

Name: Student ID: Student ID: Group A

For each of the following problems, find the correct answer (tick as appropriate!). No justifications are required. Each problem has exactly one correct solution, which is worth 1 mark. Incorrect solutions (including no answer, multiple answers, or unreadable answers) will be assigned 0 marks; there are no penalties.

1. Which of the following ODE's has distinct solutions $y_1, y_2 : \mathbb{R} \to \mathbb{R}$ satisfying $y_1(0) = y_2(0)$ and y'_1 $y'_1(0) = y'_2$ $'_{2}(0)$? $y'' = |y'|$ $\boxed{y'' = \sqrt{y''}}$ $\overline{t}y$ $y'' = t\sqrt{y}$ $y'' = |y|$ $\overline{y''} = 0$ 2. The ODE $-2ydx + xdy = 0$ has the integrating factor 0 \vert $\vert 3/x \vert$ $\vert 3/y \vert$ $\vert x^{-3/2} \vert$ *y* −3/2 3. The solution of the IVP $y' = (y-1)(y-2)\cdots(y-2024)$, $y(0) = \pi$ is |increasing decreasing | convex concave none of the foregoing 4. For the solution $y(t)$ of the IVP $y' = \frac{2y+1}{t}$ $t^{\frac{+1}{t}}$, $y(1) = 2$ the value $y(2)$ is equal to $11/2$ 13/2 $\boxed{15/2}$ $\boxed{17/2}$ 19/2 5. For the solution *y*(*t*) of the IVP $y' = -t(y^2 + 1)$, $y(0) = 1$ the value *y*(1) is contained in $\left[0,\frac{1}{2}\right]$ $\frac{1}{2}$ $\left[\frac{1}{2}\right]$ $\frac{1}{2}$, 1) $\boxed{1, \frac{3}{2}}$ 2 $\left| \begin{array}{c} \frac{3}{2} \\ \frac{3}{2} \end{array} \right|$ $(\frac{3}{2}, 2)$ $[2, \infty)$ 6. The power series ∞ ∑ *n*=1 $n^n z^{n^2}$ has radius of convergence 0 and $1/e$ and 1 e 1 e \Box \in 7. The smallest integer *k* such that $f_k(x) =$ ∞ ∑ *n*=1 cos(*nx*) $\frac{\partial f(x,y)}{\partial x}$ is differentiable on $(0,2\pi)$ is equal to 0 1 2 3 4 8. For which choice of $f_n(x)$ does the function sequence (f_n) converge uniformly on $(0,1)$? ln*x n* √*n x nx x*+*n* e^{-nx^2} *x* $\frac{x}{n}$ ln $\frac{x}{n}$ 9. The orthogonal trajectories of $y = Ce^x$, $C \in \mathbb{R}$ are $v = Ce^{-x}$ $\begin{aligned}\n-x \quad | \quad |2x - y^2 = C \quad | \quad |x - y^2 = C \quad | \quad |2x + y^2 = C\n\end{aligned}$ $x + y^2 = C$ with $C \in \mathbb{R}$.

10. The sequence $\phi_0, \phi_1, \phi_2, \dots$ of Picard-Lindelöf iterates for the IVP $y' = \frac{1}{2}$ $\frac{1}{2}y^2$, $y(1) = 2$ has $\phi_2(t)$ equal to

2 $\frac{2}{3}t^3 + \frac{4}{3}$ 3 2 $\frac{2}{3}t^3 - 2t^2 + 2t + \frac{4}{3}$ 3 2 $\frac{2}{3}t^3 - 2$ $\frac{2}{3}$ $\frac{2}{3}t^3 - 2t^2 + 2t - \frac{2}{3}$ 3 2 $\frac{2}{3}t^3 + 2t^2 + 2t + 2$

- 11. $y'' + y' 2y = e^t + 1$ has a particular solution $y_p(t)$ of the form $(c_0 + c_1 t)e^t$ **c**₀ + *c*₁t^{*e*} **d**_{*c*₀ + *c*₁e^{*t*} **d**_{*c*₀ + *c*₁e^{*t*} **d**_{*c*₀^{*t*} + *c*₁e^{-2*t*}}}} with constants $c_0, c_1 \in \mathbb{R}$.
- 12. The maximal solution of the IVP $y' = y^6 1$, $y(-2) = 0$ is defined on $(-\infty,-1)$ $\bigsqcup (-1,1)$ $\bigsqcup [-1,1]$ $\bigsqcup (1,+\infty)$ $\bigsqcup (-\infty,+\infty)$
- 13. The matrix norm of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (subordinate to the Euclidean length on \mathbb{R}^2) is contained in the interval $\begin{bmatrix} 0,1 \end{bmatrix}$ [1,2) $\begin{bmatrix} 1,2 \end{bmatrix}$ [2,3) $\begin{bmatrix} 3,4 \end{bmatrix}$ [4, ∞)

14. The map
$$
t \mapsto \begin{pmatrix} \frac{1}{2}(e^{2t} + e^{-2t}) & e^{2t} - e^{-2t} \\ \frac{1}{4}(e^{2t} - e^{-2t}) & \frac{1}{2}(e^{2t} + e^{-2t}) \end{pmatrix}
$$
 is the matrix exponential function of
\n
$$
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \qquad \qquad \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \begin{bmatrix} 0 & 4 \\ 1 & 0 \end{bmatrix} \qquad \qquad \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix}
$$

15. Which of the following defines a contraction of the interval [1,2] ?

Time allowed: 60 min CLOSED BOOK **Good luck!**

Notes

Notes have only been written for Group A. In those places where Group B differs from Group A, the difference is indicated briefly at the end of the note.

