bernoulli’s differential
equation.

a) Show that for an appropriate choice of β ∈ R the substitution z = yβ turns
Bernoulli’s differential equation into a linear 1st-order ODE (which can be
solved by the usual methods).

b) Solve the IVP y′ = 4y − y3 ∧ y(0) = 1 by the method suggested in a).

c) Investigate the asymptotic stability of the steady-state solutions of the ODE
in b).

Due on Thu Mar 7, 10 am



Solutions

13 a)
e−y dy = et dt

Integrating both sides of the equation, we get∫ y

y(0)

e−r dr =

∫ t

0

es ds

−e−y + e−y(0) = et − 1

Finally, we obtain

y(t) = − ln(e−y(0) + 1− et), t < ln(1− e−y(0)).

Remark: When determining the solution, one can also use indefinite integration∫
e−y dy = et dt +C and determine C in terms of y(0). This applies to the subse-

quent exercises as well.

b) Rewrite the ODE in the form of y′ = a(t)y + b(t) :

y′ = (t+ 1)y + t

According to the particular solution formula,

yp(t) = e
t2

2
+t

∫ t

0

s e−(
s2

2
+s) ds

= e
t2

2
+t

(∫ t

0

(s+ 1)e−(
s2

2
+s) ds −

∫ t

0

e−(
s2

2
+s) ds

)
= −e

t2

2
+t
(
e−(

t2

2
+t) − 1

)
− e

1
2

∫ t

0

e
−
(

s2

2
+s+ 1

2

)
ds

= e
t2

2
+t − 1− e

1
2

∫ t

0

e
−
(

s+1√
2

)2

ds ,

and the “homogeneous solution” is

yh(t) = y(0) e
t2

2
+t

Since yp(0) = 0, the general solution in terms of y(0) is

y(t) = y(0)e
t2

2
+t − 1− e

1
2

∫ t

0

e
−
(

s+1√
2

)2

ds .

Remark: It is not necessary to rewrite the integrand occuring in yp(t) in the particular
form shown above, but at least this shows the relation with the incomplete Gauss
integral (or the so-called error function). The simple answer is y(t) = yp(t) + yh(t),
t ∈ R, with yp, yh as above.
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c) According to the particular solution formula,

yp(t) = esin(t)
∫ t

0

4 cos(s)e− sin(s) ds (1)

= −4esin(t)(e− sin(t) − 1) (2)

= 4esin(t) − 4, (3)

and the “homogeneous solution” is

yh(t) = y(0)esin(t).

The general solution is then

y(t) = (y(0) + 4)esin(t) − 4.

The general form y(t) = Cesin t − 4, C ∈ R, also follows from the observation that
y(t) ≡ −4 is a particular solution.

d) There is the constant solution y = 0, and for y 6= 0 we can separate:

dy

yn
= tm dt .

Integrating both sides, we get ∫ y

y(0)

1

rn
dr =

∫ t

0

sm ds

− 1

(n− 1)yn−1
+

1

(n− 1)y(0)n−1
=

tm+1

m+ 1
, (n 6= 1, m 6= −1).

Then, we obtain the general solution

y(t) =

[
(n− 1)

(
1

(n− 1)y(0)n−1
− tm+1

m+ 1

)]− 1
n−1

(n 6= 1, m 6= −1).

Next, we deal with the special cases:

i) n = 1, m = −1
dy

y
=

dt

t

ln |y| = ln |t|+ C

Finally, we obtain, with a different parameter C ′ ∈ R,

y(t) = C ′t, t ∈ (−∞, 0) or t ∈ (0,+∞).

y(0) is not defined in this case.
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ii) n = 1, m 6= −1
dy

y
= tmdt

Integrating both sides, we get ∫ y

y(0)

1

r
dr =

∫ t

0

sm ds ,

ln |y| − ln |y(0)| = tm+1

m+ 1
.

Finally, noting that y(t) and y(0) must have the same sign, we obtain

y(t) = y(0)e
tm+1

m+1 , t ∈ R.

.

iii) n 6= 1, m = −1
dy

yn
=

dt

t

Integrate both sides, we get

− 1

(n− 1)yn−1
= ln |t|+ C

Finally, we obtain

y(t) = (−(n− 1)(ln |t|+ C))−
1

n−1 , t < −e−C or t > e−C .

y(0) is not defined in this case.

14 a) dy/dt = −4ty
This is a homogeneous linear ODE, so we get

y(t) = Ce−2t
2

Plugging into the IVP y(0) = 1, we can obtain the solution as

y(t) = e−2t
2

, t ∈ R.

b) dy/dt = ty3

This is a separable ODE, so we can write

dy

y3
= tdt

∫ y

1

1

r3
dr =

∫ t

0

s ds

The solution is
y(t) = (1− t2)−

1
2 , −1 < t < 1.
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c) (1 + t)dy/dt = 4y
Rewrite the ODE as

y′ =
4

t+ 1
y.

We use the “homogeneous solution formula” to get

y(t) = Ce4 ln|t+1| = C(t+ 1)4.

Plugging into the IVP y(0) = 1, we obtain the solution as

y(t) = (t+ 1)4, t ∈ R.

15 We can rewrite this separable ODE as

dy

y2
=
dt

t2
(y, t 6= 0)

Integrating both sides of the above equation, we get∫ y

y0

1

η2
dη =

∫ t

t0

1

τ 2
dτ

−1

y
+

1

y0
= −1

t
+

1

t0

which gives

y(t) =
t0y0

t0y0
t
− (y0 − t0)

=
(t0y0)t

t0y0 − (y0 − t0)t
=

t

1− Ct
with C :=

y0 − t0
t0y0

.

Removal of the coordinate axes splits the (t, y)-plane into 4 quadrants (“small rectangles”
in the parlance of the lecture), and every solution that is contained entirely in one of these
quadrants must be of this form.
For t = 0 we must have y(t) = 0 (from t2y′ = y2).
There is the constant solution y(t) = 0, t ∈ R.

1) t0 = y0 6= 0

y(t) =

{
t, t 6= 0

0, t = 0

And y(0) = 0 fits with the expression y(t) = t, so we can write the solution as y(t) = t,
t ∈ R.
There is only one solution.

2) t0 = y0 = 0
Every solution of the ODE defined at t = 0 must satisfy y(0) = 0 (see above). Non-
constant (maximal) solutions are

y(t) =
t

1− Ct
, C ∈ R.

with domain R if C = 0, (−∞, 1/C) if C > 0, and (1/C,+∞) if C < 0. In particular
there are an infinite number of solutions.
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3) t0 = 0, y0 6= 0
This IVP contradicts y(0) = 0. Therefore, there is no solution.

4) t0 6= 0, y0 = 0
The solution is

y(t) = 0

Therefore, there is only one solution.

5) 0 6= t0 6= y0 6= 0

y(t) =
t

1− y0−t0
t0y0

t
, t 6= t0y0

y0 − t0
Therefore, there is only one solution.

In conclusion, the IVP t2y′ = y2 ∧ y(t0) = y0 has

1) no solution when t0 = 0, y0 6= 0;

2) infinitely many (maximal) solutions when t0 = y0 = 0;

3) exactly one (maximal) solution otherwise.

Particular maximal solutions are

y(t) = 0, t ∈ R;

y(t) = t, t ∈ R;

y−C (t) =
t

1− Ct
, t ∈ (−∞, 1/C);

y+C (t) =
t

1− Ct
, t ∈ (1/C,+∞).

The 3rd and 4th type of solutions exist for any real number C 6= 0.
A better picture can be obtained by solving y = t/(1 − Ct) for C, which gives C =
(y − t)/(ty) and shows that F (t, y) = (y − t)/(ty) provides a first integral for the given
ODE.
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From the contour plot of F you can see that all non-constant solutions that are defined at
t = 0 share the same tangent at (0, 0). This also follows from d

dt
t

1−Ct = 1
(1−Ct)2 . Solutions

y+C (t) with C > 0 fill the 4th quadrant, solutions y−C (t) with C > 0 fill the region above
y = t in the 1st and 3rd quadrant, etc. All these properties can also be derived with
some effort from the formulas.
For determining all maximal solutions we must also consider the possibility of glueing
together branches of solutions at the origin. Since the tangent of a non-constant solution
at the origin must be y = t, any solution in the 3rd quadrant “ending at (0, 0)” can be
glued together with any solution in the 1st quadrant “starting at (0, 0)” to form a maximal
solution. This gives a two-parameter family of maximal solutions (see the picture), which
may also have a finite domain or domain R.
Remark: With the Existence and Uniqueness Theorems now at hand, we can easily get a
complete qualitive picture. Rewriting t2y′ = y2 as y2 dt −t2 dy = 0, we see that the origin
(t0, y0) = (0, 0) is the only singular point, and hence that through any other point (t0, y0)
there passes precisely one integral curve (solution curve) locally.1 For points (0, y0) with
y0 6= 0 this is the curve t = 0, which cannot be seen from t2y′ = y2, because it can be
parametrized only as t(y).

16 a) The new logistic model is y(t) = a
d′e−a(t−2020)+b

with a = 0.029 (natural reproduction

rate of humans) and b, d′ determined from y′(2020)
y(2020)

= a− b y(2020) = 0.0105, y(2020) =

1By this we mean that there exists a neighborhood U of (t0, y0) such that the modified ODE with
domain U has uniqueness of integral curves through (t0, y0). The set U must be chosen in such a way
that it doesn’t contain the origin.
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a
d′+b

= 7.79× 109. The solution is b = 37
1558
× 10−10, d′ = 21

1558
× 10−10, so that

y(t) =
0.029× 1010

21
1558

e−0.029(t−2020) + 37
1558

and the limiting population is a/b ≈ 12.2 billion people.

b) With the Hint, we want to prove that the mirror image of a solution curve w.r.t. its
inflection point represents a solution as well and use the uniqueness of solutions of
associated IVP’s.
The function of the mirror image is

g(t) =
a

b
− a

de−a(2th−t) + b

where th = (ln d− ln b)/a.
First, we prove that g(t) is a solution to the ODE y′ = ay − by2.

g′(t) = − a2dea(2th−t)

(dea(2th−t) + b)2

and

ag(t)− bg2(t) =
a2

b
− a2

de−a(2th−t) + b
− b(a

2

b2
− 2a2

b(de−a(2th−t) + b)
+

a2

(de−a(2th−t) + b)2
)

=
−a2de−a(2th−t) − a2b+ 2a2b− a2b

(de−a(2th−t) + b)2

= − a2de−a(2th−t)

(de−a(2th−t) + b)2

Thus, g′(t) = ag(t) − bg2(t), which means g(t) is also a solution to the ODE y′ =
ay − by2.
Then, we will use the uniqueness of the solution of th IVP y′ = ay−by2∧y(th) = a/2b.
Since the original solution curve has the inflection point (th, a/2b), it shares the same
IVP with the mirror image g(t). The logistic equation has a unique solution for any
given IVP, so y(t) = g(t).

Remark: The computation can be simplified a little by using the observation that y(t)
solves y′ = ay − by2 iff t 7→ y(t− t0), t0 ∈ R, does.

17 a) It should be noted that the analysis in the lecture used the notation y′ = ay −
by2− h, where a, b, h > 0. However, the parabola f(y) = y′ = ay2 + by+ c, a > 0, is a
vertically flipped version of that considered in the lecture. This discrepancy will lead
to different behaviors of the solution curves.
The discriminant is ∆ = b2 − 4ac. For ∆ ≥ 0, there are the steady-state solutions

y1 =
−b−

√
b2 − 4ac

2a

y2 =
−b+

√
b2 − 4ac

2a
where 0 < y1 ≤ y2.
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i) c < b2/4a
If the initial condition y(t0) satisfies y1 < y(t0) < y2, then y(t) decreases and
limt→∞ y(t) = y1.
If y(t0) > y2, then y(t) increases to ∞. If y(t0) < y1, then y(t) increases and
limt→∞ y(t) = y1.

ii) c = b2/4a
If y(t0) > −b/2a, then y(t) increases to ∞. If y(t0) < −b/2a, then y(t) increases
and limt→∞ y(t) = y1.

iii) c > b2/4a
Regardless of the initial condition, y(t) will increase to ∞.

b) i) y′ = y2 − y + 1

Figure 1: y′ = y2 − y + 1

ii) y′ = y2 + 2y + 1

9



Figure 2: y′ = y2 + 2y + 1

iii) y′ = y2 + y − 2

Figure 3: y′ = y2 + y − 2

18 a) We can write
dz

dt
= βyβ−1

dy

dt
.
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Then, we get
dy

dt
=

1

β
y1−β

dz

dt
.

Substituting the above expression into the ODE, we get

1

β
y1−β

dz

dt
= a(t)y − b(t)yn,

z′ = βa(t)yβ − βb(t)yn+β−1,
z′ = βa(t)z − βb(t)yn+β−1.

Then, setting β = 1− n, we can obtain the 1st-order linear ODE

z′ = βa(t)z − βb(t)

for z(t) = y(t)1−n. Depending on n, the 1-1 correspondence between solutions of both
ODEs may only hold for a smaller domain, e.g., for general n > 1 we need to restrict
to y > 0 (except for certain integers n).

b) Setting β = 1− 3 = −2, we can rewrite the ODE as

z′ = −8z + 2.

The corresponding IVP is z(0) = y(0)−2 = 1.
Then, we can get its solution as

z(t) =
3

4
e−8t +

1

4
.

Since z = yβ = y−2,

y(t) = ±z(t)−
1
2 = ±

(
3

4
e−8t +

1

4

)− 1
2

Because y(0) = 1, we eliminate the negative solution, leaving

y(t) =

(
3

4
e−8t +

1

4

)− 1
2

=
2√

1 + 3 e−8t
, t ∈ R.

c) The steady-state solution is z(t) = 1/4, corresponding to y(t) = ±2.
The general solution to the ODE in b) is y(t) ≡ 0 and the non-constant solutions

y1(t) = −
[(
y−2(0)− 1

4

)
e−8t +

1

4

]− 1
2

,

and

y2(t) =

[(
y−2(0)− 1

4

)
e−8t +

1

4

]− 1
2

.

limt→∞ y1(t) = −2, and limt→∞ y1(t) = 2.

11



If the initial condition is y(0) = y0 < 0, then the solution will be y1(t), so limt→∞ y(t) =
−2;
if the initial condition is y(0) = y0 > 0, then the solution will be y2(t), so limt→∞ y(t) =
2.
This shows that both y = −2 and y = 2 are asymptotically stable.
The third steady state solution y(t) ≡ 0 is unstable. This follows from the cases
y(0) > 0 and y(0) < 0 covered above.
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ZJU-UIUC Institute
Prof. Thomas Honold

Spring Semester 2024
Homework 4

Differential Equations (Math 285)

H19 Find integrating factors for the following ODE’s and determine their integral curves.

a) ex(x+ 1) dx +(y ey − x ex) dy = 0;

b) y(y + 2x+ 1) dx −x(2y + x− 1) dy = 0.

H20 An ODE M(x, y) dx +N(x, y) dy = 0 is said to be homogeneous if M and N
are homogeneous functions of the same degree, i.e., there exists d ∈ R such that
M(λx, λy) = λdM(x, y) and N(λx, λy) = λdN(x, y) for all x, y, and λ.

a) Show that the substitution z = y/x (or z = x/y) transforms any homogeneous
ODE into a separable ODE.

b) Solve the following ODE’s in implicit form (answering two of (i)–(iii) suffices):

(i) (x+ y) dx −(x+ 2y) dy = 0; (ii) (x− 2y) dx +y dy = 0;
(iii) (x2 + y2) dx +3xy dy = 0; (iv) (x− y − 1) dx +(x+ 4y − 6) dy = 0.

H21 a) Determine the orthogonal trajectories of the family of circles through (1, 0)
and (−1, 0).

Hint: The midpoint of such a circle is on the y-axis, and it is best to use its
y-coordinate as parameter C.Use the y-coordinate of the intersection point
with the y-axis as parameter C, i.e., (0, C) is on the circle.

b) Determine the orthogonal trajectories of the family of parabolas y = k x2− 1
4k

,
k > 0 (confocal parabolas with focus in (0, 0), the y-axis as axis, and open
on the top). What is the relation with Exercise W24 d) on Worksheet 8 of
Calculus III in Fall 2023 ?

H22 Analyze the alternative model dy/dt = ay−by2−Ey (a, b, E > 0) for harvesting
a population (individuals are removed at a rate proportional to the current size of
the population). Which rates E are sustainable? How to choose E in order to
maximize the yield Ey in the long run?

H23 Optional exercise

The task of this exercise is to show the Cauchy-Hadamard formula

R =
1

L
, L = lim sup

n→∞

n
√
|an|

(with the conventions 1/0 = ∞, 1/∞ = 0) for the radius of convergence R of a
(complex) power series

∑∞
n=0 an(z − a)n. Here L = lim sup

n→∞
xn ∈ [−∞,+∞] (limit

superior) denotes the largest accumulation point of a real sequence (xn), i.e., for
every ε > 0 there are only finitely many indexes n satisfying xn ≥ L+ ε but no real
number L′ < L has this property (with suitable modifications for L = ±∞).
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a) If L = ∞ (i.e., n
√
|an| is unbounded), show that

∑∞
n=0 an(z − a)n converges

only for z = a.

b) If L = 0 (i.e., n
√
|an| converges to zero), show that

∑∞
n=0 an(z− a)n converges

for all z ∈ C.

c) If 0 < L < ∞, show that
∑∞

n=0 an(z − a)n converges for |z − a| < 1/L and
diverges for |z − a| > 1/L.

H24 Optional exercise

For s ∈ C consider the binomial series

Bs(z) =
∞∑
n=0

(
s

n

)
zn =

∞∑
n=0

s(s− 1) · · · (s− n+ 1)

1 · 2 · · ·n
zn.

a) Show that for s /∈ {0, 1, 2, . . . } the binomial series has radius of convergence
R = 1.

b) Show that Bs(x) = (1 + x)s for s ∈ C and −1 < x < 1.

Hint: x 7→ (1 + x)s = es ln(1+x) is a solution of the IVP y′ = s
1+x

y, y(0) = 1.
Show that the same is true of x 7→ Bs(x); cf. also [Ste16], Ch. 11.10, Ex. 85.

c) Show Bs(z) = (1 + z)s for s, z ∈ C with |z| < 1.

Hint: Probably the easiest way to solve this part is to use the same idea as in
b): Show that z 7→ Bs(z) and z 7→ (1 + z)s = es log(1+z) both satisfy y′ = s

1+z
y

for |z| < 1 and y(0) = 1, and that the solution of this complex IVP is unique.
Since we haven’t discussed complex differentiation and ODE’s in any depth,
it is important that you justify carefully every step of your solution.

Due on Thu Mar 14, 10 am

The optional exercises can be handed in until Thu Mar 21, 10 am.
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Solutions

19 a) According to the equation,

M = ex(x+ 1), N = yey − xex,
∂M

∂y
6= ∂N

∂x
.

This is not an exact ODE and an appropriate integrating factor is needed.
Computing the following equation, we find that

1

M

(
∂M

∂y
− ∂N

∂x

)
=

(x+ 1)ex

(x+ 1)ex
= 1 = g(y)

Thus, there exists a suitable integrating factor µ(y) that is a function of y only, and
µ satisfies the differential equation

µ′(y) = −µ(y)g(y) = −µ(y).

Hence,

µ(y) = e−y

is a suitable integrating factor.

Multiplying the original equation by this integrating factor, we obtain

ex−y(x+ 1) dx +(y − xex−y) dy = 0,

M ′ = ex−y(x+ 1), N ′ = y − xex−y,
∂M ′

∂y
= −xex−y =

∂N ′

∂x
.

This is an exact ODE.
Therefore, there exists a function ϕ so that

∂ϕ

∂x
= M ′ = ex−y(x+ 1),

∂ϕ

∂y
= N ′ = y − xex−y.

Integrating the first equation with respect to x, we obtain that

ϕ(x, y) =

∫
ex−y(x+ 1)dx+ h(y) = xex−y + h(y).

Substituting ϕ(x, y) into the second equation, we find that

∂ϕ

∂y
= −xex−y + h′(y) = y − xex−y = N ′,

so h′(y) = y and h(y) = 1
2
y2. Thus the solution is given implicitly by

F (x, y) = xex−y +
1

2
y2 = C, C ∈ R.
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b) According to the equation,

M = y(y + 2x+ 1), N = −x(2y + x+ 1),

∂M

∂y
6= ∂N

∂x
.

This is not an exact ODE and an appropriate integrating factor is needed.
Computing the following expression,

1

Ny −Mx

(
∂M

∂y
− ∂N

∂x

)
=

1

−3xy(x+ y)
[(2y + 2x+ 1)− (−2y − 2x+ 1)] =

4

−3xy
,

which depends only on xy, we can conclude that there exists a suitable integrating
factor µ(xy) that is a function of xy only, and (subsitute s = xy) µ satisfies the
differential equation

µ′(s) = µ(s)g(s) =
4

−3s
µ(s).

Hence,
µ(s) = e

∫
− 4

3s
ds = s−

4
3 ,

and the integrating factor is µ(xy) = (xy)−
4
3 . Multiplying the original equation by

this integrating factor, we obtain

(xy)−
4
3y(y + 2x+ 1) dx −(xy)−

4
3x(2y + x− 1) dy = 0

M ′ = (xy)−
4
3y(y + 2x+ 1), N ′ = −(xy)−

4
3x(2y + x− 1)

∂M ′

∂y
=
∂N ′

∂x

This is an exact ODE.
Therefore, there exists a function ϕ so that

∂ϕ

∂x
= M ′ = (xy)−

4
3y(y + 2x+ 1),

∂ϕ

∂y
= N ′ = −(xy)−

4
3x(2y + x− 1).

Integrating the first equation with respect to x, we obtain

ϕ(x, y) =

∫
(xy)−

4
3y(y + 2x+ 1)dx+ h(y) = (y−

1
3 )[−3(y + 1)x−

1
3 + 3x

2
3 ] + h(y).

Substituting ϕ(x, y) into the second equation, we find that

∂ϕ

∂y
= −3x−

1
3y−

1
3 + (y + 1)x−

1
3y−

4
3 − x

2
3y−

4
3 + h′(y) = N ′,

so h′(y) = 0 and h(y) = C. Thus the solution is given implicitly by

F (x, y) = −3x−
1
3y−

1
3 − 3x−

1
3y

2
3 + 3x

2
3y−

1
3 = C, C ∈ R.
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20 a) The homogeneous ODE can be represented as

M(x, y) dx +N(x, y) dy = 0.

Substituting z = y/x and using the defining property of homogeneous ODE’s, we
obtain

M(x, xz) dx +N(x, xz)(x dz +z dx ) = 0

⇐⇒ xdM(1, z) dx +xdN(1, z)(x dz +z dx ) = 0

⇐⇒ [M(1, z) + zN(1, z)] dx +N(1, z)x dz = 0

⇐⇒ M(1, z) + zN(1, z)

N(1, z)
dx = −x dz .

Hence, the homogeneous ODE can be converted to the separable ODE

dz

dx
= −M(1, z) + zN(1, z)

xN(1, z)
.

Alternative solution: We use the explicit form

y′ = −M(x, y)

N(x, y)
= −x

dM(1, y/x)

xdN(1, y/x)
= −M(1, y/x)

N(1, y/x)
= f(y/x), say.

The substitution z = y/x gives

z′ =
y′x− y
x2

=
f(z)− z

x
,

which is separable. (Inserting f(z) = −M(1, z)/N(1, z) transforms this ODE into the
ODE obtained above.)

Remark: The substitution z = y/x requires x 6= 0. Some integral curves may be lost
in this way, e.g., consider x dy −y dx = 0, which has the y-axis as an integral curve,
but the transformed ODE z′ = 0 doesn’t reflect this.

b) (i) Substituting z = y/x gives

(x+ y) dx −(x+ 2y) dy = (x+ xz) dx −(x+ 2xz)(z dx +x dz ) = 0

dz

dx
=

1− 2z2

(1 + 2z)x

This is a separable ODE and can be solved in the usual way: There are the
constant solutions z = ±1

2

√
2, corresponding to y = ±1

2

√
2x. Otherwise we get∫

1 + 2z

1− 2z2
dz =

∫
1

x
dx

ln |x| = 1

2

∫
1

1−
√

2 z
dz +

1

2

∫
1

1 +
√

2 z
dz +

∫
2z

1− 2z2
dz

ln |x| = − 1

2
√

2
ln
∣∣∣1−√2 z

∣∣∣+
1

2
√

2
ln
∣∣∣1 +

√
2 z
∣∣∣− 1

2
ln
∣∣1− 2z2

∣∣+ C

= ln

∣∣1 +
√

2 z
∣∣ 1
2
√
2
− 1

2∣∣1−√2 z
∣∣ 1
2
√
2
+ 1

2

+ C

|x| = eC
∣∣1 +

√
2 z
∣∣ 14√2− 1

2∣∣1−√2 z
∣∣ 14√2+ 1

2

= eC
|x|
∣∣x+

√
2 y
∣∣ 14√2− 1

2∣∣x−√2 y
∣∣ 14√2+ 1

2
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Dividing by |x| and raising the equation to the 4th power, which only changes
the constant, gives∣∣∣x−√2 y

∣∣∣2+√2 = C ′
∣∣∣x+

√
2 y
∣∣∣2−√2 , C ′ > 0.

This is probably the best form of the solution curves we can get. It includes the
two special solutions y = ±1

2

√
2x as boundary cases C ′ = 0 and C ′ =∞.

(ii) Substituting z = y/x into the equation gives

(x− 2y) dx +y dy = (x− 2xz) dx +xz(z dx +x dz ) = 0,

dz

dx
=
−z2 + 2z − 1

zx
= −(z − 1)2

zx
.

This is a separable ODE, hence for z 6= 1(z = 1 gives the solution y = x) we can
continue as usual: ∫

−z
1− 2z + z2

dz =

∫
1

x
dx

ln |x| =
∫

1− z − 1

1− 2z + z2
dz =

∫
dz

1− z
−
∫

dz

(1− z)2
=

1

z − 1
− ln |z − 1|+ C

Therefore, the implicit solution is

ln |y − x| − x

y − x
= C, C ∈ R,

complemented by the additional solution curve y = x.

(iii) Substituting z = y/x into the equation gives

(x2 + y2) dx +3xy dy = (x2 + (xz)2) dx +3x2z(z dx +x dz ) = 0,

dz

dx
= −1 + 4z2

3xz
.

