
Math 285 Differential Equations (Prof. Honold) Midterm Exam 2024/04/19

Name: Student ID: Group A

For each of the following problems, find the correct answer (tick as appropriate!). No justifi-
cations are required. Each problem has exactly one correct solution, which is worth 1 mark.
Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be as-
signed 0 marks; there are no penalties.

1. Which of the following ODE’s has distinct solutions y1,y2 : R→ R satisfying
y1(0) = y2(0) and y′1(0) = y′2(0) ?

y′′ = |y′| y′′ =
√

t y y′′ = t
√

y y′′ = |y| yy′′ = 0

2. The ODE −2ydx+xdy = 0 has the integrating factor

0 3/x 3/y x−3/2 y−3/2

3. The solution of the IVP y′ = (y−1)(y−2) · · ·(y−2024), y(0) = π is

increasing decreasing convex concave

none of the foregoing

4. For the solution y(t) of the IVP y′ = 2y+1
t , y(1) = 2 the value y(2) is equal to

11/2 13/2 15/2 17/2 19/2

5. For the solution y(t) of the IVP y′ =−t(y2+1), y(0) = 1 the value y(1) is contained
in [

0, 1
2

) [1
2 ,1
) [

1, 3
2

) [3
2 ,2
)

[2,∞)

6. The power series
∞

∑
n=1

nnzn2
has radius of convergence

0 1/e 1 e ∞

7. The smallest integer k such that fk(x) =
∞

∑
n=1

cos(nx)
nk is differentiable on (0,2π) is

equal to

0 1 2 3 4

8. For which choice of fn(x) does the function sequence ( fn) converge uniformly on (0,1) ?
lnx
n

n
√

x nx
x+n e−nx2 x

n ln x
n

9. The orthogonal trajectories of y =C ex, C ∈ R are

y =C e−x 2x− y2 =C x− y2 =C 2x+ y2 =C

x+ y2 =C
with C ∈ R.

Continued on the back side



10. The sequence φ0,φ1,φ2, . . . of Picard-Lindelöf iterates for the IVP y′ = 1
2 y2, y(1) = 2

has φ2(t) equal to
2
3 t3 + 4

3
2
3 t3−2t2 +2t + 4

3
2
3 t3−2 2

3 t3−2t2 +2t− 2
3

2
3 t3 +2t2 +2t +2

11. y′′+ y′−2y = et +1 has a particular solution yp(t) of the form

(c0 + c1t)et c0 + c1t et c0 + c1et c0t + c1et c0et + c1e−2t

with constants c0,c1 ∈ R.

12. The maximal solution of the IVP y′ = y6−1, y(−2) = 0 is defined on

(−∞,−1) (−1,1) [−1,1] (1,+∞) (−∞,+∞)

13. The matrix norm of
(

1 1
0 1

)
(subordinate to the Euclidean length on R2) is contained

in the interval
[0,1) [1,2) [2,3) [3,4) [4,∞)

14. The map t 7→

(
1
2(e

2t + e−2t) e2t− e−2t

1
4(e

2t− e−2t) 1
2(e

2t + e−2t)

)
is the matrix exponential function of(

1 0
0 1

) (
1 0
0 4

) (
4 0
0 1

) (
0 4
1 0

) (
0 1
4 0

)
15. Which of the following defines a contraction of the interval [1,2] ?

x 7→ (x2 +3)/4 x 7→ 4−3x+ x2 x 7→ (x2 +5)/12

x 7→ (x2 +5)/6 x 7→ 1/(2x)

Time allowed: 60 min CLOSED BOOK Good luck!



Notes

Notes have only been written for Group A. In those places where Group B differs from Group A,
the difference is indicated briefly at the end of the note.
The date of the midterm (2024/04/19) has been corrected for this version.
Question 8 inadvertently has 2 correct answers. (I had Answer E in mind but, as many students
noted, Answer C is also correct.) Since this contradicts the stated rules of the game, every
student receives 1 mark for Question 8.

1 y′′= t
√

y has, besides the all-zero function on R, the solution y(t) = 1
900 t6, as one easily finds

using the power function Ansatz y(t) = ctr. The ODE yy′′ = 0 is equivalent to y′′ = 0, which
is solved by y(t) = at + b (a,b ∈ R) and has a unique solution for prescribed initial values
y(0), y′(0). (This also follows from the Existence and Uniqueness Theorem, applied to y′′ = 0.)
The other three answers offered are explicit 2nd-order ODE’s satisfying the assumptions of
the Existence and Uniqueness Theorem, so that distinct solutions with the same initial values
cannot exist. (In the case of y′′ =

√
t y solutions exist only on [0,∞).)

