Name: ____

Student ID: _____

Group A

For each of the following problems, find the correct answer (tick as appropriate!). No justifications are required. Each problem has exactly one correct solution, which is worth 1 mark. Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be assigned 0 marks; there are no penalties.

1. Which of the following ODE's has distinct solutions $y_1, y_2 \colon \mathbb{R} \to \mathbb{R}$ satisfying $y_1(0) = y_2(0) = 1$? $y' = y^{2/3}$ $y' = \sqrt{y+1}/y$ $y' = \tan y$ $y' = \ln |y|$ 2. The ODE $xy dx + (1 + x^2) dy$ has the integrating factor y 0 xy 3. For the solution y(t) of the IVP $y' = y^3 - 4y^2$, y(2023) = 1 the limit $\lim_{t \to +\infty} y(t)$ equals 0 4. For the solution y(t) of the IVP $y' = \frac{ty+1}{t^2+1}$, y(0) = 2 the value y(1) is equal to $1+\sqrt{2}$ $1 + 2\sqrt{2}$ $\sqrt{2}$ 2 3 5. For the solution y(t) of the IVP $y' = (y^2 - 3)/(ty)$, y(1) = 2 the value y(2) is equal $\sqrt{7}$ $\sqrt{8}$ 3 $\sqrt{10}$ $\sqrt{6}$ 6. For the solution y: $(0,\infty) \to \mathbb{R}$ of the IVP $2t^2y'' - ty' - 2y = 0$, y(1) = 0, y'(1) = 5the value y(4) is equal to 29 31 59 5 17 7. The power series $\sum_{n=1}^{\infty} z^{n!}$ (where $n! = 1 \cdot 2 \cdots n$) has radius of convergence 1/e ∞ 8. The smallest integer *s* such that $f_s(x) = \sum_{n=1}^{\infty} \frac{x \sin(nx)}{n^s + 1}$ is differentiable on \mathbb{R} is equal to 0 9. For which choice of $f_n(x)$ does the function sequence (f_n) converge uniformly on $[0,\infty)$? $(x^2 - x + n)/(x^2 + n)$ n/(x+n)x/(x+n) $(x+n)/(x+n^2)$ $(x+n)/(x^2+n)$ 10. The family of curves $y = 1 + Cx^3$, $C \in \mathbb{R}$, solves the ODE $3x^{2} dx - dy = 0$ 3y dx - x dy = 0 3(y-1) dx - x dy = 0 $(3x^{2}+1) dx - x dy = 0$ $3x^2 dx - dy = 0$ 3y dx + x dy = 0

Continued on the back side

11. The sequence $\phi_0, \phi_1, \phi_2, \dots$ of Picard-Lindelöf iterates for the IVP $y' = y^2 \wedge y(0) = -1$ has $\phi_2(t)$ equal to

$\boxed{1+t+t^2+t^3}$	$-1+t-t^2+\frac{1}{3}t^3$	$\boxed{-1+t-t^2+t^3}$
-1+t	$1 + t + t^2 + \frac{1}{3}t^3$	

12. $y''' - y' + 6 = e^{-2t}$ has a particular solution $y_p(t)$ of the form $c_0 + c_1 t$ $c_0 t + c_1 t^2 e^{-2t}$ $c_0 + c_1 t e^{-2t}$ $c_0 t + c_1 e^{-2t}$ with constants $c_0 c \mathbb{P}$

with constants $c_0, c_1 \in \mathbb{R}$.

- 13. Maximal solutions of $y' = y^2 2y + 1$ satisfying y(0) = 0 are defined on an interval of the form $\boxed{(a,b)} \qquad \boxed{[a,b]} \qquad \boxed{(a,+\infty)} \qquad \boxed{(-\infty,b)} \qquad \boxed{(-\infty,+\infty)}$ with $a,b \in \mathbb{R}$.
- 14. The matrix norm of $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ -4 & 8 \end{pmatrix}$ (subordinate to the Euclidean length on \mathbb{R}^2) is contained in the interval [1,3] [3,5] [5,7] [7,9] [9,11]

15. For the matrix **A** in Question 14, the function $b_{21}(t)$ in $e^{\mathbf{A}t} = \begin{pmatrix} b_{11}(t) & b_{12}(t) \\ b_{21}(t) & b_{22}(t) \end{pmatrix}$ is equal to $\boxed{-\frac{4}{9} + \frac{4}{9}e^{9t}} \quad \boxed{\frac{4}{9} - \frac{4}{9}e^{9t}} \quad \boxed{\frac{2}{9} - \frac{2}{9}e^{9t}} \quad \boxed{\frac{2}{9} - \frac{4}{9}e^{9t}} \quad \boxed{\frac{4}{9} - \frac{2}{9}e^{9t}}$

Time allowed: 50 min

CLOSED BOOK

Good luck!