This is a separable ODE without constant solutions, hence equivalent to∫
z

1 + 4z2
dz +

∫
1

3x
dx = 0,

1

3
ln |x|+ 1

8
ln
∣∣1 + 4z2

∣∣ = C,

8 ln |x|+ 3 ln
∣∣1 + 4z2

∣∣ = C ′,

x8
(
1 + 4y2/x2

)3
= eC

′
,

x2(x2 + 4y2)3 = C ′′, C ′′ > 0. (S)

This is the desired implicit solution, except for the integral curve x = 0, which is
a solution of (x2 + y2) dx +3xy dy = 0 (check it!) but missed by the substitution
z = y/x, as mentioned earlier. However, if we allow in (S) also C ′′ = 0 then this
solution is included.
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(iv) This ODE is not homogeneous, but it can be transformed into a homogeneous
ODE by a translation x = u + a, y = v + b. Since x − y − 1 = x + 4y − 6 = 0
has the solution (x, y) = (2, 1), the point (2, 1) is singular and the corresponding
translation is x = u+ 2, y = v+ 1 (clear, since it removes the constants). Using
dx = du, dy = dv , the transformed ODE is then

(u+ 2− (v + 1)− 1
)

du +
(
u+ 2 + 4(v + 1)− 6

)
= (u− v) du +(u+ 4v) dv = 0.

Substituting z = v/u into the equation gives

(1− z) du +(1 + 4z)(z du +u dz ) = 0,

(4z2 + 1) du +u(1 + 4z) dz = 0,

dz

du
= − 1 + 4z2

u(1 + 4z)
.

This is a separable ODE without constant solutions and hence equivalent to∫
1

u
du +

∫
1 + 4z

1 + 4z2
dz = 0

ln|u|+ 1

2
ln
(
1 + 4z2

)
+

1

2
arctan(2z) = C,

2 ln |u|+ ln
(
1 + 4z2

)
+ arctan(2z) = 2C,

ln(u2 + 4v2) + arctan(2v/u) = 2C,

ln
(
(x− 2)2 + 4(y − 1)2

)
+ arctan

(
2(y − 1)

x− 2

)
= 2C = C ′, C ′ ∈ R.

This is the desired implicit solution.

21 a) The given hint complicates things and shouldn’t be followed. (The equation be-
comes more complicated, and every such circle has two points on the y-axis, so that
one of them needs to fixed in advance.) I am sorry for getting this wrong.

It is better to parametrize in such a way that the midpoint has coordinates (0, C), in
which case the equation is x2 + (y − C)2 = C2 + 1, or x2 + y2 = 1 + 2Cy. Solving for

C gives f(x, y) := x2+y2−1
2y

= C. It follows that an ODE for the circles is

fx dx +fy dy =
x

y
dx +

y2 − x2 + 1

2y2
dy = 0.

The orthogonal trajectories then solve the ODE

−fy dx +fx dy =
x2 − y2 − 1

2y2
dx +

x

y
dy = 0.

Clearing the denominator gives the equivalent form

(x2 − y2 − 1) dx +2xy dy = 0.

(Since the parametrized x-axis (y = 0) is not a solution, no new solution is intro-
duced.) This ODE is not exact but, since My−Nx

N
= −2y−2y

2xy
= − 2

x
depends only on

7



x, has the integrating factor
∫

e−2/x dx = 1
x2 . The corresponding exact equation, viz.

(1− y2/x2 − 1/x2) dx +(2y/x) dy = 0, has antiderivative g(x, y) = x + y2/x + 1/x,
so that the orthogonal trajectories are given by g(x, y) = C or, after clearing the
denominator, x2 + y2 + 1 = Cx. To this we must add the y-axis, which is a solution
(x = 0 ∧ dx = 0), but was lost when we applied the integrating factor. The family
of circles can be rewritten as (x − C/2)2 + y2 = C2/4 − 1. Replacing C/2 by C the
equation becomes

(x− C)2 + y2 = C2 − 1, where |C| > 1.

Thus the orthogonal trajectories (except for the y-axis) are itself circles, which have
their midpoints on the x-axis outside the interval [−1, 1] and are contained either in
the left or the right half plane. One of the intersection points of the circles with the
x-axis is contained in [−1, 1] and approaches the origin when C → ±∞; see Fig. ??.
(For the circles in the right half plane, which have C > 1, the intersection point has
x-coordinate C −

√
C2 − 1.)

4 2 2 4

3

2

1

1

2

3

Figure 1: Orthogonal trajectories (in blue) of the family of circles through (1, 0) and
(−1, 0)

b) The focus of y = k x2 + c is on the y-axis and has the same y-coordinate as the

points with slope ±1 on the parabola, i.e., y = k
(

1
2k

)2
+ c = 1

4k
+ c. (At these points

the parabola intersects the corresponding vertical lines in a 45◦ angle, so that “light
beams coming from above” are reflected horizontally toward the y-axis.) Hence, if we
set c = −1/4k then all parabolas in the family have their focus at the origin.

y = kx2 − 1/4k is equivalent to 4k2x2 − 4ky − 1 = 0, which has solutions k =
1

8x2

(
4y ±

√
16y2 + 16x2

)
= 1

2x2

(
y ±

√
x2 + y2

)
. Since k > 0, the parabolas are

given by
y +

√
x2 + y2

2x2
= k, k > 0.
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Working with this function, however, leads to an elaborate computation. (I have given
up it at some point and tried to find an alternative way.) The following observation
helps to simplify things:

y +
√
x2 + y2

2x2
=

(y +
√
x2 + y2)(−y +

√
x2 + y2)

2x2(−y +
√
x2 + y2)

=
1

2

1√
x2 + y2 − y

.

Hence, replacing k by C = 1/2k, the parabolas are also given by

f(x, y) :=
√
x2 + y2 − y = C, C > 0.

The corresponding differential equation is

x√
x2 + y2

dx +

(
y√

x2 + y2
− 1

)
dy = 0,

so that (after clearing denominators) the orthogonal trajectories solve(√
x2 + y2 − y

)
dx +x dy = 0.

This ODE is homogeneous with corresponding explicit form

y′ =
dy

dx
=
y −

√
x2 + y2

x
=
y

x
±
√

1 +
(y
x

)2
,

with the plus sign holding in the half plane x < 0. The usual substitution z = y/x
turns it into the separable ODE

z′ = ±
√

1 + z2

x
.

Using
∫

1√
1+z2

dz = arsinh z = ln
(
z +
√

1 + z2
)
, we obtain

ln
(
z +
√

1 + z2
)

= ± ln |x|+ C

z +
√

1 + z2 = eC |x|±1 ,

y

x
+

√
1 +

(y
x

)2
= eC |x|±1 =

{
eC/x for x > 0,

−eCx for x < 0.

For x > 0 this turns into y +
√
x2 + y2 = eC , and for x < 0 into

y

x2
+

1

x

√
x2 + y2

x2
=
y −

√
x2 + y2

x2
= −eC .

Multiplying numerator and denominator with y +
√
x2 + y2 (same trick as above)

turns the latter into 1

y+
√

x2+y2
= eC or, equivalently, y +

√
x2 + y2 = e−C . Since e±C

can be any positive real number, the distinction of the two cases is artificial and the
orthogonal trajectories of the original family of parabolas is simply√

x2 + y2 + y = C, C > 0.
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Inspecting the two representations
√
x2 + y2 ± y = C, we see that the 2nd family is

simply the mirror image of the 1st family with respect to the x-axis. It can also be
specified as y = k x2 − 1

4k
, k < 0.

In the earlier Calculus III exercise these families, with the roles of x and y interchanged,
arose as images of the coordinate lines x = const. and y = const. under the complex
squaring map z 7→ z2. Their orthogonality can also be explained by the fact that the
squaring map is conformal.

1.5 1.0 0.5 0.5 1.0 1.5

2.0

1.5

1.0

0.5

0.5

1.0

1.5

2.0

Figure 2: Orthogonal trajectories (in blue) of the family of parabolas y = k x2− 1
4k

, k > 0
(which turn out to be their mirror images with respect to the x-axis)

22 This problem is also discussed in [BDM17], Ch. 2.5, Exercise 19.
According to the model dy/dt = ay − by2 − Ey = (a− E)y − by2,

∆ = (a− E)2 > 0

1) When E > a, we have y1 = (a− E)/b < 0, y2 = 0.
If the initial population y0 = y(t0) is a positive number, then limt→∞ y(t) = 0; cf. the
discussion of the harvesting equation in the lecture. In this case, the harvesting is not
sustainable.

2) When E = a, we have y1 = y2 = 0.
Again this implies limt→∞ y(t) = 0 if y0 > 0, so the harvesting is not sustainable
either.

3) When E < a, we have y1 = 0, y2 = (a− E)/b > 0. If y0 > 0, then in the long run

lim
t→∞

y(t) = y2 =
a− E
b

.
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Hence,

lim
t→∞

(
E y(t)

)
=
E(a− E)

b

The eventual yield in this case, Y = E y2 = E(a−E)/b, defines a parabola. Therefore,
Y is maximized when E = a/2, with maximum value a2/4b.

Therefore, E should equal a/2 in order to maximize the yield Ey in the long run.

23 First a remark on the cases L = ±∞. If (xn) is unbounded then (and only then)
for every R ∈ R there exist infinitely many indexes n such that xn > R, and hence it
is natural to call +∞ an accumulation point of (xn) and set L = +∞ in this case. On
the other hand, if (xn) diverges to −∞ then (and only then) for every R ∈ R there exist
only finitely many indexes n such that xn > R, but of course infinitely many indexes n
such that xn < R, and hence it is natural to call −∞ an accumulation point of (xn) and
set L = −∞ in this case, since there is no other accumulation point. The case L = −∞
doesn’t occur for nonnegative sequences like xn = n

√
|an|.

a) Suppose the power series converges for some z1 6= a and set r = |z1 − a|, which is
then > 0. Since

∑
an(z1 − a)n converges, there exists a constant M > 1 such that

|an(z1 − a)n| = |an| rn ≤M for all n. Hence

n
√
|an| ≤

n
√
M

r
≤ M

r
for all n,

contradicting the unboundedness of n
√
|an|.

b) Assume limn→∞
n
√
|an| = 0. Then for every ε > 0 there exists N ∈ N such that |an| <

εn for n > N . Now let z ∈ C \ {a} be arbitary and r = |z − a|, i.e., |an(z − a)n| =
|an| rn. Setting ε = 1/(2r) and denoting by N the corresponding response, we get

|an| rn ≤
(

1

2r

)n

rn =
1

2n
for n > N.

Since
∑

2−n converges, the series
∑
an(z−a)n converges absolutely by the comparison

test. In particular
∑
an(z − a)n converges for all z ∈ C (including z = a, of course).

c) Suppose first that z 6= a satisfies r = |z − a| < 1/L. Then L < 1/r, and hence there
exist θ ∈ (0, 1) and N ∈ N such that n

√
|an| ≤ θ/r for all n > N . (The number θ need

only satisfy L < θ/r < 1/r, i.e., θ ∈ (rL, 1). Then there can be only finitely many
n such that n

√
|an| > θ/r.) From this we obtain |an| rn ≤ θn for n > N and can use

the comparison test with the convergent series
∑
θn to conclude that

∑∞
n=0 an(z−a)n

converges.

Next suppose r = |z − a| > 1/L. Then 1/r < L, and hence n
√
|an| > 1/r for infinitely

many n. Thus |an| rn > 1 for infinitely many n, implying the divergence of
∑∞

n=0 an(z−
a)n. (Since convergence requires |an| rn → 0.)

24 a) For s /∈ {0, 1, 2, . . . } we have
(
s
n

)
6= 0 for all n and(

s
n

)(
s

n+1

) =
n+ 1

s− n
=

1 + 1/n

s/n− 1
→ −1 for n→∞.

=⇒ R = limn→∞
∣∣(s

n

)/(
s

n+1

)∣∣ = 1 (ratio test).

11



b) The ODE y′ = s
1+x

y is 1st-order linear, and hence all associated IVP’s have a unique

solution. Since Bs(0) =
(
s
0

)
= 1, we must have Bs(x) = (1 + x)s for −1 < x < 1,

provided we can show that x 7→ Bs(x) solves y′ = s
1+x

y as well.

For |z| < 1 and hence in particular for −1 < x < 1 we can differentiate Bs(x) term-
wise:

B′s(x) =
∞∑
n=1

n

(
s

n

)
xn−1 =

∞∑
n=1

s

(
s− 1

n− 1

)
xn−1.

=⇒ (1 + x)B′s(x) =
∞∑
n=1

s

(
s− 1

n− 1

)
xn−1(1 + x) = s

(
∞∑
n=1

(
s− 1

n− 1

)
xn−1 +

∞∑
n=1

(
s− 1

n− 1

)
xn

)

= s

(
∞∑
n=0

(
s− 1

n

)
xn +

∞∑
n=0

(
s− 1

n− 1

)
xn

)

= s
∞∑
n=0

[(
s− 1

n− 1

)
+

(
s− 1

n

)]
xn

= s
∞∑
n=0

(
s

n

)
xn = sBs(x),

as claimed.

c) The computation in b) is valid for all z ∈ C with |z| < 1, showing that B′s(z) =
s

1+z
Bs(z) for such z. The extension of the chain rule to complex differentiation (proved

as in the real case) gives

d

dz
es log(1+z) = es log(1+z) d

dz
[s log(1 + z)] = es log(1+z) s

1 + z
.

Thus both functions are solutions of y′ = s
1+z

y, y(0) = 1. For the uniqueness proof we

consider the function f(z) = Bs(z) e−s log(1+z), defined for |z| < 1. Using the product
rule for differentiation of complex functions, we have

f ′(z) = B′s(z) e−s log(1+z) + Bs(z)
d

dz
e−s log(1+z)

=
s

1 + z
Bs(z) e−s log(1+z) + Bs(z) e−s log(1+z) −s

1 + z
= 0,

and of course f(0) = 1. This implies f(z) ≡ 1 (since, e.g., Ref and Imf are real 2-
variable functions with vanishing differential and hence must be constant), and hence
Bs(z) = es log(1+z) for |z| < 1.
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ZJU-UIUC Institute
Prof. Thomas Honold

Spring Semester 2024
Homework 5

Differential Equations (Math 285)

H25 Evaluate the two series

∞∑
n=1

sin(nx)

n3
and

∞∑
n=1

cos(nx)

n4
for x ∈ R,

in a way similar to the evaluation of
∑∞

n=1
cos(nx)
n2 in the lecture, and use this in

turn to evaluate the series

1− 1

33
+

1

53
− 1

73
+

1

93
− 1

113
± · · · ,

1 +
1

24
+

1

34
+

1

44
+

1

54
+

1

64
+ · · ·

H26 a) Assuming that
∑∞

n=1
1
n2 = π2

6
, show that

∑∞
n=1

(−1)n−1

n2 = π2

12
without resorting

to the evaluation of
∑∞

n=1
cos(nx)
n2 .

Hint: Add the two series.

b) Show that 1
12

+ 1
32

+ 1
52

+ 1
72

+ · · · = π2

8
.

H27 Solve the initial value problem

y′′ + |y| = 0, y(0) = 0, y′(0) = 1.

Your solution should have the (maximal) domain R. Is the solution unique?

Hint: The solution of Example 10 in lecture1-3 handout.pdf and Exercise H29 a)
may help.

H28 Let (M,d) be a metric space and (a, b) ∈M ×M .

a) Show that the metric d is continuous in the following sense:
For every ε > 0 there exists δ > 0 such that d(x, a) < δ ∧ d(y, b) < δ implies
|d(x, y)− d(a, b)| < ε.

Hint: First derive the so-called quadrangle inequality |d(x, y)− d(a, b)| ≤
d(x, a) + d(y, b).

b) Using a), show in detail that xn → a and yn → b implies d(xn, yn) → d(a, b).
(A special case of this, viz. d(xn, b)→ d(a, b), is used in the proof of Part (2)
of Banach’s Fixed-Point Theorem.)

1 PLEASE TURN OVER



H29 a) Show that the general (real) solution of y′′ = y is y(x) = c1e
x + c2e

−x,
c1, c2 ∈ R.

Hint: For a solution y the functions y + y′ and y − y′ satisfy linear 1st-order
ODE’s.

b) For x ∈ R let

F (x) =

∫ ∞
0

cos(xt)

t2 + 1
dt .

Show that

F ′(x) = −π
2

+

∫ ∞
0

sin(xt)

t(t2 + 1)
dt for x > 0.

Hint: Differentiate F under the integral sign and use
∫∞
0

sin(xt)/t dt =
∫∞
0

sin(t)/t dt =
π/2 for x > 0.

c) Show that F solves y′′ = y on (0,∞).

d) Determine F from a), c) and F (0), F ′(0+), and use the result to evaluate the
integral ∫ ∞

0

cos t

t2 + 1
dt .

Due on Thu Mar 21, 10 am

Metric spaces (required for Exercise H28) will be discussed in more detail in the lecture
on Wed Mar 20, but H28 can be solved by only using the axioms for a metric space listed
on Slide 23 of lecture15-17 handout.pdf.

Exercises H29 b)–d) are optional, but should be handed in together with H29 a) on Mar 21.
Rigorous justifications likely require that you study the material on uniform convergence
of improper parameter integrals in lecture11-13 handout.pdf, which was skipped in
the Math 285 lecture.
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Solutions

25 The two series converge uniformly on R due to the inequalities∣∣∣∣sin(nx)

n3

∣∣∣∣ 6 1

n3
,∣∣∣∣cos(nx)

n4

∣∣∣∣ 6 1

n4
,

and the known fact that
∑∞

n=1
1
np

is convergent when p > 1. But for termwise differentia-
bility, which we want to employ, we need only the pointwise convergence and the uniform
convergence of the series of derivatives.
Now let us evaluate the first series. Its series of derivatives is

∞∑
n=1

d

dx

sin(nx)

n3
=
∞∑
n=1

cos(nx)

n2

From the lecture slides, this series converges uniformly and evaluates to

∞∑
n=1

cos(nx)

n2
=

(x− π)2

4
− π2

12

Hence we can apply the Differentiation Theorem to conlcude that

d

dx

∞∑
n=1

sin(nx)

n3
=
∞∑
n=1

d

dx

sin(nx)

n3
=
∞∑
n=1

cos(nx)

n2
=

(x− π)2

4
− π2

12
.

Therefore,

∞∑
n=1

sin(nx)

n3
=

∫ (
(x− π)2

4
− π2

12

)
dx =

(x− π)3

12
− π2x

12
+ C

The constant C can be determined by setting x = 0 :

0 =
∞∑
n=1

sin(n 0)

n3
=

(−π)3

12
+ C =⇒ C =

π3

12
.

Hence, the first series can be expressed as

∞∑
n=1

sin(nx)

n3
=

(x− π)3

12
− π2x

12
+
π3

12
.

Plugging in x = π/2 yields, on account of sin
(
2k(π/2)

)
= sin(kπ) = 0, sin

(
(2k+1)π/2

)
=

(−1)k,

∞∑
k=0

(−1)k

(2k + 1)3
=
∞∑
n=1

sin(nπ/2)

n3
=

(π/2− π)3

12
− π2(π/2)

12
+
π3

12
= π3

(
− 1

96
− 1

24
+

1

12

)
=
π3

32
.
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The series of derivatives of the second series, up to sign, is exactly this series. As shown
at the beginning,

∑∞
n=1 sin(nx)/n3 converges uniformly on R. Hence we can apply the

Differentiation Theorem again and conclude that

d

dx

∞∑
n=1

cos(nx)

n4
=
∞∑
n=1

d

dx

[
cos(nx)

n4

]
=
∞∑
n=1

[
−sin(nx)

n3

]
= −(x− π)3

12
+
π2x

12
− π3

12
.

Hence,
∞∑
n=1

cos(nx)

n4
= −(x− π)4

48
+
π2x2

24
− π3x

12
+B, B ∈ R.

In order to determine the constant B, we evaluate the integral of this function over a full
period in two ways (as in the lecture). Using the Integration Theorem, we have∫ 2π

0

∞∑
n=1

cos(nx)

n4
dx =

∞∑
n=1

∫ 2π

0

cos(nx)

n4
dx = 0

. On the other hand,∫ 2π

0

∞∑
n=1

cos(nx)

n4
dx =

∫ 2π

0

(
−(x− π)4

48
+
π2x2

24
− π3x

12
+B

)
dx

=

[
−(x− π)5

240
+
π2x3

72
− π3x2

24
+Bx

]2π
x=0

=

(
− π5

240
+
π2(2π)3

72
− π3(2π)2

24
+B(2π)− π5

240

)
= −46π5

720
+B(2π) = 0.

=⇒ B =
23π4

720
Hence, the first series can be expressed as

∞∑
n=1

cos(nx)

n4
= −(x− π)4

48
+
π2x2

24
− π3x

12
+

23π4

720
.

Finally, we evaluate the series
∑∞

n=1 1/n4.
Substituting x = 0 into the second series, we obtain

∞∑
n=1

1

n4
=
∞∑
n=1

cos(n 0)

n4
= −π

4

48
+

23π4

720
=
π4

90
.

Remark: Continuing in this way, one can obtain closed-form expressions for
∞∑
n=1

sin(nx)

n2p−1

and
∞∑
n=1

cos(nx)

n2p
for all positive integers p, and use this to evaluate the series

∞∑
k=0

(−1)k

(2k + 1)2p−1

(p = 2, 3, 4, . . . ) and
∞∑
n=1

1

n2p
(p = 1, 2, 3, . . . ). The answers are of the form ap π

2p−1, re-

spectively, bp π
2p with certain numbers ap, bp ∈ Q (→ Euler and Bernoulli numbers).

About the values of the series
∞∑
n=1

1

n2p−1 (p = 2, 3, 4, . . . ) much less is known. (Essentially

the only thing known is that for p = 2 the value is an irrational number.)
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26 a) Using the hint and subtracting the two series, we obtain

∞∑
n=1

1

n2
−
∞∑
n=1

(−1)n−1

n2
= 2

(
1

22
+

1

42
+

1

62
+

1

82
+ · · ·

)
=

1

2

(
1

12
+

1

22
+

1

32
+

1

42
+ · · ·

)
=

1

2

∞∑
n=1

1

n2
.

=⇒
∞∑
n=1

(−1)n−1

n2
=

1

2

∞∑
n=1

1

n2
=
π2

12
.

b) Adding the two series, we obtain

∞∑
n=1

1

n2
+
∞∑
n=1

(−1)n−1

n2
= 2

(
1

12
+

1

32
+

1

52
+

1

72
+ · · ·

)
=
π2

6
+
π2

12
=
π2

4
.

=⇒ 1

12
+

1

32
+

1

52
+

1

72
+ · · · = π2

8

27 [Note: In the following, the general solutions of the ODE’s y′′± y = 0 are determined
using the machinery for higher-order linear ODE’s with constant coefficients. You will
learn this stuff during the next few weeks. Adhoc derivations of these solutions were
given in lecture1-3 handout.pdf, Slides 35 f and Exercise H29 a).]
When y ≥ 0, y′′ + y = 0. The characteristic polynomial is X2 + 1 = 0 with roots
λ1 = i, λ2 = −i.
The general real solution is y(t) = c1 cos t+ c2 sin t, c1, c2 ∈ R.

∵

{
y(0) = c1 = 0

y′(0) = c2 = 1
∴ y = sin t (t ∈ [0, π])

When y ≤ 0, y′′ − y = 0. The characteristic polynomial is X2 − 1 = 0 with roots
λ1 = 1, λ2 = −1.
=⇒ The general real solution is y(t) = c1e

t + c2e
−t, c1, c2 ∈ R.

∵

{
y(0) = c1 + c2 = 0

y′(0) = c1 − c2 = 1
=⇒

{
c1 = 1

2

c2 = −1
2

∴ y(t) =
1

2
et − 1

2
e−t (t ≤ 0)

In order to get maximal domain R, we impose for t ≥ π the new initial conditions
y(π) = sin(π) = 0, y′(π) = cos(π) = −1, which are satisfied by the already defined
solution on (−∞, π]. Since y(t) < 0 for t ↓ π, we must fit the general solution for y ≤ 0,
viz. y(t) = c1e

t + c2e
−t, to the new initial conditions.

∵

{
y(π) = c1e

π + c2e
−π = 0

y′(π) = c1e
π − c2e−π = −1

⇒

{
c1 = − 1

2eπ

c2 = 1
2e−π

∴ y(t) = − 1

2eπ
et+

1

2e−π
e−t (t ≥ π)

Since this function is negative for all t > π, it also provides a solution of y′′ + |y| = 0 on
[π,+∞).

5



The final solution is

y(t) =


1
2
et − 1

2
e−t = sinh t for t ≤ 0,

sin t for 0 ≤ t ≤ π,

−1
2

et−π + 1
2
e−(t−π) = − sinh(t− π) for t ≥ π.

The function y(t) is differentiable also at t = 0, π, because the one-sided derivatives exist
there and coincide. (In fact y(t) is even C2, but not C3.)

Figure 1: The solution y(t) to H29

The Existence and Uniqueness Theorem applies to y′′ + |y| = 0, because it is equivalent
to the explicit ODE y′′ = f(t, y, y′) with f(t, y0, y1) = − |y0|. The function f(t, y0, y1)is
continuous and satisfies

|f(t, y0, y1)− f(t, z0, z1)| = |− |y0|+ |z0|| = ±
(
|y0|−|z0|

)
≤ |y0 − z0| ≤

√
(y0 − z0)2 + (y1 − z1)2

for all y = (y0, y1), z = (z0, z1) ∈ R2, i.e., a global Lipschitz condition with L = 1.
As shown in the lecture, the (trivially continuous) 1st-order system obtained from y′′ =
f(t, y, y′) by order-reduction then satisfies such a Lipschitz condition as well (perhaps
with slightly larger Lipschitz constant), so that the Existence and Uniqueness Theorem
can be applied.

28 a) Applying the triangle inequality twice, we have

d(x, y) ≤ d(x, a) + d(a, y)

≤ d(x, a) + d(a, b) + d(b, y).

=⇒ d(x, y)− d(a, b) ≤ d(x, a) + d(y, b)

Interchanging x, a as well as y, b in this inequality turns the left-hand side into d(a, b)−
d(x, y) and preserves the right-hand side, so that we also have d(a, b) − d(x, y) ≤
d(x, a) + d(y, b). Thus ±

(
d(x, y) − d(a, b)

)
≤ d(x, a) + d(y, b), which is equivalent to

the quadrangle inequality.

