Name: Student ID: Student ID: Group A

For each of the following problems, find the correct answer (tick as appropriate!). No justifications are required. Each problem has exactly one correct solution, which is worth 1 mark. Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be assigned 0 marks; there are no penalties.

1. Which of the following ODE's has distinct solutions $y_1, y_2 : \mathbb{R} \to \mathbb{R}$ satisfying $y_1(0) = y_2(0) = 1$? $y' = y^{2/3}$ $y' = \sqrt{2y}$ $y + 1/y$ $y' = \tan y$ $t y' = y$ $y' = \ln|y|$ 2. The ODE $xy \, dx + (1+x^2) \, dy$ has the integrating factor 0 \vert 1 $\vert x$ $\vert y$ $\vert xy$ $\vert xy$ 3. For the solution *y*(*t*) of the IVP $y' = y^3 - 4y^2$, $y(2023) = 1$ the limit $\lim_{t \to +\infty} y(t)$ equals \Box 0 \Box 2 4. For the solution $y(t)$ of the IVP $y' = \frac{ty+1}{t^2+1}$ $\frac{xy+1}{t^2+1}$, $y(0) = 2$ the value $y(1)$ is equal to $\sqrt{2}$ 2 \vert | 2 \vert | 1+ √ 2 $\begin{array}{|c|c|c|c|c|} \hline 3 & 1+2 \end{array}$ √ 2 5. For the solution $y(t)$ of the IVP $y' = (y^2 - 3) / (ty)$, $y(1) = 2$ the value $y(2)$ is equal to √ 6 √ 7 √ 8 3 √ 10 6. For the solution *y*: $(0, \infty) \to \mathbb{R}$ of the IVP $2t^2y'' - ty' - 2y = 0$, $y(1) = 0$, $y'(1) = 5$ the value $y(4)$ is equal to 5 17 29 31 59 7. The power series ∞ ∑ *n*=1 $z^{n!}$ (where $n! = 1 \cdot 2 \cdots n$) has radius of convergence 0 and $1/e$ and 1 e 1 e \Box \in 8. The smallest integer *s* such that $f_s(x) =$ ∞ ∑ *n*=1 $x \sin(nx)$ n^s+1 is differentiable on $\mathbb R$ is equal to 0 1 2 3 4 9. For which choice of $f_n(x)$ does the function sequence (f_n) converge uniformly on $[0, \infty)$? $n/(x+n)$ $(x^2 - x + n)/(x)$ $x/(x+n)$ $(x+n)/(x+n^2)$ $\qquad (x+n)/(x^2+n)$ 10. The family of curves $y = 1 + Cx^3$, $C \in \mathbb{R}$, solves the ODE $3x^2 dx - dy = 0$ $\int 3y dx - x dy = 0$ 3*ydx* + *xdy* = 0 $3(y-1)dx - xdy = 0$ $\left(3x^2 + 1\right)dx - xdy = 0$

Continued on the back side

11. The sequence $\phi_0, \phi_1, \phi_2, \dots$ of Picard-Lindelöf iterates for the IVP $y' = y^2 \wedge y(0) = -1$ has $\phi_2(t)$ equal to

12. $y''' - y' + 6 = e^{-2t}$ has a particular solution $y_p(t)$ of the form $c_0 + c_1 t$ $c_0 t + c_1 t^2 e^{-2t}$ $c_0 + c_1 t e^{-2t}$ $c_0 t + c_1 e^{-2t}$ $c_0 + c_1 e^{-2t}$

with constants $c_0, c_1 \in \mathbb{R}$.

- 13. Maximal solutions of $y' = y^2 2y + 1$ satisfying $y(0) = 0$ are defined on an interval of the form \Box (a,b) \Box $[a,b]$ $(a,+\infty)$ \Box $(-\infty,b)$ \Box $(-\infty,+\infty)$ with $a, b \in \mathbb{R}$.
- 14. The matrix norm of $A =$ $\begin{pmatrix} 1 & -2 \\ -4 & 8 \end{pmatrix}$ (subordinate to the Euclidean length on \mathbb{R}^2) is contained in the interval $\left[1,3\right]$ (3,5] $\left[5,7\right]$ (7,9] (9,11]

