Math 285 Differential Equations (Prof. Honold)	Midterm Exam	2024/04/19

 Name:
 Student ID:

Group A

For each of the following problems, find the correct answer (tick as appropriate!). No justifications are required. Each problem has exactly one correct solution, which is worth 1 mark. Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be assigned 0 marks; there are no penalties.

1. Which of the following ODE's has distinct solutions
$$y_1, y_2 : \mathbb{R} \to \mathbb{R}$$
 satisfying $y_1(0) = y_2(0)$ and $y_1'(0) = y_2'(0)$?
 $y'' = |y'|$ $y'' = \sqrt{t}y$ $y'' = t\sqrt{y}$ $y'' = |y|$ $yyy'' = 0$
2. The ODE $-2ydx + xdy = 0$ has the integrating factor
 0 $3/x$ $3/y$ $x^{-3/2}$ $y^{-3/2}$
3. The solution of the IVP $y' = (y-1)(y-2)\cdots(y-2024)$, $y(0) = \pi$ is
increasing decreasing convex concave
none of the foregoing
4. For the solution $y(t)$ of the IVP $y' = \frac{2y+1}{t}$, $y(1) = 2$ the value $y(2)$ is equal to
 $11/2$ $13/2$ $15/2$ $17/2$ $19/2$
5. For the solution $y(t)$ of the IVP $y' = -t(y^2 + 1)$, $y(0) = 1$ the value $y(1)$ is contained
in $[0, \frac{1}{2})$ $[\frac{1}{2}, 1)$ $[1, \frac{3}{2})$ $[\frac{3}{2}, 2)$ $[2, \infty)$
6. The power series $\sum_{n=1}^{\infty} n^n z^{n^2}$ has radius of convergence
 0 $1/e$ 1 e ∞
7. The smallest integer k such that $f_k(x) = \sum_{n=1}^{\infty} \frac{\cos(nx)}{n^k}$ is differentiable on $(0, 2\pi)$ is equal to
 0 $1/e$ 1 2 3 4
8. For which choice of $f_n(x)$ does the function sequence (f_n) converge uniformly on $(0, 1)$?
 $n n^k$ n $n x - 1$ $2x - y^2 = C$ $x - y^2 = C$ $2x + y^2 = C$
 $x + y^2 = C$
with $C \in \mathbb{R}$.

Continued on the back side

10. The sequence $\phi_0, \phi_1, \phi_2, \dots$ of Picard-Lindelöf iterates for the IVP $y' = \frac{1}{2}y^2$, y(1) = 2 has $\phi_2(t)$ equal to

 $\begin{array}{c} 2 \\ \frac{2}{3}t^3 + \frac{4}{3} \\ \hline 2 \\ \frac{2}{3}t^3 - 2t^2 + 2t + \frac{4}{3} \\ \hline 2 \\ \frac{2}{3}t^3 - 2t^2 + 2t - \frac{2}{3} \\ \hline 2 \\ \frac{2}{3}t^3 - 2t^2 + 2t^2 + 2t - \frac{2}{3} \\ \hline 2 \\ \frac{2}{3}t^3 - 2t^2 + 2t^2 + 2t - \frac{2}{3} \\ \hline 2 \\ \frac{2}{3}t^3 - 2t^2 + 2t^2 + 2t - \frac{2}{3} \\ \hline 2 \\ \frac{2}{3}t^3 - 2t^2 + 2t^2 + 2t - \frac{2}{3} \\ \hline 2 \\ \frac{2}{3}t^3 - 2t^2 + 2t^2 + 2t - \frac{2}{3} \\ \hline 2 \\ \frac{2}{3}t^3 - 2t^2 + 2t^2 + 2t - \frac{2}{3} \\ \hline 2 \\ \frac{2}{3}t^3 - 2t^2 + 2t^2 + 2t - \frac{2}{3} \\ \hline 2 \\ \frac{2}{3}t^3 - 2t^2 + 2t^2 + 2t - \frac{2}{3} \\ \hline 2 \\ \frac{2}{3}t^3 - 2t^2 + 2t^2 + 2t - \frac{2}{3} \\ \hline 2 \\ \frac{2}{3}t^3 - 2t^2 + 2t^2 + 2t - \frac{2}{3} \\ \hline 2 \\ \frac{2}{3}t$