With the quadrangle inequality at hand the continuity of d is easy to prove: Just
choose δ = ε/2 as response to ε.
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b) Let ε > 0 be given. There exists N1 ∈ N such that d(xn, a) < ε/2 for all n > N1, and
N2 ∈ N such that d(yn, b) < ε/2 for all n > N2. Using the qudrangle inequality, we
then have

|d(xn, yn)− d(a, b)| ≤ d(xn, a) + d(yn, b) < ε/2 + ε/2 = ε

for all n ≥ max{N1, N2}. Thus N = max{N1, N2} can serve as response to ε in a
proof of d(xn, yn)→ d(a, b).

29 a) We have

(y + y′)′ = y′ + y′′ = y′ + y = y + y′,

(y − y′)′ = y′ − y′′ = y′ − y = −(y − y′),

i.e., z = y + y′ satisfies z′ = z and w = y − y′ satisfies w′ = −w. From the theory of
1st-order linear ODE’s it follows that z(x) = y(x)+y′(x) = c1e

x, w(x) = y(x)−y′(x) =
c2e
−x for some c1, c2 ∈ R. =⇒ y(x) = 1

2
(c1e

x + c2e
−x) = (c1/2)ex + (c2/2)e−x, which is

of the required form.

b) From the lecture recall that F is continuous on R and can be differentiated under the
integral sign for x > 0. Thus for x > 0 we have

F ′(x) = −
∫ ∞
0

t sin(xt)

t2 + 1
dt = −

∫ ∞
0

t2 sin(xt)

t(t2 + 1)
dt = −

∫ ∞
0

(t2 + 1− 1) sin(xt)

t(t2 + 1)
dt

= −
∫ ∞
0

sin(xt)

t
dt +

∫ ∞
0

sin(xt)

t(t2 + 1)
dt .

The first integral is actually independent of x, since∫ ∞
0

sin(xt)

t
=

∫ ∞
0

sin s

(s/x)x
ds =

∫ ∞
0

sin s

s
ds , (Subst. s = xt, ds = x dt)

and has the value π/2, as we know from the Calculus III fnal exam.

c) Differentiating the expression in b) again under the integral sign, we obtain

F ′′(x) =

∫ ∞
0

d

dx

sin(xt)

t(t2 + 1)
dt =

∫ ∞
0

t cos(xt)

t(t2 + 1)
dt =

∫ ∞
0

cos(xt)

t2 + 1
dt = F (x).

This is justified, since∣∣∣∣ d

dx

sin(xt)

t(t2 + 1)

∣∣∣∣ =
|cos(xt)|
t2 + 1

≤ 1

t2 + 1
= Φ(t),

which is independent of x and integrable over (0,∞).

d) According to a) and c) we have

F (x) = c1e
x + c2e

−x,

F ′(x) = c1e
x − c2e−x

for some c1, c2 ∈ R and x > 0. Since F is continuous in 0, the first identity holds also
for x = 0 and gives c1 + c2 = F (0) =

∫∞
0

dt
t2+1

= π/2.

7



Since ∣∣∣∣ sin(xt)

t(t2 + 1)

∣∣∣∣ ≤ 1

t(t2 + 1)
= Φ(t),

which is independent of x and integrable over (0,∞), we get

F ′(0+) = −π
2

+

∫ ∞
0

lim
x↓0

sin(xt)

t(t2 + 1)
dt = −π

2
+

∫ ∞
0

0 dt = −π
2

On the other hand, F ′(0+) = limx↓0(c1e
x − c2e−x) = c1 − c2, so that c1 − c2 = −π/2.

It follows that c1 = 0, c2 = π/2. Hence F (x) = (π/2)e−x for x ≥ 0 and∫ ∞
0

cos t

t2 + 1
dt = F (1) =

π

2e
.

Remarks: This exercise is based on a video from the Youtube channel “Flammable
Maths”, who’s author Jens Fehlau has shot several nice videos with quite nontrivial
evaluations of interesting integrals.
Since F is even, we have F (x) = (π/2)e−|x| for x ∈ R. At x = 0 the function F is not
differentiable, although the right-hand side of the integral representation

F ′(x) = −
∫ ∞
0

t sin(xt)

t2 + 1
dt , valid for x 6= 0,

evaluates to zero at x = 0.

Numerically, π/(2e) ≈ 0.5778636748954609. This differs only slightly from the Euler-
Mascheroni constant γ = lim

n→∞
(1 + 1/2 + 1/3 + · · ·+ 1/n− ln(n)) ≈ 0.5772156649015329,

so that perhaps someone who computes the integral
∫∞
0

cos t
t2+1

dt numerically but doesn’t
know about the exact evaluation is mislead to conjecture that it has the value γ.
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ZJU-UIUC Institute
Prof. Thomas Honold

Spring Semester 2024
Homework 6

Differential Equations (Math 285)

H30 a) Show that a closed subset N of a complete metric space (M,d) is complete in
the induced metric d|N : N ×N → R, (x, y) 7→ d(x, y).

b) Conversely, show that a subset of a metric space that is complete in the induced
metric must be closed.

H31 a) Compute the norms ‖A‖ of the following matrices A ∈ R2×2 directly from the
definition and compare them with their Frobenius norms ‖A‖F.(

2 2
2 2

)
,

(
2 0
0 −3

)
,

(
1
2
±1

0 1
2

)
.

b) Show that the norm ‖D‖ of a diagonal matrix D ∈ Rn×n is the largest absolute
value of an entry on the diagonal.

c) Show that if T : Rn → Rn is continuously differentiable with JT (x∗) = 0, there
exists r > 0 such that T : Br(x∗)→ Br(x∗) forms a contraction with constant
C = 1

2
.

d) Give an example of a linear map T : R2 → R2, x 7→ Ax that forms a contrac-
tion but has Frobenius norm > 1.

H32 For the following ODE’s y′ = f(y), use the Existence and Uniqueness Theorem
to determine the points (t0, y0) ∈ R2 such that the initial value problem y′ =
f(y) ∧ y(t0) = y0 has a unique solution near (t0, y0). Then solve the ODE, sketch
the integral curves, and compare with your prediction.

a) y′ = |y|; b) y′ =
√
|y − y2|.

H33 Use Picard-Lindelöf iteration to compute the solution φ = (φ1, φ2)
T of the system(

y′1
y′2

)
=

(
−y2
y1

)
with initial condition φ(0) = (1, 0)T.

H34 Suppose that f : R×R→ R is continuous and satisfies locally a Lipschitz condition,
and that

f(−t, y) = −f(t, y) for all (t, y) ∈ R2.

Show that any solution φ : [−r, r] → R, r > 0, of y′ = f(t, y) is its own mirror
image with respect to the y-axis.

1 PLEASE TURN OVER



H35 Optional Exercise

a) Prove that Rn×n → R, A 7→ ‖A‖ satisfies (N1)–(N4).

b) Repeat a) for the Frobenius norm Rn×n → R, A 7→ ‖A‖F.

c) Show that ‖A‖ ≤ ‖A‖F for all matrices A ∈ Rn×n or, equivalently, |Ax| ≤
‖A‖F |x| for all A ∈ Rn×n and x ∈ Rn.

Hint: Use ‖A‖ = max
{
|Ax| ;x ∈ Rn, |x| = 1

}
and the Cauchy-Schwarz

Inequality for vectors in Rn.

d) For A ∈ Rn×n show ‖A‖ =
∥∥AT

∥∥.

e) Suppose A ∈ Rn×n is invertible, B = ATA, and λ1 ≥ λ2 ≥ · · · ≥ λn are the
eigenvalues of B. Show ‖A−1‖ = 1/

√
λn.

f) Using the notation in e), show ‖A‖F =
√
λ1 + λ2 + · · ·+ λn. (This yields an

alternative proof of the inequality ‖A‖ =
√
λ1 ≤ ‖A‖F.)

Hint: ‖A‖F = tr
(
ATA

)
; cf. Math257 in Fall 2023, Exercise H56 a) of Home-

work 11.

Due on Thu Mar 28, 10 am

Exercise H35 can be handed in until Thu April 11, 10 am. Parts c), d) of Exercise H31
are also considered as optional but should be handed together with a), b) on Mar 28.
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Solutions

30 a) If (xn) is a Cauchy sequence in N , it is a fortiori a Cauchy sequence in M and
hence converges to some a ∈ M , since (M,d) is complete. But “N closed” means
that N contains all limit points of sequences in N , so a ∈ N and (xn) converges in
(N, d|N), which is therefore complete as well.

b) Using the notation in a), let (xn) be a sequence in N , which has a limit in M , say a.
Then (xn) must be a Cauchy sequence, and hence convergent in N , since (N, d|N) is
complete. Since limits of sequences are unique (the easily proved analogue for metric
spaces of Exercise W18 a) of Worksheet 6 in Calculus III, Fall 2022), this implies
a ∈ N . Thus N contains all limit points of sequences in N and hence is closed.

Remarks: By the term “limit point” I mean just “limit”, but some people would
interpret “limit points” as “accumulation points” of not necessarily convergent se-
quences. In fact, since closed subsets are also characterized as subsets containing all
their accumulation points, both views are admitted for this exercise.

Note that in b) the completeness of M is not required, and hence b) holds also for
complete subspaces of incomplete metric spaces.

31 a) Set x =
(

sinx cosx
)T

for x ∈ [0, 2π).
In what follows, all maxima are taken over x ∈ [0, 2π) (or over R, which amounts to
the same).

i) The norms of A =

(
2 2
2 2

)
are shown below.

‖A‖ = max {|Ax|} = max

{∣∣∣∣( 2 sinx+ 2 cosx
2 sinx+ 2 cosx

)∣∣∣∣} = max

{√
2 (2 sinx+ 2 cosx)2

}
= 4

‖A‖F =
√

22 + 22 + 22 + 22 = 4

Therefore for A =

(
2 2
2 2

)
, ‖A‖ = ‖A‖F .

ii) The norms of A =

(
2 0
0 −3

)
are shown below.

‖A‖ = max {|Ax|} = max

{∣∣∣∣( 2 sinx
−3 cosx

)∣∣∣∣} = max

{√
2 (sinx)2 + (−3 cosx)2

}
= 3

‖A‖F =
√

22 + 02 + 02 + 32 =
√

13

Therefore for A =

(
2 0
0 −3

)
, ‖A‖ < ‖A‖F .
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iii) The norms of A =

(
1
2
±1

0 1
2

)
are shown below.

‖A‖ = max {|Ax|} = max

{∣∣∣∣( 1
2

sinx± cosx
1
2

cosx

)∣∣∣∣}

= max


√(

1

2
sinx± cosx

)2

+

(
1

2
cosx

)2

 =

√
3

4
+

√
2

2
=

1 +
√

2

2
≈ 1.207,

‖A‖F =

√
1

2

2

+ 12 + 02 +
1

2

2

=

√
6

2
≈ 1.225

(For the former, using the Calculus I machinery one finds that x 7→
(
1
2

sinx± cosx
)2

+(
1
2

cosx
)2

= 1
4

+ cos2 x± sinx cosx is maximized at x1 = ±π/8 and x2 = ±5π/8

with value 3
4

+ 1
2

√
2 = 3+2

√
2

4
.)

Therefore for A =

(
1
2
±1

0 1
2

)
, ‖A‖ < ‖A‖F .

Remark: Here is the alternative computation using the formula ‖A‖ =
√
ρ (ATA) :

B = ATA =

(
1
4
±1

2

±1
2

5
4

)
,

χB(X) = X2 − 3

2
X +

5

16
− 1

4
= X2 − 3

2
X +

1

16
,

λ1/2 =
1

2

(
3

2
±
√

9

4
− 4

16

)
=

1

4

(
3± 2

√
2
)

=
1

4

(
1±
√

2
)2
,

ρ(B) = λ1 =
1

4

(
1 +
√

2
)2
,

‖A‖ =
√
λ1 =

1

2

(
1 +
√

2
)
.

b) Suppose D has diagonal entries d1, . . . , dn, and assume w.l.o.g. that |d1| ≥ |di| for
2 ≤ i ≤ n.

For e1 = (1, 0, . . . , 0)T we have De1 = (d1, 0, . . . , 0)T and hence |De1|
|e1| = |d1|

1
= |d1|.

This shows ‖D‖ ≥ |d1|.
Now consider an arbitrary nonzero (column) vector x = (x1, . . . , xn)T in Rn. Then

Dx = (d1x1, . . . , dnxn)T,

|Dx|2 = d21x
2
1 + · · ·+ d2nx

2
n ≤ d21(x

2
1 + · · ·+ x2n) = d21 |x|

2

=⇒ |Dx| / |x| ≤ |d1|. This shows ‖D‖ ≤ |d1|, i.e., in all ‖D‖ = |d1|.

c) Since T is of class C1, the map x→ JT (x) is continuous. (Its coordinate functions are
the partial derivatives ∂Ti/∂xj.) Since A 7→ ‖A‖ is continuous as well (the triangle
inequality implies |‖A‖ − ‖B‖| ≤ ‖A−B‖, so that δ = ε works in a continuity proof),
the composition x 7→ ‖JT (x)‖ is continuous. Hence, since ‖JT (x∗)‖ = ‖0‖ = 0,
there exists a ball Br(x

∗), r > 0, such that ‖JT (x)‖ < 1/2 for x ∈ Br(x
∗). For

4



x ∈ Br(x∗) we then have ‖JT (x)‖ ≤ 1/2. (The constant 1/2 is arbitrary; we could
achieve ‖JT (x)‖ < ε, for any given ε > 0, by choosing r suitably.)

As shown in the lecture, we have T (x) − T (y) = A(x − y) with A =
∫ 1

0
JT
(
x +

t(y − x)
)

dt . For x,y ∈ Br(x∗) and t ∈ [0, 1] we also have x + t(y − x) ∈ Br(x∗)
and hence

∥∥JT (x + t(y − x)
)∥∥ ≤ 1/2. Since for (continuous) matrix-valued functions

[a, b] → Rn×n, t 7→ M(t) the inequality
∥∥∥∫ ba M(t) dt

∥∥∥ ≤ ∫ ba ‖M(t)‖ dt holds (if you

don’t believe this, use the corresponding inequality for the Frobenius norm instead and
adapt the constants suitably), we obtain ‖A‖ ≤

∫ 1

0
1/2 dt = 1/2 and |T (x)− T (y)| ≤

1
2
|x− y| for x,y ∈ Br(x∗).

d) We can take A =
(

3/4 0
0 3/4

)
. Since ‖A‖ = 3/4, we have

d(Ax,Ay) = |Ax−Ay| = |A(x− y)| ≤ ‖A‖ |x− y| = 3
4
|x− y| = 3

4
d(x,y),

so that x 7→ Ax is a contraction. But ‖A‖F =
√

(3/4)2 + (3/4)2 =
√

18/16 > 1.

32 Note that solutions of all three ODE’s must have non-negative derivative and hence
cannot decrease anywhere strictly.

a) The function f(t, y) = |y| is continuous and trivially satisfies a Lipschitz condition with
respect to y (with Lipschitz constant L = 1, since |f(t, y1)− f(t, y2)| = |y1 − y2| ≤
1 · |y1 − y2|. Hence solutions exist and are unique everywhere. The general solution is

yC(t) =

{
C et if C ≥ 0,

C e−t if C < 0,

where C can be any real number. This follows by considering the three cases y > 0,
y = 0, y < 0 separately.

b) f(t, y) =
√
|y − y2| is C1 on the three plane regions y < 0, 0 < y < 1, y > 1, and does

not satisfy a Lipschitz condition with respect to y locally at points of the separating
lines y = 0 and y = 1. The latter follows from the fact that the derivative ∂f

∂y
is

unbounded near y = 0 and y = 1. For example, for 0 < y < 1 we have

|f(t, y)− f(t, 1)| =
∣∣∣∣∂f∂y (t, η)

∣∣∣∣ |y − 1| =

∣∣∣∣∣ 1− 2η

2
√
η − η2

∣∣∣∣∣ |y − 1|

for some η ∈ (y, 1), and for y (and hence η) close to 1 the factor

∣∣∣∣ 1−2η
2
√
η−η2

∣∣∣∣ becomes

arbitarily large.

The Existence and Uniqueness Theorem gives that solutions exist and are unique
locally at points within the three regions. At points (t, y) with y ∈ {0, 1} solutions
are not unique as the following explicit solution shows.

0 < y < 1 : dy/
√
y − y2 = 2 dy /

√
1− (2y − 1)2 = 1 =⇒ arcsin(2y − 1) = t + C =⇒

y = 1
2

(
1 + sin(t+ C)

)
= 1

2

(
1 + cos(t+ C ′)

)
5



Figure 1: The solution y(t) from H32b)

y > 1 : dy/
√
y2 − y = 2 dy /

√
(2y − 1)2 − 1 = 1 =⇒ arcosh(2y − 1)

= t+ C =⇒ y = 1
2

(
1 + cosh(t+ C)

)
y < 0 : dy/

√
y2 − y = 2 dy /

√
(1− 2y)2 − 1 = 1 =⇒ − arcosh(1− 2y)

= t+ C =⇒ y = 1
2

(
1− cosh(−t+ C ′)

)
Solutions from the 3 cases can be glued together at y = 0 and y = 1 to satisfy the
same initial conditions as the constant solutions. One particular example is

y(t) =


1
2
(1− cosh(−t− π) for t ≤ −π,

1
2
(1 + cos t) for −π ≤ t ≤ 0,

1
2
(1 + cosh t) for t ≥ 0;

see Figure 1. When constructing solutions, there is more degree of freedom, e.g., we
can make solutions follow the line y = 0 for a while, then branch off and flow into the
line y = 1, follow this line for another while, etc.

33 According to Picard-Lindelöf iteration, we have

φk+1(t) = y0 +

∫ t

0

f(s, φk(s)) ds, k = 0, 1, 2, . . .

6



Note that in this case φk(t) and y0 are vectors in R2, and the notation used is somewhat
inconsistent with “φ = (φ1, φ2)

T” in the statement of the exercise (but preferred for its
simplicity).

Since φ0(t) =

(
1
0

)
= y0, we have

φ1(t) = y0 +

∫ t

0

f(s, φ0(s)) ds =

(
1
0

)
+

∫ t

0

(
0
1

)
ds =

(
1
0

)
+

(
0
t

)
=

(
1
t

)
,

φ2(t) = y0 +

∫ t

0

f(s, φ1(s)) ds =

(
1
0

)
+

∫ t

0

(
−s
1

)
ds =

(
1
0

)
+

(
t2

2

t

)
=

(
1− t2

2

t

)
,

φ3(t) = y0 +

∫ t

0

f(s, φ2(s)) ds =

(
1
0

)
+

∫ t

0

(
−s

1− s2

2

)
ds =

(
1
0

)
+

(
− t2

2

t− t3

6

)
=

(
1− t2

2

t− t3

6

)
,

φ4(t) = y0 +

∫ t

0

f(s, φ3(s)) ds =

(
1
0

)
+

∫ t

0

(
s3

6
− s

1− s2

2

)
ds =

(
1
0

)
+

(
t4

24
− t2

2

t− t3

6

)
=

(
1− t2

2
+ t4

24

t− t3

6

)
,

...

φ2k−1(t) =

(
1− t2

2!
+ t4

4!
− t6

6!
+ · · ·+ (−1)k−1 t2k−2

(2k−2)!

t− t3

3!
+ t5

5!
− t7

7!
+ · · ·+ (−1)k−1 t2k−1

(2k−1)!

)
,

φ2k(t) =

(
1− t2

2!
+ t4

4!
− t6

6!
+ · · ·+ (−1)k t

2k

2k!

t− t3

3!
+ t5

5!
− t7

7!
+ · · ·+ (−1)k−1 t2k−1

(2k−1)!

)
.

=⇒ φ(t) =

( ∑∞
k=0(−1)k t

2k

2k!∑∞
k=0(−1)k t2k+1

(2k+1)!

)
=

(
cos t
sin t

)

34 Consider the function ψ(t) = φ(−t), also defined for t ∈ [−r, r]. We have ψ(0) =
φ(0) = y0, say, and

ψ′(t) = −φ′(−t) = −f
(
−t, φ(−t)

)
= f

(
t, φ(−t)

)
= f

(
t, ψ(t)

)
.

Hence both φ and ψ solve the IVP y′ = f(t, y) ∧ y(0) = y0. Since f satisfies the
assumptions in the Existence and Uniqueness Theorem(s), it follows that φ = ψ, i.e.,
φ(t) = φ(−t) for t ∈ [−r, r]. This is the indicated symmetry property.
Remark: It is sufficient to assume that f satisfies locally a Lipschitz condition with
respect to y, which is weaker than “Lipschitz condition per se”.

35 a) (N1), (N2) follow from the corresponding properties of the Euclidean length. For
(N3) this is also true, but here we give a detailed proof: The triangle inequality for |·|
yields for x ∈ Rn with |x| = 1 the estimate

|(A + B)x| = |Ax + Bx| ≤ |Ax|+ |Bx| ≤ ‖A‖+ ‖B‖ .

Taking the maximum over all such vectors x then gives

‖A + B‖ = max
{
|(A + B)x| ;x ∈ Rn, |x| = 1

}
≤ ‖A‖+ ‖B‖ .
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For (N4) we can argue as follows:

|(AB)x| = |A(Bx)| ≤ ‖A‖ |Bx| ≤ ‖A‖ ‖B‖ |x| =⇒ |(AB)x|
|x|

≤ ‖A‖ ‖B‖ for x 6= 0

Taking the maximum over all vectors x ∈ Rn \ {0} then gives ‖AB‖ ≤ ‖A‖ ‖B‖.
(Alternatively we can restrict the above computation to vectors x of length 1, resulting
in |(AB)x| ≤ ‖A‖ ‖B‖, and then take the maximum over those vectors as in the proof
of (N3).)

b) Since the Frobenius norm is a matrix analogue of the Euclidean length on Rn2
, it

clearly satisfies (N1)–(N3). For the proof of (N4) we write A = (aij), B = (bij), so
that AB = (cij) = (

∑n
k=1 aikbkj)

n

i,j=1. Denoting the i-th row of A by ai and the j-th
column of B by bj, we have

cij = ai · bj,
c2ij ≤ |ai|

2 |bj|2 . (Cauchy-Schwarz Inequality)

Summing these inequalities over i, j gives

‖AB‖2F ≤
n∑

i,j=1

|ai|2 |bj|2 =

(
n∑
i=1

|ai|2
)(

n∑
j=1

|bj|2
)

= ‖A‖2F ‖B‖
2
F ,

and (N4) follows.

c) It suffices to show |Ax| ≤ ‖A‖F for all vectors x ∈ Rn with |x| = 1. Using the
notation introduced in b) we have

Ax =

a1 · x
...

an · x

 ,

(ai · x)2 ≤ |ai|2 |x|2 = |ai|2 .

=⇒ |Ax|2 =
n∑
i=1

(ai · x)2 ≤
n∑
i=1

|ai|2 = ‖A‖2F

This proves |Ax| ≤ ‖A‖F and implies the desired inequality ‖A‖ ≤ ‖A‖F for A ∈
Rn×n. Remark: The matrix norms considered so far and their properties remain true

if Rn is replaced by Cn and the Euclidean length on Rn by |x| =
√∑n

i=1 |xi|
2. The

above proofs remain valid for Cn, provided we change squares of real numbers to
squared absolute values of complex numbers, e.g., (ai · x)2 becomes |ai · x|2.

d) As shown at the end of lecture14-16 handout.pdf, ‖A‖2 is the largest eigenvalue of

ATA. Applying this to AT, we see that
∥∥AT

∥∥2 is the largest eigenvalue of AAT. But
the eigenvalues of ATA and AAT are the same (cf. Math257 in Fall 2022, Exercise
H46 c) of Homework 9), and hence the same is true of the (spectral) norms of A and
AT.
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e) If A is invertible then so is ATA (cf. Math257 in Fall 2022, Exercise W26 a) of Work-
sheet 7). Hence hence all its eigenvalues are positive and 1/

√
λn is well-defined.

Since (A−1)
T
A−1 =

(
AT
)−1

A−1 =
(
AAT

)−1
, the eigenvalues of (A−1)

T
A−1 are

λ−1n > λ−1n−1 > · · · > λ−11 (cf. Math257 in Fall 2022, Exercise W34 a) of Worksheet 10).

Thus we have ‖A−1‖2 = λ−1n , as claimed.

f) The entries of ATA are the pairwise dot products of the columns c1, . . . , cn of A. In
particular we have

tr
(
ATA

)
=

n∑
i=1

(
ATA

)
ii

= |c1|2 + · · ·+ |cn|2 =
n∑

i,j=1

a2ij = ‖A‖2F .

On the other hand, tr
(
ATA

)
is equal to the sum of the eigenvalues of ATA. Both

identities taken together give ‖A‖2F = λ1 + · · ·+ λn, i.e., ‖A‖F =
√
λ1 + · · ·+ λn.
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ZJU-UIUC Institute
Prof. Thomas Honold

Spring Semester 2024
Homework 7

Differential Equations (Math 285)

H36 Use the phase line to investigate the stability of the equilibrium solutions of the
following autonomous ODE’s.

a) y′ = 2(1− y)(1− ey); b) y′ = (1− y2)(4− y2); c) y′ = sin2 y.

H37 From a previous final exam

Consider the differential equation

(3xy + 2y2) dx +(3x2 + 6xy + 3y2) dy = 0. (DF)

a) Show that (0, 0) is the only singular point of (DF).

b) Transform (DF) into an exact equation and determine the general solution in
implicit form.

c) Is every point of R2 on a unique integral curve of (DF) ?

H38 Determine a real fundamental system of solutions for the following ODE’s:

a) y′′ − 4y′ + 4y = 0;

b) y′′′ − 2y′′ − 5y′ + 6y = 0;

c) y′′′ − 2y′′ + 2y′ − y = 0;

d) y′′′ − y = 0;

e) y(4) + y = 0;

f) y(8) + 4y(6) + 6y(4) + 4y′′ + y = 0.

Four answers suffice.

H39 Determine the general real solution of

a) y′′ + 3y′ + 2y = 2;

b) y′′ + y′ − 12y = 1 + t2;

c) y′′ − 5y′ + 6y = 4tet − sin t;

d) y′′′ − 2y′′ + y′ = 1 + et cos(2t);

e) y(4) + 2y′′ + y = 25e2t;

f) y(n) = tet, n ∈ N.

Four answers suffice.

Due on Thu Apr 11, 10 am

General solution techniques for higher-order linear ODE’s with constant coefficients (re-
quired for H38 and H39) will be discussed in the lecture on Wed April 3.