15. For the matrix **A** in Question 14, the function $b_{21}(t)$ in $e^{At} = \begin{pmatrix} b_{11}(t) & b_{12}(t) \\ b_{21}(t) & b_{22}(t) \end{pmatrix}$ $b_{21}(t)$ $b_{22}(t)$ $\Big)$ is equal to $-\frac{4}{9} + \frac{4}{9}$ $\frac{4}{9}e^{9t}$ $\frac{4}{9} - \frac{4}{9}$ $\frac{4}{9}e^{9t}$ $\left[\frac{2}{9} - \frac{2}{9}\right]$ $\frac{2}{9}e^{9t}$ $\frac{2}{9} - \frac{4}{9}$ $\frac{4}{9}e^{9t}$ $\frac{4}{9} - \frac{2}{9}$ $\frac{2}{9}e^{9t}$

Time allowed: 50 min CLOSED BOOK **Good luck!**

Notes

Notes have only been written for Group A. In those places where Group B differs from Group A, the difference is indicated briefly at the end of the note.

1 $y' = y^{2/3} = \sqrt[3]{y^2}$ is defined for all $(t, y) \in \mathbb{R}^2$ and behaves like $y' = \sqrt{|y|}$, which we have discussed in the lecture. The EUT doesn't apply, since the derivative of $y \mapsto y^{2/3}$ is unbounded near $y = 0$.

More precisely, there is the solution $y_1(t) = \frac{1}{27}t^3$ (obtained from the Ansatz $y(t) = ct^r$). Since y'₁ $l'_1(0)=0,$

$$
y_2(t) = \begin{cases} \frac{1}{27}t^3 & \text{if } t \ge 0, \\ 0 & t < 0 \end{cases}
$$

is also a solution. These solutions satisfy $y_1(3) = y_2(3) = 1$. Since $y' = y^{2/3}$ is automous, $t \mapsto$ $y_1(t+3)$ and $t \mapsto y_2(t+3)$ are solutions as well, and have the required initial conditions.

The other 4 ODE's either satisfy the assumptions of the EUT globally ($y' = \tan y$ and $y' = \ln |y|$), or have no solutions with $y(0) = 1$ (*t* $y' = y$), or have non-uniqueness only at points that a solution with the given initial condition cannot reach $(y' = \sqrt{y+1}/y)$.

2 Multiplying the ODE by *y* gives $xy^2 dx + (1+x^2)y dy = 0$ which of the form $P dx + Q dy$ with $P_y = 2xy = Q_x$ and hence exact on \mathbb{R}^2 . Answers B,C,D don't have this property. Answer A is also false: Zero is not considered as an integrating factor, since multiplication by zero renders the ODE useless.

3 The phase line can be used to answer this question. The ODE is of the form $y' = f(y)$ with $f(y) = y^3 - 4y^2 = y^2(y-4)$, which is negative in the intervall determined by adjacent zeros of *f* into which the starting value $y_0 = 1$ falls, viz. (0,4). Hence $y(t)$ tends to the left end point of this interval for $t \rightarrow +\infty$.

4 This ODE is 1st-order linear with associated homogeneous ODE $y' = \frac{t}{t^2}$ $\frac{t}{t^2+1}$ *y*. The solution of the latter is

$$
y_h(t) = c \exp\left(\int \frac{t dt}{t^2 + 1}\right) = c \exp\left(\frac{1}{2}\ln(t^2 + 1)\right) = c\sqrt{t^2 + 1}.
$$

A particular solution of the inhomogeneous ODE is $y(t) = t$ (shame on you if you haven't found it!), and hence the general solution is $y(t) = t + c\sqrt{t^2 + 1}$, which has $y(0) = c$. In Group A the initial condition $y(0) = 2$ gives $y(1) = 1 + 2$ $v \cdot t + c \sqrt{t^2 + 1}$, which has $y(0) = c$. In Group A in $\sqrt{2}$, while in Group B $y(0) = \sqrt{2}$ gives $y(1) = 3$.

5 This is a separable ODE, which can be solved by the standard method (Group B comes first):

$$
\frac{y}{y^2 - 2} dy = \frac{dt}{t}
$$

$$
\int_2^y \frac{\eta}{\eta^2 - 2} d\eta = \int_1^t \frac{d\tau}{\tau}
$$

$$
\left[\frac{1}{2} \ln (\eta^2 - 2)\right]_2^y = [\ln \tau]_1^t
$$

$$
\frac{1}{2} (\ln (y^2 - 2) - \ln 2) = \ln t
$$

$$
\ln \frac{y^2 - 2}{2} = \ln (y^2 - 2) - \ln 2 = 2\ln t = \ln(t^2)
$$

$$
\frac{y^2 - 2}{2} = t^2
$$

$$
y = \sqrt{2t^2 + 2}
$$

 $\implies y(2) = \sqrt{10}$

$$
\left[\frac{1}{2}\ln(\eta^2 - 3)\right]_2^y = [\ln \tau]_1^t
$$

$$
\frac{1}{2}(\ln(y^2 - 3) - \ln 1) = \ln t
$$

$$
\ln(y^2 - 3) = 2\ln t = \ln(t^2)
$$

$$
y^2 - 3 = t^2
$$

$$
y = \sqrt{t^2 + 3},
$$

and $y(2) = \sqrt{7}$.