2 Multiplying the ODE by y−3/2 gives−2y−1/2 dx+xy−3/2 dy= 0 which of the form Pdx+Qdy
with Py = y−3/2 = Qx and hence exact on R2 \{y = 0}. Answers B,C,D don’t have this proper-
ty. Answer A is also false: Zero is not considered as an integrating factor, since multiplication
by zero renders the ODE useless.
In Group B the ODE was ydx−2xdy = 0, which has the integrating factor x−3/2.

3 According to our discussion of the phase line, the (maximal) solution, which satisfies y(0) ∈
(3,4), has domain R and range (3,4). Since for y ∈ (3,4) exactly 3 factors of f (y) = (y−
1)(y− 2) · · ·(y− 2024) are positive and 2021 negative, we have y′(t) < 0 for t ∈ R, so that
y(t) is strictly decreasing. Answers C,D are wrong, because y(t) has an inflection point: y′′ =
f (y)′ = f ′(y)y′, and between adjacent zeros of f (in our case 3,4) there is always a zero z of
f ′. If t0 is such that y(t0) = z, we have y′′(t0) = 0. Because y(t) is decreasing, the curvature
changes from concave to convex at t0.
In Group B we have y(0)∈ (2,3), so that exactly 2 factors of f (y) = (y−1)(y−2) · · ·(y−2024)
are positive and y′(t)> 0 for t ∈ R. Thus Answer A is correct for Group B (and Answers C,D
likewise wrong).

4 This ODE is 1st-order linear with associated homogeneous ODE y′ = 2
t y. The solution of the

latter is

yh(t) = c exp
(∫ 2

t
dt
)
= ct2.

A particular solution of the inhomogeneous ODE is yp(t) =−1/2 (shame on you if you haven’t
found it!), and hence the general solution is y(t) = ct2− 1/2, which has y(1) = c− 1/2. In
Group A the initial condition y(1) = 2 gives c = 5/2, y(2) = 19/2, while in Group B y(0) = 1
gives c = 3/2, y(2) = 11/2.

5 This is a separable ODE, which can be solved by the standard method (Group B comes first):

dy
y2 +1

=−t dt

arctany =−t2/2+C

y = tan(C− t2/2)

y(0) = tanC = 1 gives C = π/4, so that y(t) = tan(π/4−t2/2). It follows that y(1) = tan(π/4−
1/2)≈ tan(0.25)≈ 0.25 ∈

[
0, 1

2

)
. (The exact value of tan(π/4−1/2) is 0.2934 . . . .)



In Group A the computation is [
1
2

ln
(
η

2−3
)]y

2
= [lnτ]t1

1
2
(
ln
(
y2−3

)
− ln1

)
= ln t

ln
(
y2−3

)
= 2ln t = ln(t2)

y2−3 = t2

y =
√

t2 +3,

and y(2) =
√

7.

6 The standard form of this power series is ∑
∞
k=1 akzk with

ak =

{
nn if k = n2 is a perfect square,
0 if k is not a perfect square.

Since
k
√
|ak|=

{
n2√

nn = n
√

n if k = n2 is a perfect square,
0 if k is not a perfect square,

and n
√

n→ 1 for n→ ∞, the limit superior of the sequence
(

k
√
|ak|
)

is L = 1.
=⇒ R = 1/L = 1.

7 In the lecture it was shown that f1(x) = ∑
∞
n=1

cos(nx)
n = − ln

(
2sin x

2

)
for x ∈ (0,2π). Clearly

this function is differentiable. For k ≤ 0 the series defining fk(x) doesn’t converge anywhere.

8 The correct answers are (C) and (E).
In (A) the limit function is x 7→ 0, but fn(e−n) =−1 for n = 1,2, . . . , showing that no uniform
response to ε = 1 (and smaller values of ε) can exist.
In (B) the limit function is x 7→ 1, but fn(1/2n) = 1/2 for n = 1,2, . . . , showing that no uniform
response to ε = 1/2 can exist.
In (C) the limit function is x 7→ x, and we have∣∣∣∣ nx

x+n
− x
∣∣∣∣= ∣∣∣∣ −x2

x+n

∣∣∣∣≤ 1
n

for 0 < x < 1,

implying uniform convergence. (As uniform response to ε > 0 we can take N = d1/ε/e.)
In (D) the limit function is x 7→ 0, but fn(1/

√
n) = 1/e for n= 2,3, . . . , showing that no uniform

response to ε = 1/e can exist.
In (E) the limit function is x 7→ 0, and 0 < x/n < 1/n and limy↓0(y lny) = 0 imply uniform
convergence. (If δ > 0 is such that |y lny|< ε for 0 < y < δ, we can take N = d1/δ/e as uniform
response to ε.)