Solutions (prepared by Liang Tingou and TH)

36 a) Setting y′ = 2(1−y)(1−ey) = 0 gives the two equilibrium solutions y1 = 0, y2 = 1.
The graph of y′ versus y is shown below. So y1 = 0 is an asymptotically stable stable

Figure 1: H36 a)

equilibrium, while y2 = 1 is an unstable equilibrium.

b) Setting y′ = (1−y2)(4−y2) = 0 gives the four equilibria y1 = −2, y2 = −1, y3 = 1, y4 =
2. The graph of y′ versus y is shown below. So y1 = −2, y3 = 1 are asymptotically

Figure 2: H36 b)

stable solutions, while y2 = −1, y4 = 2 are unstable solutions.

c) Setting y′ = sin2 y = 0 gives infinitely many equilibrium solutions, viz. yk = kπ
(k ∈ Z). The graph of y′ versus y is shown below. So all equilibria are semistable
(asymptotically stable from below, unstable from above).

37 a) M(x, y) = 3xy+ 2y2 = y(3x+ 2y), N(x, y) = 3x2 + 6xy+ 3y2 = 3(x+ y)2 have no
common zero except (0, 0). =⇒ (0, 0) is the only singular point.

b) We have
My −Nx = 3x+ 4y − (6x+ 6y) = −3x− 2y = M(−1/y).

Thus (My −Nx)/M depends only on y, and there is an integrating factor of the form
g(y).
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Figure 3: H36 c)

The integrability condition (gM)y = (gN)x then becomes g′M + gMy = gNx, i.e.,

g′ =
g(Nx −My)

M
=
g

y
.

The solution of this ODE is g(y) = cy, so that we can take g(y) = y.
=⇒ On R2 \ x-axis the ODE (3xy + 2y2) dx +(3x2 + 6xy + 3y2) dy = 0 is equivalent
to the exact ODE (

3xy2 + 2y3
)

dx +
(
3x2y + 6xy2 + 3y3

)
dy = 0.

An antiderivative f of the corresponding exact differential is determined in the usual
way by “partial integration” with respect to x, say.

f(x, y) = 3
2
x2y2 + 2xy3 + g(y),

fy(x, y) = 3x2y + 6xy2 + g′(y)
!

= 3x2y + 6xy2 + 3y3

=⇒ g′(y) = 3 y3 =⇒ g(y) = 3
4
y4 + C =⇒ f(x, y) = 3

2
x2y2 + 2xy3 + 3

4
y4 + C

The general implicit solution of the exact ODE is then given by (in slightly simplified
form and with a different C)

6x2y2 + 8xy3 + 3 y4 = C, C ∈ R.

Solutions with C < 0 don’t exist and for C = 0 the x-axis is obtained, since 6x2y2 +
8xy3 + 3 y4 = y2(6x2 + 8xy + 3y2) and the quadratic has discriminant 82 − 4 · 6 · 3 =
−8 < 0.

Since the x-axis (equivalently, the function y(x) ≡ 0) is a solution of (DF), multipli-
cation by y hasn’t introduced any new solution, and 6x2y2 + 8xy3 + 3 y4 = C, C ≥ 0
solves (DF) as well.

c) Yes. This is implicit in the preceding discussion. Intersection points of integral curves
must be singular, so that the only candidate for such a point is the origin. But the
corresponding contour of f , the 0-contour, consists of a single integral curve, viz. the
x-axis.

Remark: Part c) serves as an illustration for the fact that at singular points vir-
tually anything can happen. Here it is due to the fact that at (0, 0) the partial
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derivatives of f up to order 3 vanish. In the lecture we have seen an example
of a singular point being on exactly two integral curves (Example 8 of the intro-
duction, lecture1-3 handout.pdf, Slides 31 ff), and another one with a singu-
lar point contained in infinitely many integral curves (the example at the end of
lecture17-18 handout.pdf). Singular points contained in no integral curve are also
possible: For exact equations ω = df = 0 this happens at a strict local extremum of
f , where the corresponding contour reduces to a single point (at least locally).

38 a) The characteristic polynomial is a(X) = X2 − 4X + 4.
The only root is x = 2 with multiplicity 2.
So, a real fundamental system of solutions is e2t, te2t.

b) The characteristic polynomial is

a(X) = X3 − 2X2 − 5X + 6

= (x− 1)(x+ 2)(x− 3)

The roots are x1 = −2, x2 = 1, x3 = 3, all with multiplicity 1.
So, a real fundamental system of solutions is e−2t, et, e3t.

c) The characteristic polynomial is

a(X) = X3 − 2X2 + 2X − 1

= (X − 1)

(
X − 1−

√
3 i

2

)(
X − 1 +

√
3 i

2

)

The roots are x1 = 1, x2 = 1−
√
3 i

2
, x3 = 1+

√
3 i

2
with multiplicities 1.

So, a real fundamental system of solutions is et, e
t
2 cos

(√
3
2
t
)

, e
t
2 sin

(√
3
2
t
)

.

d) The characteristic polynomial is

a(X) = X3 − 1

= (X − 1)

(
X − −1−

√
3 i

2

)(
X − −1 +

√
3 i

2

)

The roots are 1, −1−
√
3 i

2
, −1+

√
3 i

2
with multiplicities 1.

So, a real fundamental system of solutions is et, e−t/2 cos
(√

3
2
t
)

, e−t/2 sin
(√

3
2
t
)

.

e) The characteristic polynomial is

a(X) = X4 + 1

= X4 + 2X2 + 1− 2X2

= (X2 + 1)2 − (
√

2X)2

= (X2 +
√

2X + 1)(X2 −
√

2X + 1)

=

(
X − −

√
2−
√

2 i

2

)(
X − −

√
2 +
√

2 i

2

)(
X −

√
2−
√

2 i

2

)(
X −

√
2 +
√

2 i

2

)
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The roots are ±
√
2±
√
2 i

2
(all 4 combinations) with multiplicities 1.

So, a real fundamental system of solutions is e−
√
2

2
t cos

(√
2
2
t
)
, e−

√
2
2
t sin

(√
2
2
t
)
, e

√
2

2
t cos

(√
2
2
t
)
,

e
√
2

2
t sin

(√
2
2
t
)
.

f) The characteristic polynomial is

a(X) = X8 + 4X6 + 6X4 + 4X2 + 1

= (X2 + 1)4

= (X − i)4(X + i)4

The roots are x1 = i and x2 = −i, each with multiplicity 4.
So, a real fundamental system of solutions is
cos(t), t cos(t), t2 cos(t), t3 cos(t), sin(t), t sin(t), t2 sin(t), t3 sin(t).

39 a) Using the method for determining the solution of inhomogeneous linear ODE’s
stated in the lecture slides, we have b(t) = 2 = 2e0t.
So, µ = 0.
The characteristic polynomial is

a(X) = X2 + 3X + 2

= (X + 1)(X + 2)

The roots are x1 = −1 and x2 = −2 with multiplicities 1.
So, e−t, e−2t form a fundamental system of solutions.
Since µ = 0 has multiplicity 0, there exists a particular solution of the form yp(t) = c0.
Substituting it into the ODE gives

2c0 = 2,

which gives c0 = 1. (Alternatively, yp(t) = 1
a(µ)

b(t) = 2
a(0)

= 1.)

So, the general real solution is y(t) = c1e
−t + c2e

−2t + 1, ci ∈ R.

b) b(t) = 1 + t2 = (1 + t2)e0t

So, µ = 0.
The characteristic polynomial is

a(X) = X2 +X − 12

= (X + 4)(X − 3)

The roots are x1 = −4 and x2 = 3 with multiplicity 1.
So, e−4t, e3t form a fundamental system of solutions.
Since µ = 0 has multiplicity 0, there exists a particular solution of the form y(t) =
c0 + c1t+ c2t

2. Substituting it into the ODE gives

2c2 + 2c2t+ c1 − 12(c2t
2 + c1t+ c0) = 1 + t2,

−12c2t
2 + (−12c1 + 2c2)t+ (−12c0 + c1 + 2c2) = 1 + t2.

5



The solution is 
c2 = − 1

12

c1 = − 1
72

c0 = − 85
864

Therefore, the general real solution is y(t) = c1e
−4t + c2e

3t − 85
864
− 1

72
t− 1

12
t2, ci ∈ R.

c) The characteristic polynomial is

a(X) = X2 − 5X + 6

= (X − 2)(X − 3)

The roots are x1 = 2 and x2 = 3 with multiplicity 1. So, e2t, e3t form a fundamental
system of solutions.
We now calculate particular solutions for y′′ − 5y′ + 6y = 4tet and y′′ − 5y′ + 6y =
− sin(t).

i) y′′ − 5y′ + 6y = 4tet

µ = 1 has multiplicity 0.
So, the correct

”
Ansatz“ is y1(t) = (c0 + c1t)e

t, ci ∈ R. Substituting it into the
ODE gives

(2c0 − 3c1 + 2c1t)e
t = 4tet,

which gives {
c1 = 2

c0 = 3

So, y1(t) = (3 + 2t)et.

ii) y′′ − 5y′ + 6y = − sin(t)
We consider the ”complexified” ODE y′′ − 5y′ + 6y = −eit. The imaginary part
of any particular solution of the complex ODE will solve the real ODE.
b(t) = −eit gives µ = i, which has multiplicity 0.
So, the complex ODE has a particular solution of the form yc(t) = a0e

it, a0 ∈ C.
Substituting it into the ODE gives

5a0e
it − 6ieit = −eit,

which gives a0 = − 1
10
− 1

10
i and yc(t) = −1−i

10
eit.

(Alternatively, yc(t) = −1
a(i)

eit = −1
i2−5i+6

eit = −1
5−5i eit = −1−i

10
eit.)

Therefore, y2(t) = − 1
10

(
sin(t) + cos(t)

)
In all, a particular solution of y′′ − 5y′ + 6y = 4tet − sin t is yp(t) = (3 + 2t)et −
1
10

(sin(t) + cos(t)). Therefore, the general real solution of this ODE is

y(t) = c1e
2t + c2e

3t + 3et + 2tet − 1
10

sin(t)− 1
10

cos(t), ci ∈ R.

d) The characteristic polynomial is

a(X) = X3 − 2X2 +X

= X(X − 1)2.
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The roots are x1 = 0 with multiplicity 1 and x2 = 1 with multiplicity 2. So, 1, et, tet

form a fundamental system of solutions.
We now calculate particular solutions for y′′′−2y′′+y′ = 1 and y′′′−2y′′+y′ = et cos(2t).

i) y′′′ − 2y′′ + y′ = 1
µ = 0 has multiplicity 1. So, y1(t) = c0t. Substituting it into the ODE gives
c0 = 1, which gives y1(t) = t. (This solution can also be found by just looking at
the ODE.)

ii) y′′′ − 2y′′ + y′ = et cos(2t)
We consider the ”complexified” ODE y′′′ − 2y′′ + y′ = e(1+2i)t. The real part of
any particular solution of the complex ODE will solve the real ODE.
b(t) = e(1+2i)t gives µ = 1 + 2i, which has multiplicity 0.
So, the complex ODE has a solution of the form yc(t) = a0e

(1+2i)t, a0 ∈ C.
Substituting it into the ODE gives

a0[(1 + 2i)3 − 2(1 + 2i)2 + (1 + 2i)]e(1+2i)t = e(1+2i)t,

which gives a0 = − 1
20

+ 1
10

i. (Alternatively, a0 = 1
a(1+2i)

, which leads to the same

result.)
So, y2(t) = − 1

20
et cos(2t))− 1

10
et sin(2t).

Therefore, the general real solution of y′′′ − 2y′′ + y′ = 1 + et cos(2t) is

y(t) = c0 + c1e
t + c2te

t + t− 1
20

et cos(2t))− 1
10

et sin(2t), ci ∈ R.

e) b(t) = 25e2t gives µ = 2.
The characteristic polynomial is

a(X) = X4 + 2X2 + 1

= (X2 + 1)2

= (X + i)2(X − i)2

The roots are x1 = i and x2 = −i, both with multiplicity 2, which means µ = 2 has
multiplicity 0.
cos(t), t cos(t), sin(t), t sin(t) form a fundamental system of solutions.
There exists a particular solution of the form yp(t) = c0e

2t. Substituting it into the
ODE gives

c0(2
4 + 2× 22 + 1)e2t = 25e2t,

which gives c0 = 1. (Alternatively, c0 = 25
a(2)

= 25
25

= 1.)
Therefore, the general real solution is

y(t) = c1 cos(t) + c2t cos(t) + c3 sin(t) + c4t sin(t) + e2t, ci ∈ R.

f) b(t) = tet gives µ = 1.
The characteristic polynomial is a(X) = Xn with root 0 of multiplicity n. (For n = 0
there is no root, but the multiplicity is still correct.)
Then, 1, t, t2, ..., tn−1 form a fundamental system of solutions.

7



A particular solution is given by y(t) = (c0 + c1t)e
t.

Substituting it into the ODE, we get

(c0 + nc1 + c1t)e
t = tet,

which gives c1 = 1 and c0 = −n.
So, the general real solution is

y(t) = (t− n)et +
n−1∑
i=0

ait
i, ai ∈ R.

For n = 0 this is true as well.
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ZJU-UIUC Institute
Prof. Thomas Honold

Spring Semester 2024
Homework 8

Differential Equations (Math 285)

H40 a) Suppose φ : R→ C solves a homogeneous linear ODE

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0, ai ∈ C, (H)

but no such ODE of order < n. Show that φ, φ′, φ′′, . . . , φ(n−1) form a
fundamental system of solutions of (H).

b) Find a fundamental system of solutions of the form φ, φ′, φ′′, φ′′′ for the ODE
y(4) − y(3) − y′ + y = 0.

H41 Do three of the four Exercises 4, 6, 14, 16 in the previous edition of our Calculus
textbook [Ste16], Ch. 17.3.
You may need to study the relevant material in [Ste16], Ch. 17, or [BDM17], Ch. 3.7,
3.8 first.

H42 For α, β ∈ C consider the explicit so-called Euler equation

y′′ +
α

t
y′ +

β

t2
y = 0 (t > 0). (1)

a) Show that φ : R+ → C is a solution of (1) iff ψ : R→ C defined by ψ(s) = φ(es)
is a solution of

y′′ + (α− 1)y′ + βy = 0. (2)

b) Using a), determine the general solution of (1) for (α, β) = (6, 4) and (3, 1).

H43 Optional Exercise

Suppose that y : R → C solves some homogeneous linear ODE a(D)y = y(n) +
an−1y

(n−1) + · · · + a1y
′ + a0y = 0 with coefficients ai ∈ C (i.e., y is an exponential

polynomial). Show:

a) There is a unique monic polynomial m(X) ∈ C[X] of smallest degree satisfying
m(D)y = 0.

b) If b(X) ∈ C[X] satisfies b(D)y = 0 then m(X) divides b(X).

Hint: There is a link with the annihilator polynomials (periods) discussed in Math
257; see the section on companion matrices in lecture19-24 handout.pdf.

H44 Optional Exercise

For the following functions φi, find the homogeneous linear ODE y(n)+an−1y
(n−1)+

· · ·+ a1y
′ + a0y = 0 (ai ∈ C) of smallest order having φi as a solution; cf. H43.

a) φ1(t) = 2 sin t− 3 cos(3t); b) φ2(t) = sin t cos(3t);

c) φ3(t) = −1 + te−2t cos t; d) φ4(t) = et + t1949 + t2019.



H45 Optional Exercise

This exercise shows that characteristic polynomials a(X) of homogeneous linear
ODEs a(D)y = 0, respectively, homogeneous linear recurrence relations a(S)y = 0
are characteristic polynomials in the sense of Linear Algebra.

a) Show that the (complex) solution space V of a(D)y = 0 is D-invariant, and
that the characteristic polynomial of the restriction D|V is equal to a(X).

b) Show that the (complex) solution space V of a(S)y = 0 is S-invariant, and
that the characteristic polynomial of the restriction S|V is equal to a(X).

Hint: In Math 257 we have characterized endomorphisms of finite-dimensional
vector spaces whose minimum polynomial equals the characteristic polynomial; see
the section on companion matrices in lecture19-24 handout.pdf. Do b) first,
which is easier.

H46 Optional Exercise

In the lecture we have found that the ODE y′′−y′−y = 1 and its discrete “analogue”
yi+2 − yi+1 − yi = 1 both have the constant function y(t) ≡ −1 as a solution (of
course, with different domains R resp. N). Is this a pure coincidence or an instance
of a more general correspondence between the continuous and discrete case?

Hint: It may help to identify the discrete analogue of the exponential function et first.

Due on Thu Apr 18, 10 am

The optional exercises may be handed in until Thu Apr 25, 10 am.
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Solutions

40 a) A linear dependency relation c0φ(t)+c1φ
′(t)+c2φ

′′(t)+ · · ·+cn−1φ
(n−1)(t) = 0, t ∈

R, says that φ solves the ODE (c0/cm)y+(c1/cm)y′+ · · ·+(cm−1/cm)y(m−1)+y(m) = 0,
where m = max{0 ≤ i ≤ n − 1; ci 6= 0}. Since this ODE has order smaller than n,
under the given assumption this is impossible. Hence φ, φ′, φ′′, . . . , φ(n−1) are linearly
independent in CR.

Differentiating both sides of (H) shows that φ′ is a solution of (H) as well. Repeating
this argument then gives that all derivatives of φ are solutions. Since we know that
the solution space S of (H) has dimension n, the n linearly independent solutions φ,
φ′, φ′′, . . . , φ(n−1) must form a basis of S.

b) The characteristic polynomial of this ODE is X4 − X3 − X + 1 = (X3 − 1)(X −
1) = (X2 + X + 1)(X − 1)2. Its roots are λ1 = 1 of multiplicity 2, and λ2/3 =

−1
2
±
√
3
2

i of multiplicity 1. A fundamental system of solutions is therefore et, t et,

e(−1+
√
3 i)t/2, e(−1−

√
3 i)t/2. We need to find a linear combination of these functions which

doesn’t solve an ODE of the same type and order < 4. Using the known properties
of polynomial differential operators p(D) (cf. lecture) and H43b), it can be shown

that any solution φ(t) = c1e
t + c2t et + c3e

(−1+
√
3 i)t/2 + c4e

(−1−
√
3 i)t/2 with c2c3c4 6= 0

has this property. (Sketch of proof: p(D)φ(t) = c1p(1)et + c2p(D)[tet] + c3p(λ2)e
λ2t +

c4p(λ3)e
λ3t = 0 iff c1p(1)et + c2p(D)[tet] = c3p(λ2)e

λ2t = c4p(λ3)e
λ3t = 0 (since et,

tet, eλ2t, eλ3t are linearly independent and p(D)[tet] ∈ 〈et, tet〉) iff p(X) is divisible
by (X − 1)2, X − λ2, and X − λ3, which in turn implies that p(D) is divisible by
(X − 1)2(X − λ2)(X − λ3) = X4 −X3 −X + 1.) For example, we can take

φ(t) = t et +
1

2
e(−1+

√
3 i)t/2 +

1

2
e(−1−

√
3 i)t/2 = t et + e−t/2 cos

(√
3 t/2

)
.

Remark: In Linear Algebra terms, a fundamental system of solutions of a(D)y = 0 of
the form y, y′, . . . , y(n−1), n = deg a(X), amounts to a representation of the solution
space as D-cyclic span 〈y,Dy, . . . ,Dn−1y〉. Such a generator y always exists; cf. the
solution to H45 a). A different proof, using polynomial arithmetic, can be inferred
from the solution above.

41 1) Exercise 4

a) From Hooke’s Law, the force required to stretch the spring is

k(0.25) = 13,

so k = 13/0.25 = 52 [N/m]. Adopting the standard units of measurement (N for
forces, kg for masses, seconds (s) for time, m for lengths), we get the ODE

2
d2x

dt2
+ 8

dx

dt
+ 52x = 0

The characteristic polynomial of this ODE is X2 + 4X + 26, with roots x1/2 =

−2±
√

22 i, and the solution is

x(t) = e−2t
(
c1 cos(

√
22 t) + c2 sin(

√
22 t)

)
.
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Since x(0) = 0, we have c1 = 0.

x′(t) = −2c2e
−2t sin(

√
22 t) + c2

√
22 e−2t cos(

√
22 t)

Since x′(0) = 0.5, we have c2 = 1
2
√
22

. So, the position (measured in m) at time t

(measured in s) is

x(t) = e−2t
1

2
√

22
sin(
√

22 t).

b)

Figure 1: x(t) = e−2t 1
2
√
22

sin(
√

22 t)

2) Exercise 6
The condition for critical damping is

c2 = 4mk = 4× 2× 52 = 42 × 26

So, c = 4
√

26 [N/m] will produce critical damping.

3) Exercise 14

a) By Kirchhoff’s voltage law (and using the indicated standard units of measure-
ment), we have

2
d2Q

dt2
+ 24

dQ

dt
+ 200Q = 12.

The (monic) characteristic polynomial of this ODE is

a(X) = X2 + 12X + 100.
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The roots are X = −6 ± 8i, so the solution of the associated homogeneous ODE
(called complementary equation in [Ste16]) is

Qc(t) = e−6t
(
c1 cos(8t) + c2 sin(8t)

)
.

For the method of undetermined coefficients we try a constant solution

Qp(t) = A,

Q′p(t) = Q′′p(t) = 0.

Inserting this into the ODE gives A = 12
200

= 3
50

, so a particular solution is

Qp(t) ≡
3

50

and the general solution is

Q(t) = Qc(t) +Qp(t)

= e−6t
(
c1 cos(8t) + c2 sin(8t)

)
+

3

50
.

The corresponding current is

I(t) =
dQ

dt
= e−6t[(−6c1 + 8c2) cos(8t) + (−8c1 − 6c2) sin(8t)].

Imposing the initial conditions Q(0) = 0.001 and I(0) = 0, we get c1 = −0.059,
c2 = −0.04425.
Thus, the formula for the charge is

Q(t) = e−6t
(
−0.059 cos(8t)− 0.04425 sin(8t)

)
+

3

50
,

and the expression for the current is

I(t) = 0.7375 e−6t sin(8t).

b)
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Figure 2: Q(t) = e−6t
(
−0.059 cos(8t)− 0.04425 sin(8t)

)
+ 3

50

Figure 3: I(t) = 0.7375 e−6t sin(8t)

6



4) Exercise 16

(a) The ODE becomes

2
d2Q

dt2
+ 24

dQ

dt
+ 200Q = 12 sin(10t). (1)

We need to re-compute a particular solution, which can be taken of the form
Qp(t) = A cos(10t)+B sin(10t). (This equivalent to the complexification

”
Ansatz“.

Let

Qp(t) = A cos(10t) +B sin(10t),

Q′p(t) = −10A sin(10t) + 10B cos(10t),

Q′′p(t) = −100A cos(10t)− 100B sin(10t).

Substituting this into Equation (1), we have

2(−100A cos(10t)− 100B sin(10t)) + 24(−10A sin(10t) + 10B cos(10t)),

+200(A cos(10t) +B sin(10t)) = 12 sin(10t),

240B cos(10t)− 240A sin(10t) = 12 sin(10t).

So, A = −0.05, B = 0, which gives Qp(t) = −0.05 cos(10t).
The general solution is

Q(t) = Qc(t) +Qp(t)

= e−6t(c1 cos(8t) + c2 sin(8t))− 0.05 cos(10t)

And

I(t) =
dQ

dt
= e−6t[(−6c1 + 8c2) cos(8t) + (−8c1 − 6c2) sin(8t)] + 0.5 sin(10t)

Imposing the initial conditions Q(0) = 0.001 and I(0) = 0, we get c1 = 0.051,
c2 = 0.03825.
Thus, the formula for the charge is

Q(t) = e−6t(0.051 cos(8t) + 0.03825 sin(8t))− 0.05 cos(10t)
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(b)

Figure 4: Q(t) = e−6t(0.051 cos(8t) + 0.03825 sin(8t))− 0.05 cos(10t)

42 a) If ψ(s) is a solution of

y′′ + (α− 1)y′ + βy = 0,

we can use the variable substitution ψ(s) = φ(es) and get the first and second deriva-
tive of ψ as

ψ′(s) = φ′(es)es,

ψ′′(s) = [φ′(es)es]
′
= φ′′(es)e2s + φ′(es)es.

This gives

ψ(s)′′ + (α− 1)ψ(s)′ + βψ(s) = 0,

[φ′′(es)e2s + φ′(es)es] + (α− 1)φ′(es)es + βφ(s) = 0.

This simplifies to
e2sφ′′(es) + αesφ′(es) + βφ(es) = 0.

Since t > 0 is assumed, we can make the variable transformation t = es, i.e. s = ln(t),
and obtain

t2φ′′(t) + αtφ′(t) + βφ(t) = 0,

φ′′(t) +
α

t
φ′(t) +

β

t2
φ(t) = 0.

Therefore, the function φ(t) is a solution of Equation (1).

8



Conversely, if y(t) = φ(t) is a solution of Equation (1), we can make the substitution
t = es to obtain a function y(s) = ψ(s). The derivatives can be represented as

dy

dt
=

dy

ds

ds

dt
=

1

t

dy

ds
,

d2y

dt2
=

d

dt
(
1

t

dy

ds
) =

1

t2
(
d2y

ds2
− dy

ds
).

Hence the Euler equation is converted to

dy2

ds2
+ (α− 1)

dy

ds
+ βy = 0

.

b) 1) When (α, β) = (6, 4), the Euler equation can be converted to

dy2

ds2
+ 5

dy

ds
+ 4y = 0.

The corresponding characteristic equation is X2 + 5X + 4 = 0, and hence the
general solution of Equation (2) in this case is

y(s) = C1e
−s + C2e

−4s, s ∈ R.

Therefore, the solution of Equation (1) is

y(t) =
C1

t
+
C2

t4
, t > 0.

2) When (α, β) = (3, 1), the Euler equation can be converted to

dy2

ds2
+ 2

dy

ds
+ y = 0.

The corresponding characteristic equation is X2 + 2X + 1 = (X + 1)2 = 0, and
hence the general solution of Equation (2) in this case is

y(s) = C1e
−s + C2se

−s, s ∈ R.

Therefore, the solution of Equation (1) is

y(t) =
C1

t
+
C2 ln t

t
, t > 0.