- 11. $y'' + y' 2y = e^t + 1$ has a particular solution $y_p(t)$ of the form $(c_0 + c_1 t)e^t c_0 + c_1 t e^t c_0 + c_1 e^t c_0 + c_1 e^t c_0 t + c_1 e^t c_0 e^t + c_1 e^{-2t}$ with constants $c_0, c_1 \in \mathbb{R}$.
- 12. The maximal solution of the IVP $y' = y^6 1$, y(-2) = 0 is defined on $(-\infty, -1)$ (-1, 1) (-1, 1) $(1, +\infty)$ $(-\infty, +\infty)$
- 13. The matrix norm of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (subordinate to the Euclidean length on \mathbb{R}^2) is contained in the interval [0,1) [1,2) [2,3) [3,4) $[4,\infty)$
- 14. The map $t \mapsto \begin{pmatrix} \frac{1}{2}(e^{2t} + e^{-2t}) & e^{2t} e^{-2t} \\ \frac{1}{4}(e^{2t} e^{-2t}) & \frac{1}{2}(e^{2t} + e^{-2t}) \end{pmatrix}$ is the matrix exponential function of $\Box \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \Box \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \qquad \Box \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} \qquad \Box \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix} \qquad \Box \begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix}$
- 15. Which of the following defines a contraction of the interval [1,2]?

$x \mapsto (x^2 + 3)/4$	$x \mapsto 4 - 3x + x^2$	$x \mapsto (x^2 + 5)/12$
$x \mapsto (x^2 + 5)/6$	$ x \mapsto 1/(2x) $	

Time allowed: 60 min

CLOSED BOOK

Good luck!

Notes

Notes have only been written for Group A. In those places where Group B differs from Group A, the difference is indicated briefly at the end of the note.

The date of the midterm (2024/04/19) has been corrected for this version.

Question 8 inadvertently has 2 correct answers. (I had Answer E in mind but, as many students noted, Answer C is also correct.) Since this contradicts the stated rules of the game, every student receives 1 mark for Question 8.

1 $y'' = t\sqrt{y}$ has, besides the all-zero function on \mathbb{R} , the solution $y(t) = \frac{1}{900}t^6$, as one easily finds using the power function Ansatz $y(t) = ct^r$. The ODE yy'' = 0 is equivalent to y'' = 0, which is solved by y(t) = at + b $(a, b \in \mathbb{R})$ and has a unique solution for prescribed initial values y(0), y'(0). (This also follows from the Existence and Uniqueness Theorem, applied to y'' = 0.) The other three answers offered are explicit 2nd-order ODE's satisfying the assumptions of the Existence and Uniqueness Theorem, so that distinct solutions with the same initial values cannot exist. (In the case of $y'' = \sqrt{t}y$ solutions exist only on $[0, \infty)$.)

2 Multiplying the ODE by $y^{-3/2}$ gives $-2y^{-1/2} dx + xy^{-3/2} dy = 0$ which of the form P dx + Q dy with $P_y = y^{-3/2} = Q_x$ and hence exact on $\mathbb{R}^2 \setminus \{y = 0\}$. Answers B,C,D don't have this property. Answer A is also false: Zero is not considered as an integrating factor, since multiplication by zero renders the ODE useless.

In Group B the ODE was y dx - 2x dy = 0, which has the integrating factor $x^{-3/2}$.

3 According to our discussion of the phase line, the (maximal) solution, which satisfies $y(0) \in (3,4)$, has domain \mathbb{R} and range (3,4). Since for $y \in (3,4)$ exactly 3 factors of $f(y) = (y - 1)(y - 2) \cdots (y - 2024)$ are positive and 2021 negative, we have y'(t) < 0 for $t \in \mathbb{R}$, so that y(t) is strictly decreasing. Answers C,D are wrong, because y(t) has an inflection point: y'' = f(y)' = f'(y)y', and between adjacent zeros of f (in our case 3,4) there is always a zero z of f'. If t_0 is such that $y(t_0) = z$, we have $y''(t_0) = 0$. Because y(t) is decreasing, the curvature changes from concave to convex at t_0 .

In Group B we have $y(0) \in (2,3)$, so that exactly 2 factors of $f(y) = (y-1)(y-2)\cdots(y-2024)$ are positive and y'(t) > 0 for $t \in \mathbb{R}$. Thus Answer A is correct for Group B (and Answers C,D likewise wrong).

