
Math 285 Differential Equations (Prof. Honold) Midterm Exam 2023/04/14

Name: Student ID: Group A

For each of the following problems, find the correct answer (tick as appropriate!). No justifi-
cations are required. Each problem has exactly one correct solution, which is worth 1 mark.
Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be as-
signed 0 marks; there are no penalties.

1. Which of the following ODE’s has distinct solutions y1,y2 : R→ R satisfying
y1(0) = y2(0) = 1 ?

y′ = y2/3 y′ =
√

y+1/y y′ = tany t y′ = y y′ = ln |y|

2. The ODE xy dx+(1+ x2)dy has the integrating factor

0 1 x y xy

3. For the solution y(t) of the IVP y′ = y3−4y2, y(2023) = 1 the limit lim
t→+∞

y(t) equals

−∞ 0 2 4 +∞

4. For the solution y(t) of the IVP y′ = ty+1
t2+1 , y(0) = 2 the value y(1) is equal to

√
2 2 1+

√
2 3 1+2

√
2

5. For the solution y(t) of the IVP y′ =
(
y2−3

)/
(ty), y(1) = 2 the value y(2) is equal

to √
6

√
7

√
8 3

√
10

6. For the solution y : (0,∞)→ R of the IVP 2 t2 y′′− t y′− 2y = 0, y(1) = 0, y′(1) = 5
the value y(4) is equal to

5 17 29 31 59

7. The power series
∞

∑
n=1

zn! (where n! = 1 ·2 · · ·n) has radius of convergence

0 1/e 1 e ∞

8. The smallest integer s such that fs(x) =
∞

∑
n=1

xsin(nx)
ns +1

is differentiable on R is equal to

0 1 2 3 4

9. For which choice of fn(x) does the function sequence ( fn) converge uniformly on [0,∞) ?

n/(x+n) (x2− x+n)
/
(x2 +n) x/(x+n)

(x+n)
/
(x+n2) (x+n)

/
(x2 +n)

10. The family of curves y = 1+C x3, C ∈ R, solves the ODE

3x2 dx−dy = 0 3ydx−xdy = 0 3ydx+xdy = 0

3(y−1)dx−xdy = 0 (3x2 +1)dx−xdy = 0

Continued on the back side



11. The sequence φ0,φ1,φ2, . . . of Picard-Lindelöf iterates for the IVP y′ = y2∧ y(0) =−1
has φ2(t) equal to

1+ t + t2 + t3 −1+ t− t2 + 1
3t3 −1+ t− t2 + t3

−1+ t 1+ t + t2 + 1
3t3

12. y′′′− y′+6 = e−2t has a particular solution yp(t) of the form

c0 + c1t c0t + c1t2e−2t c0 + c1t e−2t c0t + c1e−2t

c0 + c1e−2t

with constants c0,c1 ∈ R.

13. Maximal solutions of y′ = y2− 2y+ 1 satisfying y(0) = 0 are defined on an interval
of the form

(a,b) [a,b] (a,+∞) (−∞,b) (−∞,+∞)

with a,b ∈ R.

14. The matrix norm of A =

(
1 −2
−4 8

)
(subordinate to the Euclidean length on R2) is

contained in the interval
[1,3] (3,5] (5,7] (7,9] (9,11]

15. For the matrix A in Question 14, the function b21(t) in eAt =

(
b11(t) b12(t)
b21(t) b22(t)

)
is equal

to
−4

9 +
4
9 e9t 4

9 −
4
9 e9t 2

9 −
2
9 e9t 2

9 −
4
9 e9t 4

9 −
2
9 e9t

16. (d/de)et is equal to

1 et−1 t et−1 et 0

Time allowed: 50 min CLOSED BOOK Good luck!



Notes

Notes have only been written for Group A. In those places where Group B differs from Group A,
the difference is indicated briefly at the end of the note.

1 y′ = y2/3 = 3
√

y2 is defined for all (t,y) ∈ R2 and behaves like y′ =
√
|y|, which we have

discussed in the lecture. The EUT doesn’t apply, since the derivative of y 7→ y2/3 is unbounded
near y = 0.
More precisely, there is the solution y1(t) = 1

27 t3 (obtained from the Ansatz y(t) = ctr). Since
y′1(0) = 0,

y2(t) =

{
1
27 t3 if t ≥ 0,
0 t < 0

is also a solution. These solutions satisfy y1(3) = y2(3) = 1. Since y′ = y2/3 is automous, t 7→
y1(t +3) and t 7→ y2(t +3) are solutions as well, and have the required initial conditions.
The other 4 ODE’s either satisfy the assumptions of the EUT globally (y′= tany and y′= ln |y|),
or have no solutions with y(0) = 1 (t y′ = y), or have non-uniqueness only at points that a
solution with the given initial condition cannot reach (y′ =

√
y+1/y).