43 It is clear that there is a nonzero polynomial m(X) of smallest degree satisfying
m(D)y = 0, and division of m(X) by the leading coefficient shows that m(X) can be
taken as a monic polynomial.
Now suppose b(D)y = 0. Long division of b(X) by m(X) gives polynomials q(X), r(X) ∈
C[X] with deg r(X) < degm(X) (possibly r(X) = 0) and b(X) = q(X)m(X) + r(X).
Substituting D shows r(D)y = b(D)y − q(D)m(D)y = 0. By minimality of m(X) this is
possible only if r(X) = 0; =⇒ m(X) divides b(X) in C[X].
This proves b). For the proof of a) suppose that m1(X) ∈ C[X] is another monic
polynomial of smallest degree satisfying m1(D)y = 0. Then b) gives m(X) | m1(X). Since
m(X) and m1(X) have the same degree, they must be constant multiples of each other.
The constant must be 1 because m(X), m1(X) are both monic. Thus m1(X) = m(X),
and m(X) is unique.

9



44 a) (D2 + 1) sin t = (sin t)′′ + sin t = 0, (D2 + 9) cos(3t) = cos(3t)′′ + 9 cos(3t) =
−9 cos(3t) + 9 cos(3t) = 0,
=⇒ (D2 + 1)(D2 + 9)[2 sin t − 3 cos(3t)] = 0, since (D2 + 1)(D2 + 9) annihilates both
sin t and cos(3t) and hence any linear combination of these functions. Using the same
argument as in the solution of H40b), if follows that (X2+1)(X2+9) = X4+10X2+9
is the monic polynomial of smallest degree annihilating φ1, and hence the “monic”
ODE of smallest order having φ1 as solution is y(4) + 10y′′ + 9y = 0.

b) φ2(t) = 1
4i

(
eit − e−it

) (
e3it + e−3it

)
= 1

4i

(
e4it − e−4it − e2it + e−2it

)
The corresponding minimum polynomial is (X− 4i)(X + 4i)(X− 2i)(X + 2i) = (X2 +
16)(X2 + 4) = X4 + 20X2 + 64, and the desired ODE is y(4) + 20y′′ + 64y = 0.

c) φ3(t) = −e0 t + 1
2
t e(−2+i)t + 1

2
t e(−2−i)t

The corresponding minimum polynomial is X(X+ 2− i)2(X+ 2 + i)2 = X(X2 + 4X+
5)2 = X5 +8X4 +26X3 +40X2 +25X, and the desired ODE is y(5) +8y(4) +26y(3) +
40y′′ + 25y′ = 0.

d) The desired minimal ODE is (D− 1)D2020y = (D2021 −D2020)y = y(2021) − y(2020) = 0.

45 a) As observed repeatedly, a(D)y = 0 implies a(D)Dy = a(D)y′ = 0. Thus V is
D-invariant.

Let f = D|V . Then a(f) = 0 because of the ODE, and hence the minimum polynomial
mf (X) of f divides a(X). If there exists a solution y ∈ V such that y, y′, . . . , y(n−1) are
linearly independent (i.e., the D-cyclic subspace of V generated by y is equal to V ),
we can conclude as in b) that χf (X) = a(X). The solution in b) also indicates how
to find such a function: Using the EUT, prescribe initial conditions y(0) = y′(0) =
· · · = y(n−2)(0) = 0, y(n−1)(0) = 1 or, in vectorial form,

(
y(0), y′(0), . . . , y(n−1)(0)

)
=

(0, . . . , 0, 1). Then y(k) has initial values
(
yk)(0), y(k+1)(0), . . . , y(k+n−1)(0)

)
= (0, . . . , 0︸ ︷︷ ︸

n−1−k

, 1, ∗, ∗, . . . ).

Since the vector of initial values determines the solution (by the EUT), one sees as in
b) that y, y′, . . . , y(n−1) are linearly independent.

b) a(S)y = 0 implies a(S)Sy = Sa(S)y = S0 = 0. Thus V is S-invariant.

Let f = S|V . Then a(f) = 0 because of the recurrence relation, and hence the
minimum polynomial mf (X) of f divides a(X). If there exists a sequence y ∈ V
such that y, Sy, . . . , S(n−1)y are linearly independent (i.e., the S-cyclic subspace of
V generated by y is equal to V ), we can conclude that mf (X) = a(X), and then in
turn χf (X) = a(X), because deg a(X) = n = dimV . A sequence y ∈ V with this
property is easily found: Just use the last member en−1 = (0, . . . , 0︸ ︷︷ ︸

n−1

, 1, ∗, ∗, . . . ) of the

canonical basis of V . (The remaining entries of en−1 are computed from the first n
entries and the recurrence relation.) The matrix formed by the first n coordinates of
en−1, Sen−1, . . . , Sn−1en−1 is triangular with 1’s on the main diagonal, showing that
these sequences are linearly independent.

46 The discrete analogue of the exponential function, which satisfies Det = et, is the
sequence e = (1, 1, 1, . . . ), since Sx = x iff x is a constant sequence. Thus the solution

10



yi = −1 in the discrete case is rather the analogue of −et than of the constant function
y(t) ≡ −1 on R, and the observed phenomenon is merely a coincidence.
In fact we should think of yi+2− yi+1− yi = 1 as the discrete analogue of y′′− y′− y = et,
which has the solution y(t) = −e−t. This is so, because the right-hand side of yi+2 −
yi+1 − yi = 1 is actually a sequence, viz. (1, 1, 1, . . . ). In order to complete the picture,
consider the recurrence relation

yi+2 − yi+1 − yi = δi0 =

{
1 if i = 0,

0 if i ≥ 1.

This is the true discrete analogue of y′′−y′−y = 1. It has the solution y0 = −1, yi = 0 for
i ≥ 1, i.e., y = (−1, 0, 0, . . . ) = −(δi0), which is the true discrete analogue of y(t) ≡ −1.
The characteristic polynomial a(X) = X2−X−1 of the ODE/recurrence relation satisfies
a(0) = a(1) = −1. This explains why in both cases the coefficient −1 appears: D1 =
De0 t = a(0)1 = −1, Det = a(1)et = −et. Thus a(D)y = 1 is solved by y(t) ≡ −1 and
a(D)y = et by y(t) = −et. The corresponding discrete analogues are: a(S)y = (δi0) is
solved by y = −(δi0) and a(S)y = e by y = −e. The full story is told in lecture23-27

(in the section “The View from the Top”): The exponential generating function map egf
identifies solutions of the linear recurrence relation a(S)y = b with solutions of the linear
ODE a(D)y = egf(b).

11
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H47 Determine a fundamental system of solutions for Bessel’s ODE with p = 1
2
,

y′′ +
1

t
y′ +

(
1− 1

4t2

)
y = 0,

using the
”
Ansatz“ z =

√
t y.

H48 The solution to this exercise provides an easy method for computing eAt for a 2×2

matrix A =

(
a b
c d

)
in R2×2 (or C2×2). We assume throughout the exercise that

A is not a scalar multiple of the identity matrix I2.

a) Show A2 = (bc− ad)I2 + (a+ d)A.

b) Use a) to show that there exist uniquely determined functions c0, c1 : R → R
such that

eAt = c0(t)I2 + c1(t)A for t ∈ R. (?)

Further, show that c0, c1 are at least twice differentiable.

c) Show that c0, c1 solve the homogeneous linear ODE of order 2 with charac-
teristic polynomial X2 − (a+ d)X + ad− bc and satisfy the initial conditions
c0(0) = 1, c′0(0) = 0 and c1(0) = 0, c′1(0) = 1.

Hint: Differentiate (?) twice.

d) By solving the IVP’s in c) determine eAt for A =

(
0 6
1 1

)
.

H49 Solve the initial value problem

y′ =

(
1 2
3 6

)
y +

(
t

sin t

)
, y(0) =

(
0
0

)
.

H50 Optional Exercise

The function et has no zero and satisfies y′ = y. The function sin t has no zero in
common with its derivative cos t and satisfies y′′ = −y. Generalizing this observa-
tion, show that a nonzero Cn-function f : I → R on an interval I ⊆ R of positive
length satisfies an explicit (possibly time-dependent) homogeneous linear ODE of
order n if and only if y, y′, . . . , y(n−1) have no common zero.

Hint: For the if-part work with the function t 7→ f(t)2 + f ′(t)2 + · · ·+ f (n−1)(t)2.

Due on Thu April 25, 10 am

The optional exercise is instructive and quite short. It should be handed in on April 25
as well.



47 Using the Ansatz z =
√
t y, we have

dz

dt
=
√
t y′ +

1

2
√
t
y

d2z

dt2
=
√
t y′′ +

1√
t
y′ +

(
−1

4

)
t−

3
2y

=⇒ 4t
3
2
d2z

dt2
= 4t2y′′ + 4ty′ − y

Rewrite the ODE and substituting the above expression, we obtain

4t2y′′ + 4ty′ + (4t2 − 1)y = 0

⇐⇒ 4t
3
2 z′′ + 4t2y = 0

⇐⇒ 4t
3
2 (z + z′′) = 0

⇐⇒ z′′ + z = 0

The characteristic equation of z′′ + z = 0 is r2 + 1 = 0, so that r1 = i, r2 = −i.

∴ z(t) = c1 cos t+ c2 sin t,

∴ y(t) =
c1 cos t√

t
+
c2 sin t√

t
.

Thus a fundamental system of solutions for the ODE is cos t√
t

, sin t√
t

.

48 a) This follows from the Cayley-Hamilton Theorem, which says χA(X) = A2 − (a+
d)A + (ad− bc)I2 = 0. Here is a direct proof:

A2 =

(
a b
c d

)(
a b
c d

)
=

(
a2 + bc (a+ d)b
(a+ d)c d2 + bc

)
= (a+ d)

(
a b
c d

)
+

(
a2 + bc− (a+ d)a 0

0 d2 + bc− (a+ d)d

)
= (a+ d)A + (bc− ad)I2.

b) The relation A2 = αI2 + βA (α = bc − ad, β = a + d) can be used to express any
power Ak as a linear combination of I2 and A. It follows that

n∑
k=0

tk

k!
Ak = fn(t)I2 + gn(t)A

for certain functions fn, gn : R→ R. Since the left-hand side converges to eAt, so does
the right-hand side, and hence the function sequences (fn), (gn) converge (point-wise)
to functions f resp. g such that eAt = f(t)I2 + g(t)A for t ∈ R. This representation
is unique, since I2 and A are assumed to be linearly independent.

From the lecture we know that d
dt

eAt = AeAt. This can be iterated to yield d2

dt2
eAt =

A2eAt (and likewise dk

dtk
eAt = AkeAt for all k ∈ N). Hence the functions f , g, which

are the coordinate functions of t 7→ eAt with respect to the “matrix basis” I,A, are
twice differentiable as well (even of class C∞).

Thus the assertion holds with c0 = f , c1 = g.
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c) Using the observation made about the derivatives of t 7→ eAt in b), we obtain

eAt = c0(t)I2 + c1(t)A,

AeAt = c′0(t)I2 + c′1(t)A,

A2eAt = c′′0(t)I2 + c′′1(t)A

(??)

for t ∈ R. Together with a) this yields

0 = A2eAt − (a+ d)AeAt + (ad− bc)eAt

=
(
c′′0(t)− (a+ d)c′0(t) + (ad− bc)c0(t)

)
I2 +

(
c′′1(t)− (a+ d)c′1(t) + (ad− bc)c1(t)

)
A

for all t ∈ R, which can only hold if the coefficient functions of I2 and A vanish, i.e.,
c0, c1 solve the homogeneous linear ODE with characteristic polynomial X2 − (a +
d)X + ad − bc. The asserted initial conditions follow by substituting t = 0 into the
1st and 2nd equation of (??) and comparing coefficients of I2,A.

d) According to a) the given matrix satisfies A2 −A− 6I2 = 0.
=⇒ c0, c1 solve y′′ − y′ − 6y = 0, which has characteristic polynomial X2 −X − 6 =
(X + 2)(X − 3). The general solution of this ODE is y(t) = a1 e−2t + a2 e3t, with
initial conditions y(0) = a1 + a2, y

′(0) = −2 a1 + 3 a2. A short computation yields
c0(t) = 3

5
e−2t + 2

5
e3t, c1(t) = −1

5
e−2t + 1

5
e3t, and hence

eAt =

(
3

5
e−2t +

2

5
e3t
)(

1 0
0 1

)
+

(
−1

5
e−2t +

1

5
e3t
)(

0 6
1 1

)
=

1

5

(
3 e−2t + 2 e3t −6 e−2t + 6 e3t

−e−2t + e3t 2 e−2t + 3 e3t

)
.

49 For A = ( 1 2
3 6 ) the identity A2 = 7A is easily verified. It is a special case of the Cayley-

Hamilton Theorem or of H48 a). From it we obtain A3 = 7A2 = 72A, A4 = 72A2 = 73A,
etc., and in general Ak = 7k−1A for k ∈ N by induction.

eAt = I2 + tA +
t2

2!
A2 +

t3

3!
A3 + · · ·

= I2 + tA +
7t2

2!
A +

72t3

3!
A + · · ·

= I2 +
e7t − 1

7
A =

(
1 0
0 1

)
+

(
1
7

(e7t − 1) 2
7

(e7t − 1)
3
7

(e7t − 1) 6
7

(e7t − 1)

)
=

(
1
7

(e7t + 6) 2
7

(e7t − 1)
3
7

(e7t − 1) 1
7

(6 e7t + 1)

)
.

Alternatively, we can proceed as in H48 d) to determine eAt.
The particular solution y(t) of the inhomogeneous system satisfying y(0) = 0 is of the

3



form y(t) = eAtc(t) with

c(t) =

∫ t

0

e−As b(s) ds (since c(0) = 0)

=

∫ t

0

(
1
7

(e−7s + 6) 2
7

(e−7s − 1)
3
7

(e−7s − 1) 1
7

(6 e−7s + 1)

)(
s

sin s

)
ds

=
1

7

∫ t

0

[(
6 −2
−3 1

)
+ e−7s

(
1 2
3 6

)](
s

sin s

)
ds

=
1

7

∫ t

0

(
6s− 2 sin s+ s e−7s + 2 sin s e−7s

−3s+ sin s+ 3s e−7s + 6 sin s e−7s

)
ds

=
1

7

(
3 t2 − 1

49
(7 t+ 1)e(−7 t) − 1

25
(cos (t) + 7 sin (t))e(−7 t) + 2 cos (t)− 2376

1225

−3
2
t2 − 3

49
(7 t+ 1)e(−7 t) − 3

25
(cos (t) + 7 sin (t))e(−7 t) − cos (t)− 2376

1225

)
.

=⇒ y(t) = eAtc(t) =

(
3
7
t2 − 1

49
t+ 7

25
cos (t) + 74

8575
e(7 t) − 1

25
sin (t)− 99

343

− 3
14
t2 − 3

49
t− 4

25
cos (t) + 222

8575
e(7 t) − 3

25
sin (t) + 46

343

)
For the last two steps the computer algebra system SageMath was used.
Remark: There is a third way to determine a fundamental matrix of y′ = ( 1 2

3 6 ) y using the
eigenvalues and eigenvectors of ( 1 2

3 6 ). This will be discussed later in the lecture. An adhoc
solution, essentially equivalent to it, is the following: Since ( 1 2

3 6 ) ( 2
−1 ) = ( 0

0 ), there is the
constant solution y1(t) ≡ ( 2

−1 ). Then one needs to guess that a non-constant solution
of the form y2(t) = eλt ( v1v2 ) exists. Substituting this into the ODE gives λ eλt ( v1v2 ) =
y′2(t) = ( 1 2

3 6 ) y2(t) = eλt
(
v1+2v2
3v1+6v2

)
. Comparing both sides, we obtain v1 + 2v2 = λ v1,

3v1 + 6v2 = λ v2. Thus λv2 = 3λv1 and, since λ 6= 0, necessarily v2 = 3v1. Then,
using the 1st equation, λ = 7 since v1 6= 0. Hence y2(t) = e7t ( 1

3 ) is a solution, and
Φ(t) =

(
2 e7t

−1 3 e7t

)
is a fundamental matrix. From there we can either obtain eAt using

the formula eAt = Φ(t)Φ(0)−1 (cf. lecture) and proceed as above, or perform variation of
parameters with the fundamental matrix Φ(t) in place of eAt to obtain a solution of the
inhomogeneous system.

50 =⇒: Suppose, by contradiction, that f (n)(t) = a0(t)f(t)+a1(t)f
′(t)+· · ·+an−1(t)f (n−1)(t)

for all t ∈ I and f(t0) = f ′(t0) = · · · = f (n−1)(t0) = 0 for some t0 ∈ I. Then both f and
the all-zero function on I solve the IVP y(n) = a0(t)y+a1(t)y

′+· · ·+an−1(t)y(n−1)∧y(t0) =
y′(t0) = · · · = y(n−1)(t0) = 0. The Uniqueness Theorem (for linear ODEs, say) then im-
plies that y ≡ 0, which contradicts the assumption.
⇐=: Under the given assumption g(t) = f(t)2 + f ′(t)2 + · · ·+ f (n−1)(t)2 is zero-free on I,
i.e., we can write

1 =
g(t)

g(t)
=
f(t)2

g(t)
+
f ′(t)2

g(t)
+ · · ·+ f (n−1)(t)2

g(t)
.

Multiplying this identity by f (n)(t) gives

f (n)(t) =
f (n)(t)f(t)2

g(t)
+
f (n)(t)f ′(t)2

g(t)
+ · · ·+ f (n)(t)f (n−1)(t)2

g(t)
,

which is an explicit homogeneous linear ODE of order n for f with coefficient functions

a0(t) =
f (n)(t)f(t)

g(t)
, a1(t) =

f (n)(t)f ′(t)

g(t)
, . . . , an−1(t) =

f (n)(t)f (n−1)(t)

g(t)
.
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H51 Determine the general solution of the following ODE’s (two answers suffice):

a) (2t+ 1)y′′ + (4t− 2)y′ − 8y = (6t2 + t− 3)et, t > −1/2;

b) t2(1− t)y′′ + 2t(2− t)y′ + 2(1 + t)y = t2, 0 < t < 1;

c) (t2 − 4t+ 4)y′′ + (3t− 6)y′ + 2y = t2 + 1, t > 2.

Hints: The associated homogeneous ODE in a) has a solution of the form y(t) = eαt

and that in b) a solution of the form y(t) = tβ with constants α, β. In both cases
a particular solution of the inhomogeneous ODE can be determined by reducing it
to a first-order system and using variation of parameters (though this may not be
the most economic solution). The ODE in c) is an inhomogeneous Euler equation
in disguise.

H52 Prove Leibniz’s rule for the n-th derivative of a product: If f, g : I → R are n-times
differentiable then so is F = fg, and

DnF =
n∑
k=0

(
n

k

)
(Dkf)(Dn−kg).

H53 On Hermite Polynomials

In the lecture the Hermite polynomials Hn(X) ∈ R[X] are defined by Hn(t) =
(−1)net

2
Dn[e−t

2
] for t ∈ R (n = 0, 1, 2, . . . ).

a) Show that t 7→ Hn(t) is a polynomial function, justifying the definition.

b) Show that deg Hn(X) = n and the leading coefficient of Hn(X) is 2n.

c) Show that Hn(X) satisfies the recurrence relation Hn+1(X) = 2X Hn(X) −
2nHn−1(X), and compute Hn(X) for n ≤ 6.

d) Show that t 7→ Hn(t) solves Hermite’s differential equation y′′−2ty′+2ny = 0.

Hint: The equation is equivalent to Ly = 0, where L = D2 − 2tD + 2n id.
Express L

[
Hn(t)

]
in terms of Dn[e−t

2
], Dn+1[e−t

2
], Dn+2[e−t

2
], and rewrite the

latter using Dn+2[e−t
2
] = Dn+1[−2t e−t

2
].

H54 Compute the Taylor series of z 7→ 1/(z2+1) at a = 1 (and, optionally, at a = 1+i).

Hint: Proceed as for z 7→ 1/(1− z) in the lecture and then use partial fractions.

H55 Using power series, solve each of the following initial-value problems:

a) t(2− t)y′′ − 6(t− 1)y′ − 4y = 0, y(1) = 1, y′(1) = 0;

b) y′′ + (t2 + 2t+ 1)y′ − (4 + 4t)y = 0, y(−1) = 0, y′(−1) = 1.

1 PLEASE TURN OVER



H56 a) Find 2 linearly independent solutions of y′′ + t3y′ + 3t2y = 0.

b) Find the first 5 nonzero terms in the Taylor series expansion about t = 0 of
the solution y(t) of the initial value problem

y′′ + t3y′ + 3t2y = et, y(0) = y′(0) = 0.

H57 A Problem from Sunday’s Lecture

Suppose (αn) and (un) are sequences of nonnegative real numbers satisfying

αn ≤
n−1∑
k=0

M(k + 1)

n(n− 1)
αk (n ≥ 2),

un =
n−1∑
k=0

M(k + 1)

n(n− 1)
uk (n ≥ 2),

u0 = α0, u1 = α1

for some constant M > 0.

a) Show αn ≤ un for all n.

b) Show limn→∞
un+1

un
= 1.

Hint: Express un+1 in terms of un.

c) Is the sequence (un) (and hence (αn) as well) necessarily bounded from above?

H58 For each of the following ODE’s, find two linearly independent real solutions.

a) 4xy′′ + 3y′ − 3y = 0, x ≶ 0;

b) x2y′′ − x(1 + x)y′ + y = 0, x ≶ 0;

c) x2y′′ + xy′ + (1 + x)y = 0, x > 0.

Due on Thu May 9, 10 am

Exercise H58, which requires a lot of work, can be handed in until Sat May 11, 10 am.
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Solutions (prepared by Li Menglu and TH)

51 a) Let y1(t) = eαt, so that y′1(t) = αeαt, y′′(t) = α2eαt. Substituting these into the
associated homogeneous ODE, we get

(2t+ 1)α2 + (4t− 2)α− 8 = 0⇒ (2α2 + 4α)t+ α2 − 2α− 8 = 0

∴ α = −2 =⇒ y1(t) = e−2t is a solution.

Setting y2(t) = u(t)e−2t and substituting this into the ODE (cf. “order reduction” in
the lecture), we get for u′(t) the 1st-order linear ODE

u′′(t) +

[
2
−2e−2t

e−2t
+

4t− 2

2t+ 1

]
u′(t) = 0 ⇐⇒ u′′(t) +

(
4t− 2

2t+ 1
− 4

)
u′(t) = 0.

∴ u′(t) = e
∫
− 4t−2

2t+1
+4dt = e2t(2t+ 1)2 =⇒ u(t) =

4t2 + 1

2
e2t =⇒ y2(t) =

4t2 + 1

2

W =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ =

∣∣∣∣ e−2t 2t2 + 1
2

−2e−2t 4t

∣∣∣∣ = (2t+ 1)2e−2t 6= 0

=⇒ y1(t), y2(t) form a fundamental system of solutions of the homogeneous ODE.

For the inhomogeneous ODE in explicit form we have b(t) = 6t2+t−3
2t+1

et. Using variation
of parameters for the order-reduced 2×2 system, we need to extract the first coordinate
function of(

y1 y2
y′1 y′2

)∫ (
y1 y2
y′1 y′2

)−1(
0
b

)
dt =

(
y1 y2
y′1 y′2

)∫
1

W

(
−y2b
y1b

)
dt .

We have ∫
1

W

(
−y2b
y1b

)
dt =

∫ (− (2t2+ 1
2
)(6t2+t−3)

(2t+1)3
e3t

(6t2+t−3)
(2t+1)3

et

)
dt

=

(
−12t3+8t2+5t−4

6(2t+1)2
e3t

3t+2
(2t+1)2

et

)
.

Remark: For the integration step we have used a computer algebra program. If r(t)
is any rational function (quotient of two polynomials) and a ∈ C then r(t)eat can
be integrated in finite terms iff there exists a rational function R such that r(t) =
R′(t) + aR(t); if this is the case then

∫
r(t)eat = R(t)eat. (This result is due to

Liouville.) Only few rational functions r(t) have this property. In the two cases under
consideration one can find R(t) with some effort by using the

”
Ansatz“ R = u/v2,

v(t) = 2t+1, which the special form of the integrand suggests. The details are omitted.

=⇒ yp(t) = e−2t
−12t3 + 8t2 + 5t− 4

6(2t+ 1)2
e3t +

4t2 + 1

2

3t+ 2

(2t+ 1)2
et

=
−12t3 + 8t2 + 5t− 4 + 36t3 + 24t2 + 9t+ 6

6(2t+ 1)2
et

=
24t3 + 32t2 + 14t+ 2

6(2t+ 1)2
et =

(
t+ 1

3

)
et

3



is a particular solution of the inhomogeneous ODE, and its general solution is

y(t) = c1e
−2t + c2(4t

2 + 1) +
(
t+ 1

3

)
et.

Remark: A much quicker (but in a way dirty) solution is the following. Using the
differential operator

L = (2t+ 1)D2 + (4t− 2)D− 8 id,

the inhomogeneous ODE can be written as L[y] = (6t2 + t − 3)et. It is clear that L
maps the space of exponential polynomials of the special form p(t)et = (p0 + p1t +
· · · + pdt

d)et into itself. Thus we might hope for a particular solution of this form.
When determining the images under L of the first few exponential monomials,

L[et] = (2t+ 1)et + (4t− 2)et − 8et = (6t− 9)et,

L[t et] = (2t+ 1)(t+ 2)et + (4t− 2)(t+ 1)et − 8t et = (6t2 − t)et,
...

we find that

6t2 + t− 3 = L[t et] + 1
3
L[et] = L

[
t et + 1

3
et
]

= L
[(
t+ 1

3

)
et
]
.

This gives the same particular solution as above. (The general solution is determined
in the same way as above.)

b) Let y1(t) = tβ, so that y′1(t) = βtβ−1, y′′1(t) = β(β − 1)tβ−2. Substituting these into
the associated homogeneous ODE, we get

t2(1−t)β(β−1)tβ−2+2t(2−t)βtβ−1+2(1+t)tβ = 0⇒
[
β2 + 3β + 2 +

(
−β2 − β + 2

)
t
]
tβ = 0

∴ β = −2⇒ y1(t) = t−2.

Set y2(t) = u(t)t−2 and substitute this into the ODE, we can get

u′′(t) +

[
2
−2t−3

t−2
+

2t(2− t)
t2(1− t)

]
u′(t) = 0⇒ u′′(t) +

2

1− t
u′(t) = 0

∴ u′(t) = e
∫

2
t−1dt = (t− 1)2 ⇒ u(t) =

(t− 1)3

3
⇒ y2(t) =

(t− 1)3

3t2

W =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ =

∣∣∣∣ t−2 (t−1)3
3t2

−2t−3 (t− 1)2t−2 − 2
3
(t− 1)3t−3

∣∣∣∣ = (t− 1)2t−4 6= 0

=⇒ y1(t), y2(t) form a fundamental system of solutions of the homogeneous ODE.