4 This ODE is 1st-order linear with associated homogeneous ODE $y' = \frac{2}{t}y$. The solution of the latter is

$$y_h(t) = c \exp\left(\int \frac{2}{t} dt\right) = c t^2.$$

A particular solution of the inhomogeneous ODE is $y_p(t) = -1/2$ (shame on you if you haven't found it!), and hence the general solution is $y(t) = ct^2 - 1/2$, which has y(1) = c - 1/2. In Group A the initial condition y(1) = 2 gives c = 5/2, y(2) = 19/2, while in Group B y(0) = 1 gives c = 3/2, y(2) = 11/2.

5 This is a separable ODE, which can be solved by the standard method (Group B comes first):

$$\frac{dy}{y^2 + 1} = -t dt$$
$$\arctan y = -t^2/2 + C$$
$$y = \tan(C - t^2/2)$$

)

 $y(0) = \tan C = 1$ gives $C = \pi/4$, so that $y(t) = \tan(\pi/4 - t^2/2)$. It follows that $y(1) = \tan(\pi/4 - 1/2) \approx \tan(0.25) \approx 0.25 \in [0, \frac{1}{2})$. (The exact value of $\tan(\pi/4 - 1/2)$ is 0.2934...)

$$\left[\frac{1}{2}\ln(\eta^2 - 3)\right]_2^y = [\ln\tau]_1^t$$
$$\frac{1}{2}(\ln(y^2 - 3) - \ln 1) = \ln t$$
$$\ln(y^2 - 3) = 2\ln t = \ln(t^2)$$
$$y^2 - 3 = t^2$$
$$y = \sqrt{t^2 + 3},$$

and $y(2) = \sqrt{7}$.

6 The standard form of this power series is $\sum_{k=1}^{\infty} a_k z^k$ with

$$a_k = \begin{cases} n^n & \text{if } k = n^2 \text{ is a perfect square,} \\ 0 & \text{if } k \text{ is not a perfect square.} \end{cases}$$

Since

$$\sqrt[k]{|a_k|} = \begin{cases} \sqrt[n^2]{n^n} = \sqrt[n]{n} & \text{if } k = n^2 \text{ is a perfect square,} \\ 0 & \text{if } k \text{ is not a perfect square,} \end{cases}$$

and $\sqrt[n]{n} \to 1$ for $n \to \infty$, the limit superior of the sequence $\left(\sqrt[k]{|a_k|}\right)$ is L = 1. $\implies R = 1/L = 1$.

7 In the lecture it was shown that $f_1(x) = \sum_{n=1}^{\infty} \frac{\cos(nx)}{n} = -\ln(2\sin\frac{x}{2})$ for $x \in (0, 2\pi)$. Clearly this function is differentiable. For $k \le 0$ the series defining $f_k(x)$ doesn't converge anywhere.

8 The correct answers are (C) and (E).

In (A) the limit function is $x \mapsto 0$, but $f_n(e^{-n}) = -1$ for n = 1, 2, ..., showing that no uniform response to $\varepsilon = 1$ (and smaller values of ε) can exist.

In (B) the limit function is $x \mapsto 1$, but $f_n(1/2^n) = 1/2$ for n = 1, 2, ..., showing that no uniform response to $\varepsilon = 1/2$ can exist.

In (C) the limit function is $x \mapsto x$, and we have

$$\left|\frac{nx}{x+n} - x\right| = \left|\frac{-x^2}{x+n}\right| \le \frac{1}{n} \quad \text{for } 0 < x < 1,$$

implying uniform convergence. (As uniform response to $\varepsilon > 0$ we can take $N = \lceil 1/\varepsilon/\rceil$.) In (D) the limit function is $x \mapsto 0$, but $f_n(1/\sqrt{n}) = 1/\varepsilon$ for n = 2, 3, ..., showing that no uniform response to $\varepsilon = 1/\varepsilon$ can exist.

In (E) the limit function is $x \mapsto 0$, and 0 < x/n < 1/n and $\lim_{y \downarrow 0} (y \ln y) = 0$ imply uniform convergence. (If $\delta > 0$ is such that $|y \ln y| < \varepsilon$ for $0 < y < \delta$, we can take $N = \lceil 1/\delta / \rceil$ as uniform response to ε .)

9 Rewriting the equation as $ye^{-x} = C$, we see that the curves are the contours of $f(x, y) = ye^{-x}$ and hence satisfy the ODE

$$f_x dx + f_y dy = -e^{-x}y dx + e^{-x} dy = 0 \iff -y dx + dy = 0.$$

The orthogonal trajectories then satisfy dx + y dy = 0, which is exact (even separable) and solved by $x + y^2/2 = C$. Hence the correct answer is (D).