2 Multiplying the ODE by y gives xy2 dx+(1+x2)y dy = 0 which of the form Pdx+Qdy with
Py = 2xy = Qx and hence exact on R2. Answers B,C,D don’t have this property. Answer A is
also false: Zero is not considered as an integrating factor, since multiplication by zero renders
the ODE useless.

3 The phase line can be used to answer this question. The ODE is of the form y′ = f (y) with
f (y) = y3−4y2 = y2(y−4), which is negative in the intervall determined by adjacent zeros of
f into which the starting value y0 = 1 falls, viz. (0,4). Hence y(t) tends to the left end point of
this interval for t→+∞.

4 This ODE is 1st-order linear with associated homogeneous ODE y′ = t
t2+1 y. The solution of

the latter is

yh(t) = c exp
(∫ t dt

t2 +1

)
= c exp

(
1
2

ln(t2 +1)
)
= c
√

t2 +1.

A particular solution of the inhomogeneous ODE is y(t) = t (shame on you if you haven’t found
it!), and hence the general solution is y(t) = t + c

√
t2 +1, which has y(0) = c. In Group A the

initial condition y(0) = 2 gives y(1) = 1+2
√

2, while in Group B y(0) =
√

2 gives y(1) = 3.

5 This is a separable ODE, which can be solved by the standard method (Group B comes first):

y
y2−2

dy =
dt
t∫ y

2

η

η2−2
dη =

∫ t

1

dτ

τ[
1
2

ln
(
η

2−2
)]y

2
= [lnτ]t1

1
2
(
ln
(
y2−2

)
− ln2

)
= ln t

ln
y2−2

2
= ln

(
y2−2

)
− ln2 = 2ln t = ln(t2)

y2−2
2

= t2

y =
√

2t2 +2

=⇒ y(2) =
√

10



In Group A the computation is [
1
2

ln
(
η

2−3
)]y

2
= [lnτ]t1

1
2
(
ln
(
y2−3

)
− ln1

)
= ln t

ln
(
y2−3

)
= 2ln t = ln(t2)

y2−3 = t2

y =
√

t2 +3,

and y(2) =
√

7.

6 This Euler equation has a solution of the form y(t) = tk, as argued in the lecture (or use
Exercise H46 of Homework 8). Plugging this Ansatz into the ODE leads to 2k(k−1)−k−2 =
2k2−3k−2 = 0 = 2(k−2)(k+1/2) = 0 with solutions k = 2 and k = 1/2. Hence the general
(real) solution is

y(t) = c1t2 + c2
1√
t
, c1,c2 ∈ R.

The given initial conditions imply c1 = 2, c2 =−2, y(t) = 2 t2−2/
√

t, and y(4) = 31.

7 The radius of convergence is 1, the same as for any power series with coefficients in {0,1}
that is not a polynomial; remember my remarks in the lecture.

8 For checking the differentiability of fs(x) one has to look at the series of derivatives, which
is

∞

∑
n=1

sin(nx)+nxcos(nx)
ns +1

=
∞

∑
n=1

sin(nx)
ns +1

+ x
∞

∑
n=1

ncos(nx)
ns +1

.

For s = 3 the two series on the right-hand side converge uniformly on R by the Weierstrass
test, since ∑n=1 ∞

1
n3+1 and ∑n=1 ∞

n
n3+1 converge in R. This implies the series of derivatives

converges uniformly on all intervals of the form [−R,R], R > 0, which is sufficient to show that
f3 is differentiable on R.
For s = 2 the first series on the right-hand side converges still uniformly, but the second series
doesn’t since it behaves like ∑

∞
n=1

cos(nx)
n , which diverges at x = 0,±2π,±4π, . . . . The factor x

causes uniform convergence of the series of derivatives near x = 0 but not at other multiplies of
2π. Consequently, f2 is not differentiable at x =±2π,±4π, . . . .