Notes

Notes have only been written for Group A. In those places where Group B differs from Group A, the difference is indicated briefly at the end of the note.

1 $y' = y^{2/3} = \sqrt[3]{y^2}$ is defined for all $(t, y) \in \mathbb{R}^2$ and behaves like $y' = \sqrt{|y|}$, which we have discussed in the lecture. The EUT doesn't apply, since the derivative of $y \mapsto y^{2/3}$ is unbounded near y = 0.

More precisely, there is the solution $y_1(t) = \frac{1}{27}t^3$ (obtained from the Ansatz $y(t) = ct^r$). Since $y'_1(0) = 0$,

$$y_2(t) = \begin{cases} \frac{1}{27}t^3 & \text{if } t \ge 0, \\ 0 & t < 0 \end{cases}$$

is also a solution. These solutions satisfy $y_1(3) = y_2(3) = 1$. Since $y' = y^{2/3}$ is automous, $t \mapsto y_1(t+3)$ and $t \mapsto y_2(t+3)$ are solutions as well, and have the required initial conditions.

The other 4 ODE's either satisfy the assumptions of the EUT globally $(y' = \tan y \text{ and } y' = \ln |y|)$, or have no solutions with y(0) = 1 (ty' = y), or have non-uniqueness only at points that a solution with the given initial condition cannot reach $(y' = \sqrt{y+1}/y)$.

2 Multiplying the ODE by *y* gives $xy^2 dx + (1+x^2)y dy = 0$ which of the form P dx + Q dy with $P_y = 2xy = Q_x$ and hence exact on \mathbb{R}^2 . Answers B,C,D don't have this property. Answer A is also false: Zero is not considered as an integrating factor, since multiplication by zero renders the ODE useless.

3 The phase line can be used to answer this question. The ODE is of the form y' = f(y) with $f(y) = y^3 - 4y^2 = y^2(y-4)$, which is negative in the interval determined by adjacent zeros of f into which the starting value $y_0 = 1$ falls, viz. (0,4). Hence y(t) tends to the left end point of this interval for $t \to +\infty$.

4 This ODE is 1st-order linear with associated homogeneous ODE $y' = \frac{t}{t^2+1}y$. The solution of the latter is

$$y_h(t) = c \exp\left(\int \frac{t \, \mathrm{d}t}{t^2 + 1}\right) = c \exp\left(\frac{1}{2}\ln(t^2 + 1)\right) = c\sqrt{t^2 + 1}.$$

A particular solution of the inhomogeneous ODE is y(t) = t (shame on you if you haven't found it!), and hence the general solution is $y(t) = t + c\sqrt{t^2 + 1}$, which has y(0) = c. In Group A the initial condition y(0) = 2 gives $y(1) = 1 + 2\sqrt{2}$, while in Group B $y(0) = \sqrt{2}$ gives y(1) = 3.

5 This is a separable ODE, which can be solved by the standard method (Group B comes first):

$$\frac{y}{y^2 - 2} dy = \frac{dt}{t}$$

$$\int_2^y \frac{\eta}{\eta^2 - 2} d\eta = \int_1^t \frac{d\tau}{\tau}$$

$$\left[\frac{1}{2}\ln(\eta^2 - 2)\right]_2^y = [\ln\tau]_1^t$$

$$\frac{1}{2} \left(\ln(y^2 - 2) - \ln 2\right) = \ln t$$

$$\ln\frac{y^2 - 2}{2} = \ln(y^2 - 2) - \ln 2 = 2\ln t = \ln(t^2)$$

$$\frac{y^2 - 2}{2} = t^2$$

$$y = \sqrt{2t^2 + 2}$$

 $\implies y(2) = \sqrt{10}$

$$\begin{bmatrix} \frac{1}{2}\ln(\eta^2 - 3) \end{bmatrix}_2^y = [\ln\tau]_1^t$$
$$\frac{1}{2}(\ln(y^2 - 3) - \ln 1) = \ln t$$
$$\ln(y^2 - 3) = 2\ln t = \ln(t^2)$$
$$y^2 - 3 = t^2$$
$$y = \sqrt{t^2 + 3},$$

and $y(2) = \sqrt{7}$.