10
$$\phi_0(t) = 2, \phi_1(t) = 2 + \int_1^t \frac{1}{2} \phi_0(s)^2 ds = 2 + \int_1^t 2 ds = 2 + 2(t-1) = 2t, \phi_2(t) = 2 + \int_1^t \frac{1}{2} \phi_1(s)^2 ds = 2 + \int_0^t 2s^2 ds = 2 + \left[\frac{2}{3}s^3\right]_1^t = 2 + \frac{2}{3}t^3 - \frac{2}{3} = \frac{2}{3}t^3 + \frac{4}{3}.$$

11 This ODE has characteristic polynomial $X^2 + X - 2 = (X - 1)(X + 2)$, which has roots $\lambda_1 = 1, \lambda_2 = -2$, both with multiplicity m = 1. Superposition gives a solution $y = y_1 + y_2$ from solutions y_1 of y'' + y' - 2y = 1 and y_2 of $y'' + y' - 2y = e^t$. We can take $y_1(t) = -1/2$ and for y_2 use the Ansatz $y_2(t) = ct e^t$, which after a short computation gives c = 1/3. Hence (B) is the correct answer. (The general solution is $y(t) = -\frac{1}{2} + \frac{1}{3}t e^t + c_1e^t + c_2e^{-2t}$, none of which fits any of the answers (A), (C), (D), (E).)

12 The function $f(y) = y^6 - 1 = (y^2 - 1)(y^4 + y^2 + 1)$ has zeros $z_1 = -1$, $z_2 = 1$. Since $y(-2) = 0 \in (z_1, z_2)$, the domain of the maximal solution is $(-\infty, +\infty)$ according to the theorem about the phase line from the lecture.

13 $\|\mathbf{A}\|$ is equal to the square root of the largest eigenvalue of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$, which in this case is $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$. This matrix has characteristic polynomial $\chi_{\mathbf{A}}(X) = X^2 - 3X + 1$ and eigenvalues $\lambda_{1/2} = \frac{3\pm\sqrt{5}}{2}$. $\implies \|\mathbf{A}\| = \sqrt{\frac{3+\sqrt{5}}{2}} = \frac{1+\sqrt{5}}{2} \approx 1.62$ (the golden ratio).

Alternatively we can reason as follows: For $\mathbf{x} = (0,1)^T$ we have $|\mathbf{A}\mathbf{x}| / |\mathbf{x}| = \sqrt{2}$, implying $\|\mathbf{A}\| \ge \sqrt{2}$. On the other hand, $\|\mathbf{A}\| \le \|\mathbf{A}\|_F = \sqrt{3}$. Hence $\|\mathbf{A}\| \in [\sqrt{2}, \sqrt{3}]$, and the correct answer must be (B).

14 Calling the matrix function $\Phi'(t)$, we have

$$\Phi'(t) = \begin{pmatrix} e^{2t} - e^{-2t} & 2e^{2t} + 2e^{-2t} \\ \frac{1}{2}(e^{2t} + e^{-2t}) & e^{2t} - e^{-2t} \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix} \Phi(t).$$

Since $t \mapsto e^{At}$ solves the matrix ODE $\mathbf{Y}' = \mathbf{A}\mathbf{Y}$, the correct answer must be (D). (All but (D), (E) can also be excluded by the fact that for a diagonal matrix \mathbf{A} the matrices $e^{\mathbf{A}t}$ must also be diagonal.)

15 This was probably the most difficult question. The correct answer is (D). The map $T : [1,2] \rightarrow \mathbb{R}$, $x \mapsto (x^2 + 5)/6$ is increasing with T(1) = 1, T(2) = 3/2, and hence maps [1,2] into itself. The Mean Value Theorem gives

$$|T(x) - T(y)| = |T'(\xi)| |x - y| = \frac{\xi}{3} |x - y|$$
 for $x, y \in [1, 2]$,

where ξ is some number between *x* and *y*. Since $\xi \le 2$, the map *T* defines a contraction of [1,2] with contraction constant *C* = 2/3.

In (A), (B) the map *T* satisfies T'(2) = 1. The argument using the Mean Value Theorem gives $|T(x) - T(2)| = |T'(\xi)| |x-2|$ with $\xi \in (x,2)$ for arbitrarily chosen $x \in [1,2]$. By choosing *x* close to 2 we can make the factor $|T'(\xi)|$ arbitrarily close to 1. Thus $|T(x) - T(2)| \le C |x-2|$ for a constant C < 1 is impossible.

In (C), (E) the map T satisfies T(1) = 1/2 and hence doesn't map [1,2] into itself.