6 This Euler equation has a solution of the form $y(t) = t^k$, as argued in the lecture (or use Exercise H46 of Homework 8). Plugging this Ansatz into the ODE leads to $2k(k-1)-k-2=$ $2k^2 - 3k - 2 = 0 = 2(k-2)(k+1/2) = 0$ with solutions $k = 2$ and $k = 1/2$. Hence the general (real) solution is

$$
y(t) = c_1 t^2 + c_2 \frac{1}{\sqrt{t}}, \quad c_1, c_2 \in \mathbb{R}.
$$

The given initial conditions imply $c_1 = 2$, $c_2 = -2$, $y(t) = 2t^2 - 2/\sqrt{2}$ *t*, and $y(4) = 31$.

7 The radius of convergence is 1, the same as for any power series with coefficients in $\{0,1\}$ that is not a polynomial; remember my remarks in the lecture.

8 For checking the differentiability of $f_s(x)$ one has to look at the series of derivatives, which is

$$
\sum_{n=1}^{\infty} \frac{\sin(nx) + nx \cos(nx)}{n^s + 1} = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^s + 1} + x \sum_{n=1}^{\infty} \frac{n \cos(nx)}{n^s + 1}.
$$

For $s = 3$ the two series on the right-hand side converge uniformly on $\mathbb R$ by the Weierstrass test, since $\sum_{n=1}^{\infty} \infty \frac{1}{n^3}$ $\frac{1}{n^3+1}$ and $\sum_{n=1}^{\infty} \infty \frac{n}{n^3-1}$ $\frac{n}{n^3+1}$ converge in R. This implies the series of derivatives converges uniformly on all intervals of the form $[-R, R]$, $R > 0$, which is sufficient to show that f_3 is differentiable on \mathbb{R} .

For $s = 2$ the first series on the right-hand side converges still uniformly, but the second series doesn't since it behaves like $\sum_{n=1}^{\infty}$ cos(*nx*) $\frac{n(nx)}{n}$, which diverges at $x = 0, \pm 2\pi, \pm 4\pi, \ldots$. The factor *x* causes uniform convergence of the series of derivatives near $x = 0$ but not at other multiplies of 2π. Consequently, f_2 is not differentiable at $x = \pm 2\pi, \pm 4\pi, \ldots$.

9 In (A) the point-wise limit is 1, but $\frac{n}{x+n}$ for fixed *n* can be made close to zero by choosing *x* large. Hence no uniform response to ϵ < 1 can exist.

In (B) the point-wise limit is 1, and

 $\bigg\}$ $\Big\}$ $\bigg\}$ \vert

$$
\left|\frac{x^2 - x + n}{x^2 + n} - 1\right| = \frac{x}{x^2 + n} \le \frac{x}{2x\sqrt{n}} = \frac{1}{2\sqrt{n}} \to 0 \quad \text{for } n \to \infty,
$$

showing uniform convergence.

In (C) the point-wise limit is 0, but $\frac{x}{x+n}$ for fixed *n* can be made close to 1 by choosing *x* large. In (D) the point-wise limit is 0, but the same argument as in (C) applies. In (E) the point-wise limit is 1, but

$$
\left|\frac{x+n}{x^2+n}-1\right|=\frac{|x-x^2|}{x^2+n}.
$$

For large *x* this is again close to 1 instead of zero.

10 Rewriting the equation as $(y-1)x^{-3} = C$, we see that the curves are the contours of $f(x, y) =$ $(y-1)x^{-3}$ and hence satisfy the ODE

$$
f_x dx + f_y dy = -3(y-1)x^{-4} dx + x^{-3} dy = 0,
$$

which expresses the orthogonality of the contours to the gradient ∇f . Multiplying by $-x^4$, this simplifies to $3(y-1)dx - xdy = 0$.