For the determination of a particular solution of the inhomogeneous ODE we proceed
as before, setting b(t) = t2

t2(1−t) = 1
1−t .∫

1

W

(
−y2b(t)
y1b(t)

)
dt =

∫
t4

(t− 1)2

(
(t−1)2
3t2
1

t2(1−t)

)
dt =

∫ ( 1
3
t2

− t2

(t−1)3

)

=

( (
1
9
t3
)

− ln(t− 1) + 2
t−1 + 1

2(t−1)2

)

yp(t) = t−2
1

9
t3 +

(t− 1)3

3t2

(
− ln(t− 1) +

2

t− 1
+

1

2(t− 1)2

)
=

2t3 + 12t2 − 21t+ 9− 6(t− 1)3 ln(t− 1)

18t2

4



In the numerator of yp(t) we can subtract 2(t− 1)3 + 11 to change it into 18t2− 27t−
6(t−1)3 ln(t−1), since this amounts to adding a linear combination of y1(t) and y2(t)

to yp(t). This leaves the simpler function t 7→ 1 − 3
2t
− (t−1)3

3t2
log(t − 1). The general

solution of the inhomogeneous ODE is then

y(t) = c1t
−2 + c2

(t− 1)3

t2
+ 1− 3

2t
− (t− 1)3

3t2
log(t− 1).

c) Writing the associated homogeneous ODE as (t − 2)2y′′ + 3(t − 2)y′ + 2y = 0 and
setting t− 2 = x we get x2y′′ + 3xy′ + 2y = 0, which is apparently an Euler equation
with α = 3, β = 2. The indicial equation is r2 + (α− 1)r+β = r2 + 2r+ 2 = 0. It has
roots r1 = −1 + i, r2 = −1− i, and hence a complex fundamental system of solutions
of the (untransformed) homogeneous ODE on (2,∞) is

z1(t) = (t− 2)−1+i = eln(t−2)(−1+i),

z2(t) = (t− 2)−1−i = eln(t−2)(−1−i).

A real fundamental system of solutions—strictly speaking, this is not required—is

y1(t) = Rez1(t) = (t− 2)−1 cos ln (t− 2),

y2(t) = Imz1(t) = (t− 2)−1 sin ln (t− 2).

Since the associated differential operator L = (t−2)2D2+3(t−2)D+2 id maps the space
P2 of (real, say) quadratic polynomials into itself, it is reasonable to guess that there
must be a particular solution of the form yp(t) = a(t−2)2 + b(t−2)+ c = ax2 + bx+ c,
x = t−2. Substituting y′ = 2ax+ b, y′′ = 2a into the inhomogeneous ODE, we obtain

10ax2 + 5bx+ 2c = x2 + 4x+ 5 =⇒ a =
1

10
, b =

4

5
, c =

5

2

=⇒ yp(t) =
1

10
x2 +

4

5
x+

5

2
=

1

10
t2 +

2

5
t+

13

10
.

The general real (or complex) solution of (t−2)2y′′+3(t−2)y′+2y = t2 +1 on (2,∞)
is therefore

y(t) = c1(t− 2)−1 cos ln (t− 2) + c2(t− 2)−1 sin ln (t− 2) +
1

10
t2 +

2

5
t+

13

10

with c1, c2 ∈ R (resp., c1, c2 ∈ C). For the complex solution we could have used the
complex fundamental system z1(t), z2(t) instead.

52 The formula can easily be proved by induction on n. For n = 0 it is trivial, and for
n = 1 it is D(fg) = (Df)g + f(Dg), which is just the product rule of differentiation.
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Assuming that the formula holds for n, we obtain

Dn+1F = D(DnF )

= D

(
n∑
k=0

(
n

k

)
(Dkf)(Dn−kg

)
(inductive hypothesis)

=
n∑
k=0

(
n

k

)
D
(
(Dkf)(Dn−kg)

)
(linearity of differentiation)

=
n∑
k=0

(
n

k

)(
(Dk+1f)(Dn−kg) + (Dkf)(Dn−k+1g)

)
product rule

=
n∑
k=0

(
n

k

)
(Dk+1f)(Dn−kg) +

n∑
k=0

(
n

k

)
(Dkf)(Dn−k+1g)

=
n+1∑
k=1

(
n

k − 1

)
(Dkf)(Dn−(k−1)g) +

n∑
k=0

(
n

k

)
(Dkf)(Dn−k+1g)

= (Dn+1f)(D0g) + (D0f)(Dn+1g) +
n∑
k=1

[(
n

k − 1

)
+

(
n

k

)]
(Dkf)(Dn+1−kg)

=
n+1∑
k=0

(
n+ 1

k

)
(Dkf)(Dn+1−kg),

since
(
n
k−1

)
+
(
n
k

)
=
(
n+1
k

)
for 1 ≤ k ≤ n and

(
n+1
0

)
=
(
n+1
n+1

)
= 1. Thus the formula holds

also for n+ 1, and the proof by induction is complete.

53 a) If f is a polynomial function then

D
[
f(t)e−t

2
]

= f ′(t)e−t
2

+ f(t)e−t
2

(−2t) =
(
f ′(t)− 2t f(t)

)
e−t

2

= F (t)e−t
2

, (H)

where F (t) = f ′(t)−2t f(t) is also a polynomial function. Starting with f(t) = f0(t) =
1, it follows by induction that Dn[e−t

2
] = fn(t)e−t

2
for some polynomial function fn.

Hence Hn(t) = (−1)net
2
[Dne−t

2
] = (−1)nfn(t) is also a polynomial function.

b) From (H) we see that fn has degree n and leading coefficient (−2)n. Hence Hn(t) has
degree n as well and leading coefficient 2n.

c) We have

Hn+1(t) = (−1)n+1et
2

Dn
[
De−t

2]
= (−1)n+1et

2

Dn
[
−2t e−t

2]
= 2(−1)net

2

Dn
[
t e−t

2]
= 2(−1)net

2(
tDn[e−t

2

] + nDn−1[e−t
2

]
)

(by Leibniz’ formula)

= 2t(−1)net
2

Dn[e−t
2

] + 2n(−1)net
2

Dn−1[e−t
2

] = 2tHn(t)− 2nHn−1(t).

This proves the recursion formula in view of the 1-1 correspondence between polyno-
mials in R[X] and polynomial functions on R.

6



Together with H0(t) = (−1)0et
2
(e−t

2
) = 1, H1(t) = (−1)1et

2
(−2t e−t

2
) = 2t the recur-

sion formula gives

H0(X) = 1,

H1(X) = 2X,

H2(X) = 2X(2X)− 2 · 1 = 4X2 − 2,

H3(X) = 2X(4X2 − 2)− 4(2X) = 8X3 − 12X,

H4(X) = 2X(8X3 − 12X)− 6(4X2 − 2) = 16X4 − 48X2 + 12,

H5(X) = 2X(16X4 − 48X2 + 12)− 8(8X3 − 12X) = 32X5 − 160X3 + 120X,

H6(X) = 2X(32X5 − 160X3 + 120X)− 10(16X4 − 48X2 + 12) = 64X6 − 480X4 + 720X2 − 120.

d) We have

L
[
Hn(t)

]
= (−1)nD2

[
et

2

Dn[e−t
2

]
]
− 2t(−1)nD

[
et

2

Dn[e−t
2

]
]

+ 2n(−1)net
2

Dn[e−t
2

],

(−1)nL
[
Hn(t)

]
= et

2

Dn+2[e−t
2

] + 2 2tet
2

Dn+1[e−t
2

] + (2 + 4t2)et
2

Dn[e−t
2

]

− 2tet
2

Dn+1[e−t
2

]− 2t 2tet
2

Dn[e−t
2

] + 2n et
2

Dn[e−t
2

],

(−1)ne−t
2

L
[
Hn(t)

]
= Dn+2[e−t

2

] + 2tDn+1[e−t
2

] + 2(n+ 1)Dn[e−t
2

].

On the other hand, we also have

Dn+2[e−t
2

] = Dn+1[−2t e−t
2

] = −2tDn+1[e−t
2

]− 2(n+ 1)Dn[e−t
2

].

=⇒ (−1)ne−t
2
L
[
Hn(t)

]
= 0 =⇒ L

[
Hn(t)

]
= 0, as desired.

54 a = 1 :

1

z2 + 1
=

1

(z − i)(z + i)
=

1

2i

(
1

z − i
− 1

z + i

)
=

1

2i

(
1

z − 1 + 1− i
− 1

z − 1 + 1 + i

)
=

1

2i

[
∞∑
n=0

(−1)n
(z − 1)n

(1− i)n+1
−
∞∑
n=0

(−1)n
(z − 1)n

(1 + i)n+1

]

=
∞∑
n=0

bn(z − 1)n

with

bn =
(−1)n

2(n+1)/2

(eiπ/4)n+1 − (e−iπ/4)n+1

2i
=

(−1)n

2(n+1)/2
sin

(n+ 1)π

4

=



2−n/2−1 if n = 8k, 8k + 2,

−2−(n+1)/2 if n = 8k + 1,

0 if n = 8k + 3, 8k + 7,

−2−n/2−1 if n = 8k + 4, 8k + 6,

2−(n+1)/2 if n = 8k + 5.
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This can also be written as

1

z2 + 1
=
∞∑
k=0

(z − 1)8k

16k

(
1

2
− (z − 1)

2
+

(z − 1)2

4
− (z − 1)4

8
+

(z − 1)5

8
− (z − 1)6

16

)
.

and shows the known fact that
∑∞

n=0 bn(z−1)n has radius of convergence
√

2 (the distance
from 1 to the singularities ±i of 1/(z2 + 1)).
a = 1 + i : Since 1

(z−a)(z−b) = 1
a−b

(
1

z−a −
1
z−b

)
, we obtain

1

z2 + 1
=

1

(z − 1− i + 1)(z − 1− i + 1 + 2i
=

i

2

(
1

z − 1− i + 1
− 1

z − 1− i + 1 + 2i

)
=

i

2

[
∞∑
n=0

(−1)n(z − 1− i)n −
∞∑
n=0

(−1)n
(z − 1− i)n

(1 + 2i)n+1

]

=
∞∑
n=0

cn(z − 1− i)n

with

cn =
(−1)n i

2

(
1− (1− 2i)n+1

5n+1

)
=

(−1)n i

2

1−

(
1−2i√

5

)n+1

5(n+1)/2

 .

Since
∣∣∣1−2i√

5

∣∣∣ = 1, the last representation shows cn ' (−1)n i/2 for n → ∞, implying the

known fact that
∑∞

n=0 cn(z − 1− i)n has radius of convergence 1 (the distance from 1 + i
to the nearest singularity i of 1/(z2 + 1)).

55 a) We look for a solution in the form of a power series about t0 = 1. The series has
the form

y(t) =
∞∑
n=0

an(t− 1)n.

The point t0 = 1 is an ordinary point of the differential equation, so the power
series solution will be analytic at this point. Moreover, since the coefficient functions
p(t) = −6(t−1)

t(2−t) , q(t) = −4
t(2−t) of the corresponding explicit ODE have their singularities,

viz. t = 0 and t = 2, at distance 1 from t0, the radius of convergence of the power
series will be at least 1, and y(t) will solve the ODE on (−1, 1).

Differentiating the equation term by term, we obtain that

y′(t) =
∞∑
n=1

ann(t− 1)n−1,

y′′(t) =
∞∑
n=2

ann(n− 1)(t− 1)n−2.

Substituting the above series into the original equation gives

t(2− t)
∞∑
n=2

ann(n− 1)(t− 1)n−2 − 6(t− 1)
∞∑
n=1

ann(t− 1)n−1 − 4
∞∑
n=0

an(t− 1)n = 0.

8



Rewrite the series so that they display the same generic term and using t(2 − t) =
1− (t− 1)2 gives

∞∑
n=0

an+2(n+ 2)(n+ 1)(t− 1)n −
∞∑
n=2

ann(n− 1)(t− 1)n − 6
∞∑
n=1

ann(t− 1)n−

− 4
∞∑
n=0

an(t− 1)n = 0,

which can be simplified to
∞∑
n=0

[
(n+ 2)(n+ 1)an+2 − (n2 + 5n+ 4)an

]
(t− 1)n = 0.

Hence the coefficients an must satisfy the recurrence relation

an+2 =
n2 + 5n+ 4)

(n+ 2)(n+ 1)
an =

n+ 4

n+ 2
an, n = 0, 1, 2, 3, 4, . . .

According to the initial conditions,

a0 = y(1) = 1, a1 = y′(1) = 0.

The solution is a2k+1 = 0 for k = 0, 1, 2, . . . and

a2k =
2k + 2

2k
a2k−2 = · · · = 2k + 2

2k

2k

2k − 2
· · · 4

2
a0 =

2k + 2

2
= k+1 for k = 0, 1, 2, . . . .

Substituting these coefficients into the original series, the solution of the IVP is

y(t) =
∞∑
k=0

(k + 1)(t− 1)2k, −1 < t < 1.

The radius of convergence of this power series is obviously 1.

Remark: Making the variable transformation x = t − 1 early on saves some writing
(but otherwise leads to the same solution, of course).

b) We look for a solution in the form of a power series about t0 = −1. The series has the
form

y =
∞∑
n=0

an(t+ 1)n.

The point t0 = −1 is an ordinary point of the differential equation, and the coefficient
functions p(t) = (t + 1)2, q(t) = −4(t + 1) are polynomials. Hence the power series
will have radius of convergence ∞ and y(t) will be defined and solve the ODE on R.
Proceeding as before, we obtain
∞∑
n=2

ann(n− 1)(t+ 1)n−2 + (t+ 1)2
∞∑
n=1

ann(t+ 1)n−1 − 4(t+ 1)
∞∑
n=0

an(t+ 1)n = 0,

∞∑
n=2

ann(n− 1)(t+ 1)n−2 +
∞∑
n=1

ann(t+ 1)n+1 − 4
∞∑
n=0

an(t+ 1)n+1 = 0,

2a2 +
∞∑
n=0

[(n+ 3)(n+ 2)an+3 + (n− 4)an] (t+ 1)n+1 = 0.
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Hence the coefficients an must satisfy

a2 = 0, an+3 = − n− 4

(n+ 3)(n+ 2)
an for n = 0, 1, 2, 3, . . . .

The initial conditions are

a0 = y(−1) = 0, a1 = y′(−1) = 1.

Hence a0 = a3 = a6 = · · · = 0, a2 = a5 = a8 = · · · = 0,

a4 = − 1− 4

(1 + 3)(1 + 2)
a1 =

3

12
=

1

4
,

a7 = − 4− 4

(4 + 3)(4 + 2)
a4 = 0,

and a10 = a13 = · · · = 0 as well. Substituting these coefficients into the original series,
the solution of the IVP is

y = (t+ 1) +
1

4
(t+ 1)4, t ∈ R.

56 a) As in H55b) solutions at t0 = 0 must be analytic and exist on the whole real line.
The power series

”
Ansatz“ y(t) =

∑∞
n=0 ant

n yields

∞∑
n=2

ann(n− 1)tn−2 + t3
∞∑
n=1

annt
n−1 + 3t2

∞∑
n=0

ant
n = 0,

∞∑
n=−2

(n+ 4)(n+ 3)an+4t
n+2 +

∞∑
n=0

nant
n+2 + 3

∞∑
n=0

ant
n+2 = 0,

2a2 + 6a3t+
∞∑
n=0

[(n+ 4)(n+ 3)an+4 + (n+ 3)an] tn+2 = 0.

Hence the coefficients an satisfy

a2 = a3 = 0, an+4 = − 1

n+ 4
an for n = 0, 1, 2, 3, . . . .

Two linearly independent solutions are obtained by setting (a0, a1) = (1, 0) and (0, 1),
respectively, i.e.,

y1(t) = 1− t4

4
+

t8

4 · 8
− t12

4 · 8 · 12
± · · · =

∞∑
k=0

(−1)k

4kk!
t4k,

y2(t) = t− t5

5
+

t9

5 · 9
− t13

5 · 9 · 13
± · · · =

∞∑
k=0

(−1)k

5 · 9 · 13 · · · (4k + 1)
t4k+1.

b) The right-hand side of the equation can be expressed using Taylor series as

et =
∞∑
n=0

tn

n!
= 1 + t+

t2

2!
+
t3

3!
+
x4

4!
+ · · · .
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Inserting this series into the ODE and using the initial conditions a0 = y(0) = 0, a1 =
y′(0) = 0, changes the homogeneous recurrence relation in a) to the inhomogeneous
recurrence relation a0 = a1 = 0, a2 = 1

2
, a3 = 1

6
, and

an+4 = − 1

n+ 4
an +

1

(n+ 4)!
for n = 0, 1, 2, 3, . . .

The latter is obtained from equating coefficients at tn+2, which gives (n + 4)(n +
3)an+4 + (n+ 3)an = 1

(n+2)!
. The first few terms in the Taylor series expansion about

t = 0 of the solution are then

y(t) =
1

2
t2 +

1

6
t3 +

1

24
t4 +

1

120
t5− 59

6!
t6− 119

7!
t7− 209

8!
t8− 335

9!
t9 +

29737

10!
t10 + · · · .

(We asked for the “first 5 nonzero terms”, because a6 = −59
6!

disproves the apparent
pattern an = 1

n!
, which holds for n = 2, 3, 4, 5.)

57 a) The assertion is trivially true for n = 0, 1. For n ≥ 2 we may assume by induction
that αk ≤ uk for 0 ≤ k < n.

=⇒ αn ≤
n−1∑
k=0

M(k + 1)

n(n− 1)
αk ≤

n−1∑
k=0

M(k + 1)

n(n− 1)
uk = un.

b) We have

un+1 =
1

(n+ 1)n

n∑
k=0

M(k + 1)uk =
1

(n+ 1)n

(
n−1∑
k=0

M(k + 1)uk +M(n+ 1)un

)

=
n(n− 1)un +M(n+ 1)un

(n+ 1)n
=
n(n− 1) +M(n+ 1)

(n+ 1)n
un for n ≥ 2.

It follows that

lim
n→∞

un+1

un
= lim

n→∞

n(n− 1) +M(n+ 1)

(n+ 1)n
= lim

n→∞

n2 + (M − 1)n+M

n2 + n
= 1.

c) The answer is “No”. For M ≤ 2 the sequence (un) remains bounded, but for M > 2
it diverges to +∞ (except in the trivial case u0 = u1 = 0, in which un = 0 for all n).

The sum of the coefficients in the definition of un is Mn(n+1)/2
n(n−1) = M(n+1)

2(n−1) ≈ M/2 for
large n. For M < 2 the coefficient sum is ≤ 1 for large n, and one can prove by
induction that (un) is bounded. (We had a similar example in the lecture.)

We will now show that if u0, u1 are not both zero and M > 2 then (un) is unbounded.
Applying the formula for un+1/un repeatedly, we have

un+1 = u2

n∏
k=2

k(k − 1) +M(k + 1)

(k + 1)k
.

This says that the numbers un are the partial products of the infinite product

∞∏
n=2

n(n− 1) +M(n+ 1)

(n+ 1)n
.

11



It is known that an infinite product
∏∞

n=1(1 + bn) with bn ≥ 0 converges (equiva-
lently, is bounded) iff the series

∑∞
n=1 bn converges. (In what follows we need only the

implication =⇒, which is clear from
∏n

k=1(1 + bk) ≥ 1 +
∑n

k=1 bk.) Since

n(n− 1) +M(n+ 1)

(n+ 1)n
= 1 +

(M − 2)n+M

n2 + n
> 1 +

(M − 2)n+M − 2

n2 + n
= 1 +

M − 2

n
,

the divergence of the harmonic series implies for M > 2 that limn→∞ un =∞ as well.
(For M = 2 the fact about infinite products quoted above shows that (un) converges
in R, since this is true of the series

∑∞
n=1

1
n2+n

.)

58 a) Rewriting the ODE as

y′′ +
3

4x
y′ − 3

4x
y = 0,

we see that x = 0 is a regular singular point and

p0 = lim
x→0

x
3

4x
=

3

4
, q0 = lim

x→0
x2
−3

4x
= 0

. =⇒ The indicial equation is

r2 + (p0 − 1)r + q0 = r2 − 1

4
r = 0

.
=⇒ The exponents at the singularity x = 0 are r1 = 0, r2 = 1

4
. Since r1− r2 is not an

integer, there must be solutions y1(x), y2(x) on (0,∞) of the form

y1(x) = 1 +
∞∑
n=0

anx
n, y2(x) = x

1
4

(
1 +

∞∑
n=0

anx
n

)
.

In terms of the rational functions an(r) defined in the lecture and textbook, the
coefficients of y1(x), y2(x) are an = an(0) and an = an(1/4), respectively. (We use
’an’ for both, in order to be compatible with the notation used in [BDM17], Theorem
5.6.1.)

i) r1 = 0:

y1 =
∞∑
n=0

anx
n

y′1 =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n

xy′′1 = x

∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=1

(n+ 1)nan+1x
n

Substituting these into the ODE, we get

4
∞∑
n=1

(n+ 1)nan+1x
n + 3

∞∑
n=0

(n+ 1)an+1x
n − 3

∞∑
n=0

anx
n = 0

=⇒ 3a1 − 3a0 +
∞∑
n=1

{[4n(n+ 1) + 3(n+ 1)] an+1 − 3an}xn = 0

=⇒ a1 = a0 and an+1 =
3

(4n+ 3)(n+ 1)
an for n ≥ 1.

12



Setting a0 = 1, we have

y1(x) = 1 + x+
3

7 · 2
x2 +

32

7 · 2 · 11 · 3
x3 + · · ·

= 1 + x+
∞∑
n=2

3n−1

7 · 11 · · · (4n− 1) · n!
xn

= 1 +
∞∑
n=1

3n

3 · 7 · 11 · · · (4n− 1) · n!
xn

=
∞∑
n=0

3n

3 · 7 · 11 · · · (4n− 1) · n!
xn,

using the convention that
∏0

n=1(4n− 1) = 1 (“empty product”).

ii) r2 = 1
4
:

y2 = x
1
4

∞∑
n=0

anx
n =

∞∑
n=0

anx
n+ 1

4

y′2 =
∞∑
n=0

(
n+

1

4

)
anx

n− 3
4 =

∞∑
n=−1

(
n+

5

4

)
an+1x

n+ 1
4

xy′′2 =
∞∑
n=0

(
n+

1

4

)(
n− 3

4

)
anx

n− 3
4 =

∞∑
n=−1

(
n+

5

4

)(
n+

1

4

)
an+1x

n+ 1
4

Substituting these into the ODE, the coefficient of x−3/4 vanishes by construction,
and we get

∞∑
n=0

{[
4

(
n+

5

4

)(
n+

1

4

)
+ 3

(
n+

5

4

)]
an+1 − 3an

}
xn+

1
4 = 0

=⇒ an+1 =
3 an

4
(
n+ 5

4

) (
n+ 1

4

)
+ 3

(
n+ 5

4

) =
3 an

(4n+ 5)(n+ 1)
for n ≥ 0.

Setting a0 = 1, we obtain

y2(x) = x
1
4 +

∞∑
n=1

3n

5 · 9 · · · (4n+ 1) · n!
xn+

1
4 =

∞∑
n=0

3n

5 · 9 · · · (4n+ 1) · n!
xn+

1
4 .

As shown in the lecture, y1(x) and y2(x) are linearly independent. This is
also clear from the fact that y1(x) is analytic at x = 0 and y2(x) = x1/4 ×
”nonzero analytic” is not.

As discussed in the lecture (or see Theorem 5.6.1 in [BDM17], p. 227), a fun-
damental system of solutions on (−∞, 0) is obtained by replacing the fractional
part xr (if any) in the solutions by (−x)r = |x|r. This doesn’t affect y1(x) (y1(x)
is analytic on R and hence solves the ODE on R), but y2(x) is changed to

y−2 (x) = (−x)
1
4

∞∑
n=0

3n

5 · 9 · · · (4n+ 1) · n!
xn, x ∈ (−∞, 0).
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b) Rewriting the ODE as

y′′ −
(

1 +
1

x

)
y′ +

1

x2
y = 0,

we see that x = 0 is a regular singular point with p0 = −1, q0 = 1.
=⇒ The indicial equation is

r2 + (p0 − 1)r + q0 = (r − 1)2 = 0

.
=⇒ The exponents at the singularity x = 0 are r1 = r2 = 1. Thus there must be
solutions y1(x), y2(x) on (0,∞) of the form

y1(x) = 1 +
∞∑
n=1

anx
n+1, y2(x) = y1(x) lnx+

∞∑
n=1

bnx
n+1.

i) r1 = 1:

y1 =
∞∑
n=0

anx
n+1,

y′1 =
∞∑
n=0

(n+ 1)anx
n,

x(1 + x)y′1 =
∞∑
n=0

(n+ 1)anx
n+1 +

∞∑
n=0

(n+ 1)anx
n+2

=
∞∑
n=0

(n+ 1)anx
n+1 +

∞∑
n=1

nan−1x
n+1

=
∞∑
n=0

[(n+ 1)an + nan−1]x
n+1, (a−1 := 0)

x2y′′1 = x2
∞∑
n=1

(n+ 1)nanx
n−1 =

∞∑
n=1

(n+ 1)nanx
n+1 =

∞∑
n=0

(n+ 1)nanx
n+1.

Substituting these into the ODE, we get

∞∑
n=0

(n+ 1)nanx
n+1 −

∞∑
n=0

[(n+ 1)an + nan−1]x
n+1 +

∞∑
n=0

anx
n+1

=
∞∑
n=0

(n2an − nan−1)xn+1 = 0.

=⇒ an =
an−1
n

for n ≥ 1

Setting a0 = 1, we obtain an = 1/n! and

y1(x) = x
∞∑
n=0

xn

n!
= x ex.

14



ii) For the determination of y2(x) we use the recurrence relation for an(r) derived in
the lecture; cf. also [BDM17], p. 223, Eq. (8). Since F (r) = (r−1)2, p0 = p1 = −1,
q0 = 1 and all other coefficients pi, qi are zero, we have

an(r) = − 1

F (r + n)

n−1∑
k=0

[(r + k)pn−k + qn−k] ak(r)

=
−1

(r + n− 1)2
(r + n− 1)p1an−1(r) =

an−1(r)

r + n− 1
(n ≥ 1).

Setting a0(r) = 1, we get

a1(r) =
1

r
,

a2(r) =
1

r(r + 1)
,

...

an(r) =
1

r(r + 1)(r + 2) · · · (r + n− 1)
.