6 This Euler equation has a solution of the form $y(t) = t^k$, as argued in the lecture (or use Exercise H46 of Homework 8). Plugging this Ansatz into the ODE leads to $2k(k-1) - k - 2 = 2k^2 - 3k - 2 = 0 = 2(k-2)(k+1/2) = 0$ with solutions k = 2 and k = 1/2. Hence the general (real) solution is

$$y(t) = c_1 t^2 + c_2 \frac{1}{\sqrt{t}}, \quad c_1, c_2 \in \mathbb{R}$$

The given initial conditions imply $c_1 = 2$, $c_2 = -2$, $y(t) = 2t^2 - 2/\sqrt{t}$, and y(4) = 31.

7 The radius of convergence is 1, the same as for any power series with coefficients in $\{0, 1\}$ that is not a polynomial; remember my remarks in the lecture.

8 For checking the differentiability of $f_s(x)$ one has to look at the series of derivatives, which is

$$\sum_{n=1}^{\infty} \frac{\sin(nx) + nx\cos(nx)}{n^s + 1} = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^s + 1} + x \sum_{n=1}^{\infty} \frac{n\cos(nx)}{n^s + 1}.$$

For s = 3 the two series on the right-hand side converge uniformly on \mathbb{R} by the Weierstrass test, since $\sum_{n=1} \infty \frac{1}{n^3+1}$ and $\sum_{n=1} \infty \frac{n}{n^3+1}$ converge in \mathbb{R} . This implies the series of derivatives converges uniformly on all intervals of the form [-R, R], R > 0, which is sufficient to show that f_3 is differentiable on \mathbb{R} .

For s = 2 the first series on the right-hand side converges still uniformly, but the second series doesn't since it behaves like $\sum_{n=1}^{\infty} \frac{\cos(nx)}{n}$, which diverges at $x = 0, \pm 2\pi, \pm 4\pi, \ldots$ The factor x causes uniform convergence of the series of derivatives near x = 0 but not at other multiplies of 2π . Consequently, f_2 is not differentiable at $x = \pm 2\pi, \pm 4\pi, \ldots$

9 In (A) the point-wise limit is 1, but $\frac{n}{x+n}$ for fixed *n* can be made close to zero by choosing *x* large. Hence no uniform response to $\varepsilon < 1$ can exist. In (B) the point wise limit is 1, and

In (B) the point-wise limit is 1, and

$$\frac{x^2 - x + n}{x^2 + n} - 1 \bigg| = \frac{x}{x^2 + n} \le \frac{x}{2x\sqrt{n}} = \frac{1}{2\sqrt{n}} \to 0 \quad \text{for } n \to \infty,$$

showing uniform convergence.

In (C) the point-wise limit is 0, but $\frac{x}{x+n}$ for fixed *n* can be made close to 1 by choosing *x* large. In (D) the point-wise limit is 0, but the same argument as in (C) applies. In (E) the point-wise limit is 1, but

$$\left|\frac{x+n}{x^2+n}-1\right| = \frac{\left|x-x^2\right|}{x^2+n}.$$

For large *x* this is again close to 1 instead of zero.

10 Rewriting the equation as $(y-1)x^{-3} = C$, we see that the curves are the contours of f(x, y) = $(y-1)x^{-3}$ and hence satisfy the ODE

$$f_x dx + f_y dy = -3(y-1)x^{-4} dx + x^{-3} dy = 0,$$

which expresses the orthogonality of the contours to the gradient ∇f . Multiplying by $-x^4$, this simplifies to 3(y-1) dx - x dy = 0.

11
$$\phi_0(t) = -1$$
, $\phi_1(t) = -1 + \int_0^t \phi_0(s)^2 ds = -1 + \int_0^t ds = -1 + t$, $\phi_2(t) = -1 + \int_0^t \phi_1(s)^2 ds = -1 + \int_0^t (s^2 - 2s + 1) ds = -1 + [s^3/3 - s^2 + s]_0^t = -1 + t - t^2 + t^3/3$.