9 In (A) the point-wise limit is 1, but n
x+n for fixed n can be made close to zero by choosing x

large. Hence no uniform response to ε < 1 can exist.
In (B) the point-wise limit is 1, and∣∣∣∣x2− x+n

x2 +n
−1
∣∣∣∣= x

x2 +n
≤ x

2x
√

n
=

1
2
√

n
→ 0 for n→ ∞,

showing uniform convergence.
In (C) the point-wise limit is 0, but x

x+n for fixed n can be made close to 1 by choosing x large.
In (D) the point-wise limit is 0, but the same argument as in (C) applies.
In (E) the point-wise limit is 1, but ∣∣∣∣ x+n

x2 +n
−1
∣∣∣∣=

∣∣x− x2
∣∣

x2 +n
.

For large x this is again close to 1 instead of zero.



10 Rewriting the equation as (y−1)x−3 =C, we see that the curves are the contours of f (x,y)=
(y−1)x−3 and hence satisfy the ODE

fx dx+ fy dy =−3(y−1)x−4 dx+x−3 dy = 0,

which expresses the orthogonality of the contours to the gradient ∇ f . Multiplying by −x4, this
simplifies to 3(y−1)dx−xdy = 0.

11 φ0(t) = −1, φ1(t) = −1+
∫ t

0 φ0(s)2 ds = −1+
∫ t

0 ds = −1+ t, φ2(t) = −1+
∫ t

0 φ1(s)2 ds =
−1+

∫ t
0(s−1)2 ds =−1+

∫ t
0(s

2−2s+1)ds =−1+
[
s3/3− s2 + s

]t
0 =−1+ t− t2 + t3/3.

12 This question contains a trap, viz. that it have characteristic polynomial X3−X +6 = (X +
2)(X2− 2X + 3), which has µ = −2 as root. But this is false, and the ODE in standard form
is rather y′′′− y′ = −6+ e−2t with characteristic polynomial X3−X , which has µ = 0 but not
µ =−2 as a root, so that the correct Ansatz is y = y1 + y2 with y1(t) = c0t, y2(t) = c1e−2t .

13 Since maximal solutions of IVPs are unique, the statement should have read “The maximal
solution . . . ” rather than “Maximal solutions . . . ”.
Solutions y = y(t) satisfy

∫ y
0

dη

η2−2η+1 =
∫ y

0
dη

(η−1)2 =
∫ t

0 dτ = t. We have limy↑1
∫ y

0
dη

(η−1)2 =

limy↑1

[
− 1

η−1

]y

0
= limy↑1

(
1

1−y −1
)
=+∞ and a := limy↓−∞

∫ y
0

dη

(η−1)2 =−
∫ 0
−∞

dη

(η−1)2 ∈R (sin-

ce this improper integral converges). This shows that the maximal solution is defined on (a,+∞).

14 ‖A‖ is equal to the square root of the largest eigenvalue of ATA, which in this case is( 17 −34
−34 68

)
. The eigenvalues of this matrix are λ1 = 85, λ2 = 0, and hence the answer is

√
85> 9

(more precisely,
√

85≈ 9.22).
A fast way to compute the eigenvalues of ATA is the following: Since ATA isn’t invertible, one
eigenvalue must be zero. Then the other eigenvalue must be equal to the trace of the matrix,
which is 85.
Applying the same argument to A gives that its eigenvalues are 0 and 9. This implies ‖A‖ ≥ 9,
since in general ‖A‖ ≥ |λ| for any eigenvalue of A. Thus all but two answers are excluded.
In Group B we have

(
17 34
34 68

)
, so that the answer is the same.

15 The last two answers can be excluded right away, because eA0 is the 2×2 identity matrix,
and hence b21(0) = 0.
The matrix A satisfies A2 = 9A (Cayley-Hamilton), and hence Ak = 9k−1A for k ≥ 1.

=⇒ eAt =

(
1 0
0 1

)
+

∞

∑
k=1

9k−1

k!
A =

(
1 0
0 1

)
+

e9t−1
9

(
1 −2
−4 8

)
Thus b21(t) = 4

9 −
4
9 e9t .

Alternatively, use the method in Exercise H48 of Homework 8 to determine eAt . A fundamental
system of solutions of (D2−9D)y= 0 is

{
1,e9t}, and the special fundamental system satisfying

the initial conditions of H48 c) is determined from this as c0(t) = 1, c1(t) =
(
e9t−1

)
/9. Thus

eAt = I2 +
e9t−1

9 A, the same as above.
In Group B the answer is b21(t) =−4

9 +
4
9 e9t .

16 Purportedly this was a favorite question of German mathematician ERNST WITT (1911–
1991) when he examined Calculus students at Hamburg University.