=⇒ bn(r) := a′n(r) =
a′n(r)

an(r)
an(r)

= −
(

1

r
+

1

r + 1
+ · · ·+ 1

r + n− 1

)
1

r(r + 1)(r + 2) · · · (r + n− 1)

=⇒ bn = bn(1) = −
(

1 +
1

2
+

1

3
+ · · ·+ 1

n

)
1

n!
= −Hn

n!

=⇒ y2(x) =

(
∞∑
n=0

xn+1

n!

)
lnx−

∞∑
n=1

Hn

n!
xn+1 = x ex lnx−

∞∑
n=1

Hn

n!
xn+1

The linear independency of y1(x), y2(x) was shown in the lecture.

A fundamental system of solutions on (−∞, 0) is formed by y1(x) and

y−2 (x) = x ex ln(−x)−
∞∑
n=1

Hn

n!
xn+1, x ∈ (−∞, 0).

Remark: The coefficients bn can also be determined by substituting the
”
Ansatz“

15



for y2(x) into the ODE. Writing L = x2D2 − x(x+ 1)D + id, we obtain

y2(x) = y1(x) lnx+
∑
n≥0

bnx
n,

y′2(x) = y′1(x) lnx+
y1(x)

x
+
∑
n≥1

nbnx
n−1,

y′′2(x) = y′′1(x) lnx+ 2
y1(x)

x
− y1(x)

x2
+
∑
n≥2

n(n− 1)bnx
n−2,

L [y2(x)] = L [y1(x)] lnx+ 2x y′1(x)− (x+ 2)y1(x) + L

[∑
n≥0

bnx
n

]

= 0 + 2x(x+ 1)ex − (x+ 2)xex︸ ︷︷ ︸
=x2ex

+
∞∑
n=1

(n2bn − nbn−1)xn+1

=
∞∑
n=1

(
n2bn − nbn−1 +

1

(n− 1)!

)
xn+1.

L [y2(x)] = 0 is equivalent to an inhomogeneous linear recurrence relation for bn,
which has the particular solution b0 = 0, bn = −Hn/n! for n ≥ 1 (as can be seen
by introducing Bn = n!bn, which satisfies Bn −Bn−1 = −1/n).

c) Rewriting the ODE as

y′′ +
1

x
y′ +

(
1

x2
+

1

x

)
y = 0,

we see that x = 0 is a regular singular point and

p0 = lim
x→0

x
x

x2
= 1, q0 = lim

x→0
x2

1 + x

x2
= 1.

=⇒ The indicial equation is

r2 + (p0 − 1)r + q0 = r2 + 1 = 0.

=⇒ The exponents at the singularity x = 0 are r1 = i, r2 = −i. Thus there must be
solutions y1(x), y2(x) on (0,∞) of the form

y1(x) = xi
∞∑
n=0

anx
n = ei lnx

∞∑
n=0

anx
n,

y2(x) = x−i
∞∑
n=0

anx
n = e−i lnx

∞∑
n=0

anx
n.

This time we first determine the functions an(r) from the recurrence relation and then
substitute r = ±i. Since p1 = 0, q1 = 1, the recurrence relation for an(r) is

an(r) = − an−1(r)

F (r + n)
= − an−1(r)

(r + n)2 + 1
.
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=⇒ a1(r) = − a0(r)

(r + 1)2 + 1
= − 1

(r + 1)2 + 1
,

a2(r) =
1

[(r + 1)2 + 1][(r + 2)2 + 1]
,

...

an(r) =
(−1)n

[(r + 1)2 + 1][(r + 2)2 + 1] · · · [(r + n)2 + 1]
,

=⇒ y1(x) = ei lnx

(
1 +

∞∑
n=1

(−1)nxn

[(1 + i)2 + 1][(2 + i)2 + 1] · · · [(n+ i)2 + 1]

)
,

y2(x) = ei lnx

(
1 +

∞∑
n=1

(−1)nxn

[(1− i)2 + 1][(2− i)2 + 1] · · · [(n− i)2 + 1]

)
.

Two linearly independent real solutions y∗1(x), y∗2(x) are obtained by extracting real
and imaginary part of y1(x), say.

y∗1(x) = cos(ln x)

(
1− x

5
− x2

40
+

3x3

520
∓ · · ·

)
− sin(lnx)

(
2x

5
− 3x2

40
+

7x3

1560
∓ · · ·

)
,

y∗2(x) = sin(ln x)

(
1− x

5
− x2

40
+

3x3

520
∓ · · ·

)
+ cos(lnx)

(
2x

5
− 3x2

40
+

7x3

1560
∓ · · ·

)
.
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ZJU-UIUC Institute
Prof. Thomas Honold

Spring Semester 2024
Homework 11

Differential Equations (Math 285)

H59 Do Exercises 5, 6, 9 in [BDM17], Ch. 5.7 (Exercises 6, 7, 10 in the 11th US edition).
Optionally also show that Y′0(x) = −Y1(x) for x > 0; see p. 236 (p. 238 in the
11th US edition) for the definition of Y1(x). The solution y2(x) appearing in the
definition of Y1(x) is the same as that you obtain in Exercise 9 (resp., Exercise 10).

H60 The Γ function is defined for x > 0 by Γ(x) =
∫∞

0
tx−1e−t dt , and for non-integral

x < 0 by choosing an integer n > −x and setting

Γ(x) :=
Γ(x+ n)

x(x+ 1) · · · (x+ n− 1)
.

a) Show that Γ(x) is well-defined for x < 0, x /∈ Z, and satisfies Γ(x+1) = xΓ(x)
for all x ∈ R \ {0,−1,−2, . . . }.
Hint: Recall from Calculus III that Γ(x+ 1) = xΓ(x) for x > 0.

b) Show limx→−n
1

Γ(x)
= 0 for n ∈ N = {0, 1, 2, . . . }.

This shows that 1/Γ can be continuously extended to R by defining
1/Γ(−n) := 0 for n ∈ N.

c) The Bessel function of order ν ∈ R is defined as (cf. the lecture)

Jν(x) =
∞∑
m=0

(−1)m

2ν+2mm! Γ(ν +m+ 1)
xν+2m for x ∈ R,

cf. b) for the definition of 1/Γ(ν +m+ 1).
Show J−ν = (−1)νJν for ν ∈ N.

Hint: Show first that the coefficients of xn in the expansion of J−ν(x) are zero
for n < ν.

H61 Find the Laplace transforms of

a) 1 + 2t+ 3t2; b) e5t+3; c)
∫ t

0
τ sin τ dτ ; d) sin3 t.

H62 Find inverse Laplace transforms of

a)
5

s+ 6
; b)

2s− 1

s2 + 3
; c)

1

(s2 + 1)(s2 + 4)
; d)

d

ds

1− e−5s

s
;

e) ln
s

s− 1
; f) ln

s2 + 1

(s− 1)2
; g)

s+ 1

s2(s2 + 1)
; h)

e−2s − e−4s

s
;

i) arccot
s

ω
; j)

s2 − 1

(s3 + s2 − 5s+ 3)(s2 − 4)
.

Six answers suffice.
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H63 Solve the following initial value problems with the Laplace transform (two answers
suffice):

a) y′′ − 3 y′ + 2 y = 6 e−t, y(0) = 9, y′(0) = 6;

b) y′′ + 2 y′ − 3 y = 6 sinh(2t), y(0) = 0, y′(0) = 4;

c) y′′′ + y′′ − 5 y′ + 3 y = 6 sinh(2t), y(0) = y′(0) = 0, y′′(0) = 4.

H64 Find the Laplace transform of the Bessel function J0 in one of two ways (the other
is optional):

a) From the power series of J0 and termwise integration of the Laplace integral.

Hint: The power series expansion

1√
1− 4x

=
∞∑
n=0

(
2n

n

)
xn, valid for |x| < 1/4,

may help (but you should prove it first).

b) From the Bessel ODE of order ν = 0.

H65 Optional Exercise

For x ∈ R \ {0}, ν ∈ R show:

a) Jν+1(x) =
2ν

x
Jν(x)− Jν−1(x);

b) J′ν(x) = −Jν+1(x) +
ν

x
Jν(x).

Remark: a) Provides a recurrence relation to determine Jν for ν ∈ N from J0,
J1. The Neumann functions Yν , ν ∈ N, satisfy the same recurrence relation and
provide a 2nd solution of x2y′′+xy′+ (x2− ν2)y = 0, which is linearly independent
of Jν . Thus in order to determine Yν for ν ∈ N (the only case of interest) it suffices
to know Y0 and Y1.

H66 Optional Exercise

Suppose F (s) = L
{
f(t)

}
is defined for Re(s) > a, a ∈ [−∞,∞). Show that

lims→+∞ F (s) = 0; cp. Exercise 24 in [BDM17], Ch. 6.1.

Hint: Use the uniform convergence of
∫∞

0
f(t)e−st on Re(s) ≥ a + 1 (resp., for

a = −∞ on Re(s) ≥ 0).

Due on Thu May 16, 10 am

Using the Laplace transform as a tool for the solution of certain IVP’s (required for H63)
will be discussed in the lecture on Sat May 11.

H65 and H66 can be handed in until Mon May 20, 10 am.
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Solutions (prepared by Li Menglu and TH)

59 a) Exercise 5
Using the ratio test, we get

lim
m→+∞

∣∣∣∣am+1

am

∣∣∣∣ = lim
m→+∞

∣∣∣∣∣∣
(−1)m+1x2(m+1)

22(m+1)((m+1)!)2

(−1)mx2m

22m(m!)2

∣∣∣∣∣∣
= lim

m→+∞

∣∣∣∣ −x2

4(m+ 1)2

∣∣∣∣
= lim

m→+∞

x2

4(m+ 1)2

= 0

< 1

for all x 6= 0.
So, the series for J0(x) converges absolutely for all x.

b) Exercise 6
Using the ratio test, we get

lim
m→+∞

∣∣∣∣am+1

am

∣∣∣∣ = lim
m→+∞

∣∣∣∣∣∣
(−1)m+1x2(m+1)

22(m+1)(m+2)!(m+1)!

(−1)mx2m

22m(m+1)!m!

∣∣∣∣∣∣
= lim

m→+∞

∣∣∣∣ −x2

4(m+ 2)(m+ 1)

∣∣∣∣
= lim

m→+∞

x2

4(m+ 2)(m+ 1)

= 0

< 1

for all x 6= 0.
So, the series for J1(x) converges absolutely for all x.
It follows that we can obtain the derivative of J0(x) everywhere by term-wise differ-
entiation:

J′0(x) =
d

dx

∞∑
m=0

(−1)mx2m

22m(m!)2

=
∞∑
m=1

(−1)mx2m−1

22m−1m!(m− 1)!

=
∞∑
m=0

(−1)m+1x2m+1

22m+1(m+ 1)!m!

= −x
2

∞∑
m=0

(−1)mx2m

22m(m+ 1)!m!

= −J1(x),

as claimed.
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c) Exercise 9
First, we want to show that a1(−1) = a′1(−1) = 0.
Equation (24) in Ch. 5.7 gives

a1(r)((r + 1)2 − 1)xr+1 = 0.

Hence a1(r) = 0 for r /∈ {−2, 0}, and in particular a1(−1) = a′1(−1) = 0. (Alterna-
tively, look at the recurrence relation an(r) = −F (r+n)−1

∑n−1
k=0 [(r + k)pn−k + qn−k] ak(r),

which for n = 1 reduces to a1(r) = − 1
r(r+2)

[rp1 + q1] a0(r) = 0
r(r+2)

, since for the Bessel

equation p1 = q1 = 0.) Next,

c1(−1) =
d

dr
[(r + 1)a1(r)]

∣∣∣∣
r=−1

= 0.

Then, from equation (25) in Ch. 5.7 or using the said general recurrence relation for
an(r), we get

an(r) =
−an−2(r)

(r + n− 1)(r + n+ 1)
for n ≥ 2.

Since a1(r) = 0, this gives an(r) = 0 for all odd n wherever an(r) is defined (i,e.,
r /∈ {0,−2,−4, . . . ,−n − 1}), and hence cn(−1) = d

dr
[(r + 1)an(r)]

∣∣
r=−1

= 0 for all
odd n. For even n the recurrence relation gives by induction

a2(r) =
−a0(r)

(r + 1)(r + 3)
= − 1

(r + 1)(r + 3)
,

a4(r) =
−a2(r)

(r + 3)(r + 5)
=

1

(r + 1)(r + 3)(r + 3)(r + 5)
,

...

a2m(r) =
−1

(r + 2m− 1)(r + 2m+ 1)
· −1

(r + 2m− 3)(r + 2m− 1)
· · · −1

(r + 1)(r + 3)

=
(−1)m

(r + 1)(r + 3) · · · (r + 2m− 1)(r + 3)(r + 5) · · · (r + 2m+ 1)
.

So,

c2m(−1) =
d

dr
[(r + 1)a2m(r)]

∣∣∣∣
r=−1

=
d

dr

(
(−1)m

(r + 3)2(r + 5)2 · · · (r + 2m− 1)2(r + 2m+ 1)

)∣∣∣∣
r=−1

=

[(
− 2

r + 3
− 2

r + 5
− 2

r + 2m− 1
− 1

r + 2m+ 1

)
(r + 1)a2m(r)

]∣∣∣∣
r=−1

=

(
−1− 1

2
− · · · − 1

m− 1
− 1

2m

)
(−1)m

2242 · · · (2m− 2)2(2m)

= −1

2
(Hm−1 + Hm)

(−1)m

22m−1m!(m− 1)!

=
(−1)m+1(Hm−1 + Hm)

22mm!(m− 1)!
for m = 1, 2, . . .
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Finally, we need to compute

a = lim
r→−1

(r + 1)a2(r)

= lim
r→−1

(
−1

r + 3

)
= −1

2
.

According to the theory (e.g., Th. 5.6.1 in Ch. 5.6), a 2nd solution of Bessel’s equation
of order one is

y2(x) = −1

2
y1(x) ln |x|+ 1

|x|

(
1−

∞∑
m=1

(−1)m(Hm + Hm−1)

22mm!(m− 1)!
x2m

)

‘ = −J1(x) ln |x|+ 1

|x|

(
1−

∞∑
m=1

(−1)m(Hm + Hm−1)

22mm!(m− 1)!
x2m

)
, x 6= 0.

For this note that y1(x) denotes the analytic solution normalized by a0 = y′1(0) = 1,

so that J1(x) =
∑∞

m=0
(−1)m

22m+1m!(m+1)!
x2m+1 = x

2
+ · · · = 1

2
y1(x).

The corresponding Neumann function is then

Y1(x) =
2

π
[−y2(x) + (γ − ln 2)J1(x)]

=
2

π

[(
ln
x

2
+ γ
)

J1(x)− 1

x
+
∞∑
m=1

(−1)m(Hm + Hm−1)

22mm!(m− 1)!
x2m−1

]
.

Finally we show that Y′0(x) = −Y1(x).

Y′0(x) =
d

dx

2

π

[(
ln
x

2
+ γ
)

J0(x) +
∞∑
m=1

(−1)m+1Hm

22m(m!)2
x2m

]

=
2

π

[
J0(x)

x
+
(

ln
x

2
+ γ
)

J′0(x) +
∞∑
m=1

(−1)m+1Hm

22m−1m!(m− 1)!
x2m−1

]

=
2

π

[
−
(

ln
x

2
+ γ
)

J1(x) +
1

x
+
∞∑
m=1

(
(−1)m

22m(m!)2
+

(−1)m+1Hm

22m−1m!(m− 1)!

)
x2m−1

]

=
2

π

[
−
(

ln
x

2
+ γ
)

J1(x) +
1

x
−
∞∑
m=1

(−1)m−1

m
+ (−1)m2Hm

22mm!(m− 1)!
x2m−1

]
= −Y1(x),

since 2Hm − 1
m

= Hm + Hm−1.

60 Before we solve the exercise, we show that Γ satisfies the indicated identity for x > 0
and any positive integer n. This follows by repeated application of the functional equation

5



Γ(x+ 1) = xΓ(x), which was shown in Calculus III:

Γ(x) =
Γ(x+ 1)

x
(since Γ(x+ 1) = xΓ(x))

=
Γ(x+ 2)

x(x+ 1)
(since Γ(x+ 2) = (x+ 1)Γ(x+ 1))

=
Γ(x+ 3)

x(x+ 1)(x+ 2)
(since Γ(x+ 3) = (x+ 2)Γ(x+ 2))

= · · · = Γ(x+ n)

x(x+ 1) · · · (x+ n− 1)
.

This identity suggest how to extend the definition of Γ to negative x, because its right-
hand side makes sense for x > −n, x /∈ {0, 1, . . . , n− 1}.

a) To show that Γ(x) is well-defined for x < 0, x 6∈ Z, we need to show that different
choices of n > −x don’t affect the value of Γ(x) as specified in the exercise. The
smallest n we can use in the definition is n = d−xe. With this n we have

Γ(x) =
Γ(x+ n)

x(x+ 1) · · · (x+ n− 1)

=
Γ(x+ n+ 1)

x(x+ 1) · · · (x+ n− 1)(x+ n)
(since Γ(x+ n+ 1) = (x+ n)Γ(x+ n))

=
Γ(x+ n+ 2)

x(x+ 1) · · · (x+ n− 1)(x+ n)(x+ n+ 1)
(same reasoning)

= · · ·

Thus using n+ 1, n+ 2, . . . in the formula to compute Γ(x) yields the same result as
n, which means that Γ(x) is well-defined.
Then, we prove that Γ(x + 1) = xΓ(x). For x > 0 this was shown in Calculus III,
so it remains to consider the case x < 0, x /∈ Z. Choose n ∈ N such that x + n > 0.
Then in the definition of Γ(x+ 1) we can use n− 1, since x+ 1 + (n− 1) = x+n > 0.

=⇒ Γ(x+ 1) =
Γ(x+ 1 + n− 1)

(x+ 1)(x+ 2) · · · (x+ 1 + (n− 1)− 1)

=
Γ(x+ n)

(x+ 1)(x+ 2) · · · (x+ n− 1)

= x
Γ(x+ n)

x(x+ 1)(x+ 2) · · · (x+ n− 1)

= xΓ(x)

For n = 1, which is possible only if −1 < x < 0, the definition of Γ(x) reduces to

Γ(x) = Γ(x+1)
x

and the functional equation holds as well. This case is included in
the above computation, provided the first denominator is interpreted as 1 (empty
product).

b) For x close to −n we have x+ n+ 1 > 0. Hence a) gives

lim
x→−n

1

Γ(x)
= lim

x→−n

x(x+ 1) · · · (x+ n)

Γ(x+ n+ 1)
.

6



Since Γ(1) = 1, the limit evaluates to

lim
x→−n

1

Γ(x)
=

(−n)(−n+ 1) · · · (0)

1
= 0.

Thus 1/Γ has zeros at the nonpositive integers, and Γ has poles there; cf. Fig. 1. (It

is easy to see that Γ(x) ≈ (−1)n

n!(x+n)
for x→ −n and hence 1/Γ(x) ≈ (−1)nn!(x+ n) for

x→ −n. In particular, the poles of Γ and the zeros of 1/Γ are simple.)

3 2 1 1 2 3 4

6

4

2

2

4

6

x Γ(x)
x 1/Γ(x)

Figure 1: The Γ-function on R and its reciprocal function 1/Γ

Remark: The Euler integral Γ(z) =
∫∞

0
tz−1e−t dt makes sense for z ∈ C with Re z > 0

and gives an extension of Γ to the open right half plane H of C satisfying Γ(z + 1) =
z Γ(z) for all z ∈ H. Using the same idea as above, one can extend the domain of Γ
further to C \ {0,−1,−2, . . . } (preserving the functional equation) and that of 1/Γ to
the whole complex plane. The resulting functions are analytic in their domain. Thus,
in a way, the “disconnected picture” of Γ on the negative real axis is misleading: In
the complex plane there are only the isolated poles at z = 0,−1,−2, . . .

c) First, we have

J−ν(x) =
∞∑
m=0

(−1)m

2−ν+2mm! Γ(−ν +m+ 1)
x−ν+2m.

From b), we know that 1/Γ(−n) = 0 for n ∈ N. So, the coefficients of x−ν+2m are zero

7



for m < ν. Then

J−ν(x) =
∞∑
m=ν

(−1)m

2−ν+2mm! Γ(−ν +m+ 1)
x−ν+2m

=
∞∑
m=ν

(−1)m

2ν+2(m−ν)m! Γ((m− ν) + 1)
xν+2(m−ν)

=
∞∑
n=0

(−1)n+ν

2ν+2n(n+ ν)! Γ(n+ 1)
xν+2n (let n = m− ν)

= (−1)ν
∞∑
n=0

(−1)n

2ν+2n(n+ ν)!n!
xν+2n

= (−1)νJν(x).

61 a) L
{

1 + 2t+ 3t2
}

= L{1}+ 2L{t}+ 3L{t2} = 1/s+ 2/s2 + 6/s3 for Re(s) > 0;

b) L
{

e5t+3
}

= e3L
{

e5t
}

= e3/(s− 5) for Re(s) > 5;

c) L
{∫ t

0
τ sin τdτ

}
= 1

s
L{t sin t} = −1

s
d
ds
L{sin t} = −1

s
d
ds

1
s2+1

= −1
s
−2s

(s2+1)2
= 2

(s2+1)2
.

Alternatively (but more costly), evaluate the integral first using integration by parts,∫ t
0
τ sin τdτ = sin t − t cos t, and then recall 1

(s2+1)2
= L

{
1
2
(sin t− t cos t)

}
from the

lecture.

d) From sin(3t) = Im(cos t + i sin t)3 = 3 cos2 t sin t − sin3 t = 3 sin t − 4 sin3 t we get
L
{

sin3 t
}

= L
{

1
4
(3 sin t− sin(3t))

}
= 1

4

(
3

s2+1
− 3

s2+9

)
= 6

(s2+1)(s2+9)
.

62 a) L−1
{

5
s+6

}
= 5L−1

{
1
s+6

}
= 5 e−6t;

b) L−1
{

2s−1
s2+3

}
= 2L−1

{
s

s2+3

}
− L−1

{
1

s2+3

}
= 2 cos(

√
3 t)− 1√

3
sin(
√

3 t);

c) 1
(s2+1)(s2+4)

= 1
3

(
1

s2+1
− 1

s2+4

)
=⇒ L−1

{
1

(s2+1)(s2+4)

}
= 1

3

(
L−1

{
1

s2+1

}
− L−1

{
1

s2+4

})
=

1
3

sin t− 1
6

sin(2t);

d) 1−e−5s

s
= L

{
H(t)−H(t−5)

}
=⇒ d

ds
1−e−5s

s
= L

{
−tH(t)+tH(t−5)

}
, i.e., L−1

{
d
ds

1−e−5s

s

}
=

−tH(t) + tH(t− 5);

e) We have

ln
s

s− 1
= ln

1

1− 1/s
= − ln(1− 1/s) =

1

s
+

1

2s2
+

1

3s3
+

1

4s4
+ · · ·

for |s| > 1, and hence

L−1

{
ln

s

s− 1

}
= 1 +

t

2
+

t2

3 2!
+

t3

4 3!
+ · · · =

∞∑
n=1

tn−1

n!

=
et − 1

t
.
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f) Let F (s) = ln s2+1
(s−1)2

= ln(s2 + 1)− 2 ln(s− 1) and f(t) = L−1
{
F (s)

}
.

=⇒ L
{
−t f(t)

}
= F ′(s) =

2s

s2 + 1
− 2

s− 1
= L

{
2 cos t− 2 et

}
=⇒ −t f(t) = 2 cos t− 2 et

=⇒ f(t) =
2 et − 2 cos t

t
(t ≥ 0)

Since e0 = cos 0 = 1 this is in fact an everywhere analytic function of t.

g) We have

s+ 1

s2(s2 + 1)
=

1

s(s2 + 1)
+

1

s2(s2 + 1)
=

1

s
− s

s2 + 1
+

1

s2
− 1

s2 + 1

=⇒ L
{

s+ 1

s2(s2 + 1)

}
= 1− cos t+ t− sin t.

h) L−1 {(e−2s − e−4s) /s} = L−1 {e−2s/s} − L−1 {e−4s/s} = H(t− 2)−H(t− 4).

i) From the lecture we know L
{

sin t
t

}
= arccot s. Dilation in the domain gives

L
{

sin(ωt)

ωt

}
=

1

ω
arccot

s

ω
. =⇒ L−1

{
arccot

s

ω

}
=

sin(ωt)

t

j) We have

s2 − 1

s3 + s2 − 5s+ 3
=

s+ 1

(s− 1)(s+ 3)
=

1

2

(
1

s− 1
+

1

s+ 3

)
.

=⇒ L−1

{
s2 − 1

s3 + s2 − 5s+ 3

}
=

1

2

(
et + e−3t

)
.

63 As usual, we denote the Laplace transform of y(t) by Y (s)

a) Applying L to both sides of the equation and inserting the initial conditions gives

s2 Y (s)− 9s− 6− 3
(
s Y (s)− 9) + 2Y (s) =

6

s+ 1

(s2 − 3s+ 2)Y (s) =
6

s+ 1
+ 9s− 21 =

9s2 − 12s− 15

s+ 1

Y (s) =
9s2 − 12s− 15

(s− 1)(s− 2)(s+ 1)

The partial fraction decomposition of Y (s) is

Y (s) =
A

s− 1
+

B

s− 2
+

C

s+ 1

with

A = (s− 1)Y (s)
∣∣s = 1 = 9,

A = (s− 2)Y (s)
∣∣s = 2 = −1,

C = (s+ 1)Y (s)
∣∣s = −1 = 1,

=⇒ Y (s) =
9

s− 1
− 1

s− 2
+

1

s+ 1

=⇒ y(t) = L−1
{
y(s)

}
= 9 et − e2t + e−t.

9



b) The Laplace transform of sinh t = 1
2
(et − e−t) is F (s) = 1

2

(
1
s−1
− 1

s+1

)
= 1

s2−1
, from

which L
{

sinh(2t)
}

= 1
2
F
(
s
2

)
= 1/2

(s/2)2−1
= 2

s2−4
.