9 Rewriting the equation as ye−x =C, we see that the curves are the contours of f (x,y) = ye−x

and hence satisfy the ODE

fx dx+ fy dy =−e−xydx+e−x dy = 0 ⇐⇒ −ydx+dy = 0.

The orthogonal trajectories then satisfy dx+ydy= 0, which is exact (even separable) and solved
by x+ y2/2 =C. Hence the correct answer is (D).

10 φ0(t)= 2, φ1(t)= 2+
∫ t

1
1
2φ0(s)2 ds= 2+

∫ t
1 2ds= 2+2(t−1)= 2t, φ2(t)= 2+

∫ t
1

1
2φ1(s)2 ds=

2+
∫ t

0 2s2 ds = 2+
[2

3 s3]t
1 = 2+ 2

3 t3− 2
3 = 2

3 t3 + 4
3 .



11 This ODE has characteristic polynomial X2 + X − 2 = (X − 1)(X + 2), which has roots
λ1 = 1, λ2 =−2, both with multiplicity m = 1. Superposition gives a solution y = y1+y2 from
solutions y1 of y′′+ y′−2y = 1 and y2 of y′′+ y′−2y = et . We can take y1(t) = −1/2 and for
y2 use the Ansatz y2(t) = ct et , which after a short computation gives c = 1/3. Hence (B) is the
correct answer. (The general solution is y(t) = −1

2 +
1
3 t et + c1et + c2e−2t , none of which fits

any of the answers (A), (C), (D), (E).)

12 The function f (y) = y6−1= (y2−1)(y4+y2+1) has zeros z1 =−1, z2 = 1. Since y(−2) =
0 ∈ (z1,z2), the domain of the maximal solution is (−∞,+∞) according to the theorem about
the phase line from the lecture.

13 ‖A‖ is equal to the square root of the largest eigenvalue of ATA, which in this case is
(

1 1
1 2

)
.

This matrix has characteristic polynomial χA(X) = X2−3X +1 and eigenvalues λ1/2 =
3±
√

5
2 .

=⇒‖A‖=
√

3+
√

5
2 = 1+

√
5

2 ≈ 1.62 (the golden ratio).
Alternatively we can reason as follows: For x = (0,1)T we have |Ax|/ |x| =

√
2, implying

‖A‖ ≥
√

2. On the other hand, ‖A‖ ≤ ‖A‖F =
√

3. Hence ‖A‖ ∈
[√

2,
√

3
]
, and the correct

answer must be (B).

14 Calling the matrix function Φ′(t), we have

Φ′(t) =
(

e2t− e−2t 2e2t +2e−2t

1
2(e

2t + e−2t) e2t− e−2t

)
=

(
0 4
1 0

)
Φ(t).

Since t 7→ eAt solves the matrix ODE Y′ = AY, the correct answer must be (D). (All but (D),
(E) can also be excluded by the fact that for a diagonal matrix A the matrices eAt must also be
diagonal.)

15 This was probably the most difficult question. The correct answer is (D). The map T : [1,2]→
R, x 7→ (x2 + 5)/6 is increasing with T (1) = 1, T (2) = 3/2, and hence maps [1,2] into itself.
The Mean Value Theorem gives

|T (x)−T (y)|=
∣∣T ′(ξ)∣∣ |x− y|= ξ

3
|x− y| for x,y ∈ [1,2],

where ξ is some number between x and y. Since ξ≤ 2, the map T defines a contraction of [1,2]
with contraction constant C = 2/3.
In (A), (B) the map T satisfies T ′(2) = 1. The argument using the Mean Value Theorem gives
|T (x)−T (2)| = |T ′(ξ)| |x−2| with ξ ∈ (x,2) for arbitrarily chosen x ∈ [1,2]. By choosing x
close to 2 we can make the factor |T ′(ξ)| arbitrarily close to 1. Thus |T (x)−T (2)| ≤C |x−2|
for a constant C < 1 is impossible.
In (C), (E) the map T satisfies T (1) = 1/2 and hence doesn’t map [1,2] into itself.