12 This question contains a trap, viz. that it have characteristic polynomial $X^3 - X + 6 = (X + C)^2$ $2(X^2 - 2X + 3)$, which has $\mu = -2$ as root. But this is false, and the ODE in standard form is rather $y''' - y' = -6 + e^{-2t}$ with characteristic polynomial $X^3 - X$, which has $\mu = 0$ but not $\mu = -2$ as a root, so that the correct Ansatz is $y = y_1 + y_2$ with $y_1(t) = c_0 t$, $y_2(t) = c_1 e^{-2t}$.

13 Since maximal solutions of IVPs are unique, the statement should have read "The maximal

solution ...," rather than "Maximal solutions ...,". Solutions y = y(t) satisfy $\int_0^y \frac{d\eta}{\eta^2 - 2\eta + 1} = \int_0^y \frac{d\eta}{(\eta - 1)^2} = \int_0^t d\tau = t$. We have $\lim_{y \neq 1} \int_0^y \frac{d\eta}{(\eta - 1)^2} =$ $\lim_{y\uparrow 1} \left[-\frac{1}{\eta-1} \right]_0^y = \lim_{y\uparrow 1} \left(\frac{1}{1-y} - 1 \right) = +\infty \text{ and } a := \lim_{y\downarrow -\infty} \int_0^y \frac{d\eta}{(\eta-1)^2} = -\int_{-\infty}^0 \frac{d\eta}{(\eta-1)^2} \in \mathbb{R} \text{ (since this improper integral converges). This shows that the maximal solution is defined on <math>(a, +\infty)$.

14 $||\mathbf{A}||$ is equal to the square root of the largest eigenvalue of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$, which in this case is $\begin{pmatrix} 17 & -34 \\ -34 & 68 \end{pmatrix}$. The eigenvalues of this matrix are $\lambda_1 = 85$, $\lambda_2 = 0$, and hence the answer is $\sqrt{85} > 9$ (more precisely, $\sqrt{85} \approx 9.22$).

A fast way to compute the eigenvalues of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ is the following: Since $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ isn't invertible, one eigenvalue must be zero. Then the other eigenvalue must be equal to the trace of the matrix, which is 85.

Applying the same argument to **A** gives that its eigenvalues are 0 and 9. This implies $||\mathbf{A}|| \ge 9$, since in general $\|\mathbf{A}\| \ge |\lambda|$ for any eigenvalue of \mathbf{A} . Thus all but two answers are excluded. In Group B we have $\begin{pmatrix} 17 & 34 \\ 34 & 68 \end{pmatrix}$, so that the answer is the same.

15 The last two answers can be excluded right away, because e^{A0} is the 2 × 2 identity matrix, and hence $b_{21}(0) = 0$.

The matrix **A** satisfies $\mathbf{A}^2 = 9\mathbf{A}$ (Cayley-Hamilton), and hence $\mathbf{A}^k = 9^{k-1}\mathbf{A}$ for $k \ge 1$.

$$\implies e^{\mathbf{A}t} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} + \sum_{k=1}^{\infty} \frac{9^{k-1}}{k!} A = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} + \frac{e^{9t} - 1}{9} \begin{pmatrix} 1 & -2\\ -4 & 8 \end{pmatrix}$$

Thus $b_{21}(t) = \frac{4}{9} - \frac{4}{9} e^{9t}$.

Alternatively, use the method in Exercise H48 of Homework 8 to determine e^{At} . A fundamental system of solutions of $(D^2 - 9D)y = 0$ is $\{1, e^{9t}\}$, and the special fundamental system satisfying the initial conditions of H48 c) is determined from this as $c_0(t) = 1$, $c_1(t) = (e^{9t} - 1)/9$. Thus $e^{\mathbf{A}t} = \mathbf{I}_2 + \frac{e^{9t}-1}{9}\mathbf{A}$, the same as above. In Group B the answer is $b_{21}(t) = -\frac{4}{9} + \frac{4}{9}e^{9t}$.

16 Purportedly this was a favorite question of German mathematician ERNST WITT (1911-1991) when he examined Calculus students at Hamburg University.