=⇒ s2 Y (s)− 4 + 2s Y (s)− 3Y (s) =
12

s2 − 4

(s2 + 2s− 3)Y (s) =
12

s2 − 4
+ 4 =

4 s2 − 4

s2 − 4

Y (s) =
4(s2 − 1)

(s2 + 2s− 3)(s2 − 4)
=

4(s+ 1)

(s+ 3)(s− 2)(s+ 2)

The partial fraction decomposition of Y (s) is

Y (s) =
A

s+ 3
+

B

s− 2
+

C

s+ 2

with

A = (s+ 3)Y (s)
∣∣s = −3 = −8/5,

A = (s− 2)Y (s)
∣∣s = 2 = 3/5,

C = (s+ 2)Y (s)
∣∣s = −2 = 1,

=⇒ Y (s) = − 8/5

s+ 3
+

3/5

s− 2
+

1

s+ 2

=⇒ y(t) = −8

5
e−3t +

3

5
e2t + e−2t.

c)

s3 Y (s)− 4 + s2 Y (s)− 5s Y (s) + 3Y (s) =
12

s2 − 4

Y (s) =
4(s2 − 1)

(s3 + s2 − 5s+ 3)(s2 − 4)
=

4(s+ 1)

(s− 1)(s+ 3)(s− 2)(s+ 2)

The partial fraction decomposition of Y (s) is (details omitted)

Y (s) =
2

5 (s+ 3)
− 1

3 (s+ 2)
− 2

3 (s− 1)
+

3

5 (s− 2)
.

=⇒ y(t) =
2

5
e−3t − 1

3
e−2t − 2

3
et +

3

5
e2t.

64 a) We have

J0(t) =
∞∑
m=0

(−1)m

4m(m!)2
t2m =

∞∑
m=0

(−1)m

4m

(
2m

m

)
t2m

(2m)!
.

=⇒ L
{

J0

}
=

∞∑
m=0

(−1)m

4m

(
2m

m

)
1

s2m+1
=

1

s

∞∑
m=0

(
2m

m

)(
− 1

4s2

)m
=

1

s

1√
1− 4

(
− 1

4s2

) (using the hint)

=
1√
s2 + 1

.
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The computation is valid for |s| > 1, since the binomial series involved (see below)
has radius of convergence 1; cf. the theorem about termwise integration of Laplace
integrals in the lecture.

Finally we prove the asserted series expansion:(
−1/2

m

)
=
−1

2

(
−3

2

) (
−5

2

)
· · ·
(
−2m−1

2

)
m!

= (−1)m
1 · 3 · 5 · · · (2m− 1)

m! 2m

= (−1)m
(2m)!

m! 2m · 2 · 4 · 6 · · · (2m)
= (−1)m

(2m)!

(m!)24m
=

(−1)m

4m

(
2m

m

)
,

and therefore
∞∑
m=0

(
2m

m

)
xm =

∞∑
m=0

(−1)m4m
(
−1/2

m

)
xm =

∞∑
m=0

(
−1/2

m

)
(−4x)m = (1− 4x)−1/2,

using the binomial series.

J0 is the solution of the IVP t y′′ + y′ + t y = 0, y(0) = 1, y′(0) = 0. Writing Y (s) =
L
{

J0(t)
}

and taking the Laplace transform on both sides gives

− d

ds

(
s2 Y (s)− s

)
+ s Y (s)− 1− Y ′(s) = 0

−
(
s2 Y ′(s) + 2s Y (s)− 1

)
+ s Y (s)− 1− Y ′(s) = 0

Y ′(s) = − s

s2 + 1
Y (s)

=⇒ Y (s) = c exp

∫ s

0

−1

2
ln(σ2 + 1)dσ =

c√
s2 + 1

for some constant c.

The constant c can be determined from

L
{

J′0(t)
}

= s Y (s)− J0(0)

and the general fact that Laplace transforms tend to zero for s→∞. It follows that

c = lim
s→∞

cs√
s2 + 1

= lim
s→∞

s Y (s) = J0(0) = 1,

and hence L
{

J0(t)
}

= Y (s) = 1/
√
s2 + 1.

65 For ν ∈ N the function Jν(x) was defined in the lecture as the analytic solution of
Bessel’s equation of order ν normalized by setting the coefficient of xν (first nonzero
coefficient) equal to 1

2νν!
. It can also be derived using Frobenius’ method as follows (not

part of the exercise):

0 = x2y′′ + xy′ + (x2 − ν2)y

=
∞∑
n=0

an(r + n)(r + n− 1)xr+n +
∞∑
n=0

an(r + n)xr+n + (x2 − ν2) ·
∞∑
n=0

anx
r+n

=
∞∑
n=0

an[(r + n)2 − ν2]xr+n +
∞∑
n=2

an−2x
r+n

= a0(r2 − ν2)xr + a1[(r + 1)2 − ν2]xr+1 +
∞∑
n=2

{
[(r + n)2 − ν2]an + an−2

}
xr+n
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For r = ν there are solutions with arbitrary a0. These must satisfy an = 0 for all odd n
and [(ν + n)2 − ν2]an + an−2 = n(n+ 2ν)an + an−20 for all even n ≥ 2. By induction,

a2m = − a2m−2

2m(2m+ 2ν)
= · · · = (−1)ma0

[2m(2m− 2) · · · 2] [(2m+ 2ν)(2m− 2 + 2ν) · · · (2 + 2ν)]

=
(−1)ma0

22mm!(ν + 1)(ν + 2) · · · (ν +m)
.

Choosing a0 = 1
2νν!

, we get

Jν(x) =
∞∑
m=0

(−1)mxν+2m

2ν+2mm!(ν +m)!
.

Then, we solve the exercise:

a)

2ν

x
Jν(x)− Jν−1(x) =

∞∑
m=0

(−1)mxν+2m−1ν

2ν+2m−1m!(ν +m)!
−
∞∑
m=0

(−1)mxν+2m−1

2ν+2m−1m!(ν +m− 1)!

=
∞∑
m=0

(−1)mxν+2m−1

2ν+2m−1m!(ν +m− 1)!

(
ν

ν +m
− 1

)
=

∞∑
m=1

(−1)m+1xν+2m−1

2ν+2m−1(m− 1)!(ν +m)!

=
∞∑
n=0

(−1)n+2xν+2n+1

2ν+2n+1n!(ν + n+ 1)!
=
∞∑
n=0

(−1)nxν+1+2n

2ν+1+2nn!(ν + 1 + n)!

= Jν+1(x)

b) The Bessel functions may be differentiated termwise to yield

J′ν(x) =
d

dx

∞∑
m=0

(−1)m

2ν+2mm! Γ(m+ ν + 1)
xν+2m

=
∞∑
m=0

(−1)m(ν + 2m)

2ν+2mm! Γ(m+ ν + 1)
xν+2m−1

=
∞∑
m=0

(−1)mν

2ν+2mm! Γ(m+ ν + 1)
xν+2m−1 +

∞∑
m=1

(−1)m

2ν+2m−1(m− 1)! Γ(m+ ν + 1)
xν+2m−1

=
ν

x
Jν(x) +

∞∑
m=0

(−1)m+1

2ν+2m+1m! Γ(m+ ν + 2)
xν+2m+1

=
ν

x
Jν(x)− Jν+1(x).

66 The assertion “lims→+∞ F (s) = 0”, which tacitly assumes s ∈ R, can in fact be
strenghtened to limRe(s)→+∞ F (s) = 0, as the subsequent proof shows. But the complex
limit lim|s|→∞ F (s) need not exist, because near the line of convergence F (s) may be
unbounded.
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Let ε > 0 be given. Since the Laplace integral converges uniformly for Re s ≥ a + 1
(Re s ≥ 0), as shown in the lecture, we can find R > 0 such that

∣∣∫∞
R
f(t)e−st dt

∣∣ < ε/2
for all such s. Assuming that f is piecewise continuous, hence bounded on [0, R], there
exists M > 0 such |f(t)| ≤M for t ∈ [0, R]. Writing s = x+ iy, we then have∣∣∣∣∫ R

0

f(t)e−st dt

∣∣∣∣ ≤ ∫ R

0

|f(t)| e−xt dt ≤M

∫ R

0

e−xt dt =
M(1− e−xR)

x
≤ M

x
,

provided that x > 0. For x > 2M/ε the right-hand side is ε/2.

=⇒ |F (s)| =
∣∣∣∣∫ R

0

f(t)e−st dt +

∫ ∞
R

f(t)e−st dt

∣∣∣∣
≤
∣∣∣∣∫ R

0

f(t)e−st dt

∣∣∣∣+

∣∣∣∣∫ ∞
R

f(t)e−st dt

∣∣∣∣ < ε

2
+
ε

2
= ε,

provided that Re(s) > max{a+ 1, 0, 2M/ε}. This shows limRe(s)→+∞ F (s) = 0.
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ZJU-UIUC Institute
Prof. Thomas Honold

Spring Semester 2024
Homework 12

Differential Equations (Math 285)

H67 Solve the following IVP’s with the Laplace transform:

a) y′′ + y′ + y = uπ(t)− u2π(t), y(0) = 1, y′(0) = 0;

b) y′′ + 2y′ + y =

{
sin(2t) if 0 ≤ t ≤ π/2,

0 if t > π/2,
y(0) = 1, y′(0) = 0.

H68 Do Exercises 11 and 20 in [BDM17], Ch. 7.1.

H69 For the matrix

A =

 −1 1 0
1 −2 1
0 1 −1


solve the initial value problem y′ = Ay, y(0) = (0, 1, 0)T, and determine limt→+∞ y(t)
for the solution.

Hint: The solution to Exercise H43 of Homework 9 in Math257 (Fall 2023) may
help.

H70 Determine a fundamental system of solutions of y′ = By for the matrix

B =


0 1 −2 −1 2
5 −2 −3 −2 3

14 3 −12 −5 9
13 3 −8 −8 8
16 3 −10 −6 7


Hint: Use the result of Exercise H60 of Homework 12 in Math257 (Fall 2023).

H71 Consider again the matrix A from H69. Determine the matrix exponential function
eAt in two ways,

a) using the fundamental matrix Φ(t) obtained in H69 and the formula eAt =
Φ(t)Φ(0)−1;

b) using the “new method” for computing eAt discussed in Lecture 38 (tenta-
tively); cf. also H48 of Homework 9.

H72 Optional Exercise

a) Suppose A ∈ Rn×n has n distinct eigenvalues λ1, . . . , λn. Show that

eAt =
n∑
i=1

eλit`i(A),

where `i(X) =
∏n

j=1,j 6=i
X−λj
λi−λj are the corresponding Lagrange polynomials.

1 PLEASE TURN OVER



b) Suppose that A ∈ Rn×n is symmetric and v1, . . . ,vn is an orthonormal basis
of Rn consisting of eigenvectors of A. Show that

eAt =
n∑
i=1

eλitviv
T
i ,

where λi is the eigenvalue corresponding to vi. (Note that the vectors vi are
column vectors, and hence viv

T
i are n× n matrices of rank 1.)

c) The matrix considered in H69 and H71 satisfies both conditions. Use a) and
b) to give two further evaluations of its matrix exponential function.

Due on Mon May 20, 10 am

The material on linear systems required for solving H70, H71, H72 will be discussed in
the lectures on Thu May 16 and Fri May 17. The optional Exercise H72 should also be
handed in on Mon May 20.
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Solutions (prepared by Zhang Zhuhaobo, Niu Yiqun,

and TH)

67 a) The transformed ODE is

s2 Y (s)− s+ s Y (s)− 1 + Y (s) =
e−πs − e−2πs

s

Y (s) =
e−πs − e−2πs

s(s2 + s+ 1)
+

s+ 1

s2 + s+ 1
=

e−πs − e−2πs

s
+
(
1− e−πs + e2πs

) s+ 1

s2 + s+ 1

using 1
s(s2+s+1)

= 1
s
− s+1

s2+s+1
. The first summand has inverse Laplace transform uπ(t)−

u2π(t). The second summand can be rewritten as(
1− e−πs + e2πs

) s+ 1
2

+ 1
2(

s+ 1
2

)2
+ 3

4

and has inverse Laplace transform y1(t)− uπ(t)y1(t− π) + u2π(t)y1(t− 2π) with

y1(t) = e−t/2 cos

√
3 t

2
+

1√
3

e−t/2 sin

√
3 t

2
.

=⇒ The solution is

y(t) = y1(t) + uπ(t)
(
1− y1(t− π)

)
+ u2π(t)

(
y1(t− 2π)− 1

)
=


y1(t) if 0 ≤ t ≤ π,

1 + y1(t)− y1(t− π) if π ≤ t ≤ 2π,

y1(t)− y1(t− π) + y1(t− 2π) if t ≥ 2π.

Remark: The solution on [0, π], viz. y1(t), is the solution of the IVP y′′ + y′ + y = 0,

Figure 1: The solution y(t) of H67 a)

y(0) = 1, y′(0) = 0, as can also be checked using our earlier discussion of higher order
linear ODE’s with constant coefficients. The solution on [π, 2π] is obtained by adding
to y1(t) the solution of the IVP y′′ + y′ + y = 1, y(π) = y′(π) = 0 (to fit the initial
conditions at t = π), which is y2(t) = 1−y1(t−π). The solution on [2π,∞) is obtained
by adding to this in turn the solution of the IVP y′′+ y′+ y = −1, y(2π) = y′(2π) = 0
(to fit the initial conditions at t = 2π), which is y3(t) = y1(t− 2π)− 1.

3



b) Here the forcing function is sin(2t)− uπ/2(t) sin(2t) = sin(2t) + uπ/2(t) sin
(
2(t− π/2)

)
and the transformed ODE is

s2 Y (s)− s+ 2
(
s Y (s)− 1

)
+ Y (s) =

2

s2 + 4

(
1 + e−πs/2

)
Y (s) =

2 + 2 e−πs/2

(s2 + 4)(s+ 1)2
+

s+ 2

(s+ 1)2

The real partial fractions decomposition of 1
(s2+4)(s+1)2

is

1

(s2 + 4)(s+ 1)2
= − 2 s+ 3

25 (s2 + 4)
+

2

25 (s+ 1)
+

1

5 (s+ 1)2
.

=⇒ Y (s) =
(
2 + 2 e−πs/2

)(
− 2 s+ 3

25 (s2 + 4)
+

2

25 (s+ 1)
+

1

5 (s+ 1)2

)
+

1

s+ 1
+

1

(s+ 1)2

=⇒ y(t) = − 4

25
cos(2t)− 3

25
sin(2t) +

4

25
e−t +

2

5
te−t

− 4

25
uπ/2(t) cos(2t− π)− 3

25
uπ/2(t) sin(2t− π) +

4

25
uπ/2(t)e

−(t−π/2)

+
2

5
uπ/2(t) (t− π/2) e−(t−π/2)

+ e−t + te−t

= − 4

25
cos(2t)− 3

25
sin(2t) +

29

25
e−t +

7

5
te−t

+
4

25
uπ/2(t) cos(2t) +

3

25
uπ/2(t) sin(2t) +

(4− 5π)eπ/2

25
uπ/2(t)e

−t +
2eπ/2

5
uπ/2(t)t e−t

=

{
− 4

25
cos(2t)− 3

25
sin(2t) + 29

25
e−t + 7

5
t e−t if t ≤ π/2,

29+(4−5π)eπ/2
25

e−t + 7+2eπ/2

5
t e−t if t ≥ π/2.

Figure 2: The solution y(t) of H67 b)

68 Ex. 11 From Figure (b) we can easily get the forces acting on each block.
Assume the positive direction of the motion is to the right.
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For Block 1: a = d2x1
dt2

,

m1
d2x1
dt2

= m1a = −k1x1 + F1(t) + k2(x2 − x1)

= −(k1 + k2)x1 + k2x2 + F1(t)

Similarly, for Block 2: a = d2x2
dt2

,

m2
d2x2
dt2

= m2a = −k2(x2 − x1) + F2(t)− k3x2

= k2x1 − (k2 + k3)x2 + F2(t)

Ex. 20 According to the current-voltage relation for each element in the circuit, we have

VL = L
dI

dt
,

IC = C
dV

dt
,

V1 = I1R1,

V2 = I2R2.

Applying Kirchhoff’s voltage law to the L-R1-R2 loop gives

L
dI

dt
+ I1R1 + I2R2 = 0.

But I1 = I, I2R2 = V2 = V , and hence L dI
dt

+R1I + V = 0, proving the first equation.
Applying Kirchhoff’s current law to the lower node gives

I1 = I2 + IC =
V2
R2

+ C
dV

dt
.

Since I1 = I, V2 = V , the second equation follows.

69 Eigenvalues/eigenvectors of A were determined in Exercise H43. The following com-
putation is copied from there.
The eigenvalues are the roots of the characteristic equation.

det |A− λI| =

∣∣∣∣∣∣
−1− λ 1 0

1 −2− λ 1
0 1 −1− λ

∣∣∣∣∣∣
= −(λ+ 1)2(λ+ 2) + 2(λ+ 1) = −(λ+ 1)(λ2 + 3λ) = −λ(λ+ 1)(λ+ 3) = 0.

Thus the eigenvalues are λ1 = 0, λ2 = −1 and λ3 = −3. To find the eigenvectors, we
replace λ by each of the eigenvalues in turn.
For λ1 = 0,  −1 1 0

1 −2 1
0 1 −1

 x1
x2
x3

 =

 0
0
0

 ,
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x(1) =

 x1
x2
x3

 =

 1
1
1

 .

For λ2 = −1,  0 1 0
1 −1 1
0 1 0

 x1
x2
x3

 =

 0
0
0

 ,

x(2) =

 x1
x2
x3

 =

 1
0
−1

 .

For λ3 = −3,  2 1 0
1 1 1
0 1 2

 x1
x2
x3

 =

 0
0
0

 ,

x(3) =

 x1
x2
x3

 =

 1
−2

1

 .

Therefore, the ODE system y′ = Ay has the general solution

y(t) = c1

 1
1
1

+ c2e
−t

 1
0
−1

+ c3e
−3t

 1
−2

1

 .

Then consider the initial value problem y′ = Ay, y(0) = (0, 1, 0)T :

y(0) =

 c1 + c2 + c3
c1 − 2c3

c1 − c2 + c3

 =

 0
1
0


=⇒ c1 =

1

3
, c2 = 0, c3 = −1

3

Therefore, the solution of the initial value problem is

y(t) =


1
3
− 1

3
e−3t

1
3

+ 2
3
e−3t

1
3
− 1

3
e−3t

 .

Moreover,

lim
t→+∞

y(t) =

 1
3
1
3
1
3


70 In Exercise H60 it was shown that

S =


0 1 1 1 −2
1 1 0 −5 0
0 3 2 0 −1
0 3 1 0 −2
0 3 1 0 1

 ,

6



transforms B into Jordan canonical form; more precisely,

S−1BS = J =


−3 0 0 0 0

1 −3 0 0 0
0 1 −3 0 0
0 0 0 −3 0
0 0 0 1 −3

 .

Denoting the columns of S, in order, by v1, . . . ,v5 (different from the numbering used in
the solution of H60 !), this says

Bv1 = −3v1 + v2, (B + 3 I) v1 = v2,

Bv2 = −3v2 + v3, (B + 3 I) v2 = v3,

Bv3 = −3v3, (B + 3 I) v3 = 0,

Bv4 = −3v4 + v5, (B + 3 I) v4 = v5,

Bv1 = −3v5, (B + 3 I) v5 = 0.

According to the general theory (use the two chains v1,v2,v3 and v4,v5), a fundamental
system of solutions of y′ = By is then

y1(t) = e−3tv1 + t e−3tv2 + 1
2
t2e−3tv3

= e−3t


0
1
0
0
0

+ t e−3t


1
1
3
3
3

+ 1
2
t2e−3t


1
0
2
1
1

 = e−3t


t+ 1

2
t2

1 + t
3t+ t2

3t+ 1
2
t2

3t+ 1
2
t2

 ,

y2(t) = e−3tv2 + t e−3tv3 = e−3t


1
1
3
3
3

+ t e−3t


1
0
2
1
1

 = e−3t


1 + t

1
3 + 2t
3 + t
3 + t

 ,

y3(t) = e−3tv3 = e−3t


1
0
2
1
1

 ,

y4(t) = e−3tv4 + t e−3tv5 = e−3t


1
−5
0
0
0

+ t e−3t


−2
0
−1
−2
1

 = e−3t


1− 2t
−5
−t
−2t
t

 ,

y5(t) = e−3tv5 = e−3t


−2
0
−1
−2
1

 .

7



71 a) From the solution of H69 we have

Φ(t) =

1 e−t e−3t

1 0 −2e−3t

1 −e−t e−3t

 , Φ(0) =

1 1 1
1 0 −2
1 −1 1

 , Φ(0)−1 =

 1
3

1
3

1
3

1
2

0 −1
2

1
6
−1

3
1
6

 .

=⇒ eAt =

1 e−t e−3t

1 0 −2e−3t

1 −e−t e−3t

 1
3

1
3

1
3

1
2

0 −1
2

1
6
−1

3
1
6



=


1
3

+ 1
2
e−t + 1

6
e−3t 1

3
− 1

3
e−3t 1

3
− 1

2
e−t + 1

6
e−3t

1
3
− 1

3
e−3t 1

3
+ 2

3
e−3t 1

3
− 1

3
e−3t

1
3
− 1

2
e−t + 1

6
e−3t 1

3
− 1

3
e−3t 1

3
+ 1

2
e−t + 1

6
e−3t


b) We apply the new method with a(X) = χA(X) = X(X + 1)(X + 3); cf. the solution

of H69. A fundamental system of solutions of χA(D)y = 0 is 1, e−t, e−3t, which has
Wronski matrix

W(t) =

 1 e−t e−3t

0 −e−t −3 e−3t

0 e−t 9 e−3t

 .

The special fundamental system c0(t), c1(t), c2(t) required for the computation of eAt

is obtained by multiplying the first row of W(t) with W(0)−1. The standard method
for matrix inversion gives 1 1 1 1 0 0

0 −1 −3 0 1 0
0 1 9 0 0 1

→
 1 0 −2 1 1 0

0 1 3 0 −1 0
0 0 6 0 1 1

→
 1 0 0 1 4

3
1
3

0 1 0 0 −3
2
−1

2

0 0 1 0 1
6

1
6

 .

=⇒
(
c0(t), c1(t), c2(t)

)
=
(
1, e−t, e−3t

) 1 4
3

1
3

0 −3
2
−1

2

0 1
6

1
6


=
(
1, 4

3
− 3

2
e−t + 1

6
e−3t, 1

3
− 1

2
e−t + 1

6
e−3t

)
=⇒ eAt = c0(t)I3 + c1(t)A + c2(t)A

2

=

1 0 0
0 1 0
0 0 1

+
(
4
3
− 3

2
e−t + 1

6
e−3t

) −1 1 0
1 −2 1
0 1 −1

+
(
1
3
− 1

2
e−t + 1

6
e−3t

) 2 −3 1
−3 6 −3

1 −3 2


=


1
3

+ 1
2
e−t + 1

6
e−3t 1

3
− 1

3
e−3t 1

3
− 1

2
e−t + 1

6
e−3t

1
3
− 1

3
e−3t 1

3
+ 2

3
e−3t 1

3
− 1

3
e−3t

1
3
− 1

2
e−t + 1

6
e−3t 1

3
− 1

3
e−3t 1

3
+ 1

2
e−t + 1

6
e−3t

 .

The computation is facilitated by the symmetry properties of I3, A, A2, which are all

of the form
(
a b c
b d b
c b a

)
, leaving only 4 entries of eAt to be determined.
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72 a) We show that Φ(t) =
∑n

i=1 eλit`i(A) solves the matrix IVP Φ′(t) = AΦ(t), Φ(0) =
In. Since t 7→ eAt is the unique solution of this IVP, this proves the assertion.

We have

Φ′(t) =
n∑
i=1

λie
λit`i(A),

AΦ(t) =
n∑
i=1

eλitA`i(A).

By the Cayley-Hamilton Theorem,

0 = χA(A) = (A− λ1 I) · · · (A− λn I) = c(A− λi I)`i(A),

where c =
∏n

j=1,j 6=i(λi − λj) 6= 0. Hence (A − λi I)`i(A) = 0 and A`i(A) = λi`i(A).

This proves Φ′(t) = AΦ(t).

Further, we have

Φ(0) =
n∑
i=1

`i(A).

The Lagrange polynomials satisfy the identity
∑n

i=1 `i(X) = 1 (since p(X) =
∑n

i=1 `i(X)
has degree < n and solves the interpolation problem p(λi) = 1, 1 ≤ i ≤ n). Substi-
tuting A into this identity gives

∑n
i=1 `i(A) = In, as desired.

b) From the lecture we know that eAt is the matrix with eigenvectors vi and corresponding
eigenvalues eλit. Clearly this determines eAt uniquely. Setting Φ(t) =

∑n
i=1 eλitviv

T
i ,

we have

Φ(t)vj =
n∑
i=1

eλitviv
T
i vj = eλjtvj,

since vT
i vj = vi · vj = 0 for i 6= j and vT

j vj = 1. This proves the assertion.

c) Firstly, we use the Lagrange polynomials. From the solution of H69 we have λ1 = 0,
λ2 = −1, λ3 = −3. The corresponding Lagrange polynomials are

`1(X) = 1
3
(X + 1)(X + 3),

`2(X) = −1
2
X(X + 3),

`3(X) = 1
6
X(X + 1).

(A + I)(A + 3I) =

 0 1 0
1 −1 1
0 1 0

 2 1 0
1 1 1
0 1 2

 =

1 1 1
1 1 1
1 1 1

 ,

A(A + 3I) =

 −1 1 0
1 −2 1
0 1 −1

 2 1 0
1 1 1
0 1 2

 =

−1 0 1
0 0 0
1 0 −1

 ,

A(A + I) =

 −1 1 0
1 −2 1
0 1 −1

 0 1 0
1 −1 1
0 1 0

 =

 1 −2 1
−2 4 −2
1 −2 1

 ,

=⇒ eAt =
1

3

1 1 1
1 1 1
1 1 1

− e−t
1

2

 −1 0 1
0 0 0
1 0 −1

+ e−3t
1

6

 1 −2 1
−2 4 −2

1 −2 1

 .

9



This is in accordance with the result of H71 b).

Secondly, we use the formula in b). From the solution of H69 we have λ1 = 0,
λ2 = −1, λ3 = −3 with corresponding normalized eigenvectors v1 = 1√

3
(1, 1, 1)T,

v2 = 1√
2
(1, 0,−1)T, v3 = 1√

6
(1,−2, 1)T.

=⇒ eAt =
1

3

1 1 1
1 1 1
1 1 1

+ e−t
1

2

 1 0 −1
0 0 0
−1 0 1

+ e−3t
1

6

 1 −2 1
−2 4 −2

1 −2 1

 .

For this note that the entries of M = vvT = (x1, x2, x3)(x1, x2, x3)
T are mij = xixj.
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