11
$$
\phi_0(t) = -1
$$
, $\phi_1(t) = -1 + \int_0^t \phi_0(s)^2 ds = -1 + \int_0^t ds = -1 + t$, $\phi_2(t) = -1 + \int_0^t \phi_1(s)^2 ds = -1 + \int_0^t (s-1)^2 ds = -1 + \int_0^t (s^2 - 2s + 1) ds = -1 + [s^3/3 - s^2 + s]_0^t = -1 + t - t^2 + t^3/3$.

12 This question contains a trap, viz. that it have characteristic polynomial $X^3 - X + 6 = (X +$ $2(X^2 - 2X + 3)$, which has $\mu = -2$ as root. But this is false, and the ODE in standard form is rather $y''' - y' = -6 + e^{-2t}$ with characteristic polynomial $X^3 - X$, which has $\mu = 0$ but not $\mu = -2$ as a root, so that the correct Ansatz is $y = y_1 + y_2$ with $y_1(t) = c_0 t$, $y_2(t) = c_1 e^{-2t}$.

13 Since maximal solutions of IVPs are unique, the statement should have read "The maximal solution . . . " rather than "Maximal solutions . . . "

Solutions $y = y(t)$ satisfy \int_0^y dη $rac{d\eta}{\eta^2-2\eta+1} = \int_0^y$ dη $\frac{d\eta}{(\eta-1)^2} = \int_0^t d\tau = t$. We have $\lim_{y \uparrow 1} \int_0^y$ dη $\frac{d\eta}{(\eta-1)^2}$ = $\lim_{y \uparrow 1} \left[-\frac{1}{n-1} \right]$ η−1 $\left.\right]$ ^{*y*} y = lim_{y↑1} $\left(\frac{1}{1-y} - 1\right) = +\infty$ and $a := \lim_{y \downarrow -\infty} \int_0^y$ dη $\frac{d\eta}{(\eta-1)^2} = -\int_{-\infty}^0$ dη $\frac{d\eta}{(\eta-1)^2} \in \mathbb{R}$ (since this improper integral converges). This shows that the maximal solution is defined on $(a, +\infty)$.

14 ||A|| is equal to the square root of the largest eigenvalue of A^TA , which in this case is 14 ||A|| is equal to the square root of the largest eigenvalue of **A** A, which in this case is $\begin{pmatrix} 17 & -34 \\ -34 & 68 \end{pmatrix}$. The eigenvalues of this matrix are $\lambda_1 = 85$, $\lambda_2 = 0$, and hence the answer is $\sqrt{85} > 9$ (-34 68). The eigenvalues of
(more precisely, $\sqrt{85} \approx 9.22$).

A fast way to compute the eigenvalues of A^TA is the following: Since A^TA isn't invertible, one eigenvalue must be zero. Then the other eigenvalue must be equal to the trace of the matrix, which is 85.

Applying the same argument to A gives that its eigenvalues are 0 and 9. This implies $||A|| \ge 9$, since in general $\|\mathbf{A}\| \ge |\lambda|$ for any eigenvalue of **A**. Thus all but two answers are excluded. In Group B we have $\left(\begin{smallmatrix} 17 & 34 \\ 34 & 68 \end{smallmatrix}\right)$, so that the answer is the same.

15 The last two answers can be excluded right away, because e^{A0} is the 2×2 identity matrix, and hence $b_{21}(0) = 0$.

The matrix **A** satisfies $A^2 = 9A$ (Cayley-Hamilton), and hence $A^k = 9^{k-1}A$ for $k \ge 1$.

$$
\implies e^{\mathbf{A}t} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \sum_{k=1}^{\infty} \frac{9^{k-1}}{k!} A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{e^{9t} - 1}{9} \begin{pmatrix} 1 & -2 \\ -4 & 8 \end{pmatrix}
$$

Thus $b_{21}(t) = \frac{4}{9} - \frac{4}{9}$ $\frac{4}{9}e^{9t}$.

Alternatively, use the method in Exercise H48 of Homework 8 to determine e^{At} . A fundamental system of solutions of $(D^2 - 9D)y = 0$ is $\{1, e^{9t}\}\$, and the special fundamental system satisfying the initial conditions of H48 c) is determined from this as $c_0(t) = 1$, $c_1(t) = (e^{9t} - 1)$ /9. Thus $e^{At} = I_2 + \frac{e^{9t} - 1}{9} A$, the same as above. In Group B the answer is $b_{21}(t) = -\frac{4}{9} + \frac{4}{9}$ $\frac{4}{9}e^{9t}$.

16 Purportedly this was a favorite question of German mathematician ERNST WITT (1911– 1991) when he examined Calculus students at Hamburg University.