The date of the midterm (2024/04/19) has been corrected for this version.

Question 8 inadvertently has 2 correct answers. (I had Answer E in mind but, as many students noted, Answer C is also correct.) Since this contradicts the stated rules of the game, every student receives 1 mark for Question 8.

1 $y'' = t\sqrt{y}$ has, besides the all-zero function on R, the solution $y(t) = \frac{1}{900}t^6$, as one easily finds using the power function Ansatz $y(t) = ct^r$. The ODE $yy'' = 0$ is equivalent to $y'' = 0$, which is solved by $y(t) = at + b$ ($a, b \in \mathbb{R}$) and has a unique solution for prescribed initial values $y(0)$, $y'(0)$. (This also follows from the Existence and Uniqueness Theorem, applied to $y'' = 0$.) The other three answers offered are explicit 2nd-order ODE's satisfying the assumptions of the Existence and Uniqueness Theorem, so that distinct solutions with the same initial values cannot exist. (In the case of $y'' = \sqrt{t}y$ solutions exist only on [0, ∞).)

2 Multiplying the ODE by $y^{-3/2}$ gives $-2y^{-1/2} dx + xy^{-3/2} dy = 0$ which of the form $P dx + Q dy$ with $P_y = y^{-3/2} = Q_x$ and hence exact on $\mathbb{R}^2 \setminus \{y = 0\}$. Answers B,C,D don't have this property. Answer A is also false: Zero is not considered as an integrating factor, since multiplication by zero renders the ODE useless.

In Group B the ODE was $y dx - 2x dy = 0$, which has the integrating factor $x^{-3/2}$.

3 According to our discussion of the phase line, the (maximal) solution, which satisfies $y(0) \in$ (3,4), has domain R and range (3,4). Since for $y \in (3,4)$ exactly 3 factors of $f(y) = (y -$ 1)(*y* − 2) ··· (*y* − 2024) are positive and 2021 negative, we have $y'(t) < 0$ for $t \in \mathbb{R}$, so that $y(t)$ is strictly decreasing. Answers C,D are wrong, because $y(t)$ has an inflection point: $y'' =$ $f(y)' = f'(y)y'$, and between adjacent zeros of *f* (in our case 3,4) there is always a zero *z* of f' . If t_0 is such that $y(t_0) = z$, we have $y''(t_0) = 0$. Because $y(t)$ is decreasing, the curvature changes from concave to convex at *t*0.

In Group B we have *y*(0) ∈ (2,3), so that exactly 2 factors of *f*(*y*) = (*y*−1)(*y*−2)···(*y*−2024) are positive and $y'(t) > 0$ for $t \in \mathbb{R}$. Thus Answer A is correct for Group B (and Answers C,D) likewise wrong).

4 This ODE is 1st-order linear with associated homogeneous ODE $y' = \frac{2}{l}$ $\frac{2}{t}$ *y*. The solution of the latter is

$$
y_h(t) = c \exp\left(\int \frac{2}{t} dt\right) = ct^2.
$$

A particular solution of the inhomogeneous ODE is $y_p(t) = -1/2$ (shame on you if you haven't found it!), and hence the general solution is $y(t) = ct^2 - 1/2$, which has $y(1) = c - 1/2$. In Group A the initial condition $y(1) = 2$ gives $c = 5/2$, $y(2) = 19/2$, while in Group B $y(0) = 1$ gives $c = 3/2$, $v(2) = 11/2$.

5 This is a separable ODE, which can be solved by the standard method (Group B comes first):

$$
\frac{dy}{y^2 + 1} = -t dt
$$

arctan y = $-t^2/2 + C$
y = tan $(C - t^2/2)$

/2)

 $y(0) = \tan C = 1$ gives $C = \pi/4$, so that $y(t) = \tan(\pi/4 - t^2/2)$. It follows that $y(1) = \tan(\pi/4 - t^2/2)$ $(1/2) \approx \tan(0.25) \approx 0.25 \in [0, \frac{1}{2}]$ $\frac{1}{2}$). (The exact value of tan($\pi/4 - 1/2$) is 0.2934....)

In Group A the computation is

$$
\left[\frac{1}{2}\ln(\eta^2 - 3)\right]_2^y = [\ln \tau]_1^t
$$

$$
\frac{1}{2}(\ln(y^2 - 3) - \ln 1) = \ln t
$$

$$
\ln(y^2 - 3) = 2\ln t = \ln(t^2)
$$

$$
y^2 - 3 = t^2
$$

$$
y = \sqrt{t^2 + 3},
$$

and $y(2) = \sqrt{7}$.

6 The standard form of this power series is $\sum_{k=1}^{\infty} a_k z^k$ with

$$
a_k = \begin{cases} n^n & \text{if } k = n^2 \text{ is a perfect square,} \\ 0 & \text{if } k \text{ is not a perfect square.} \end{cases}
$$

Since

$$
\sqrt[k]{|a_k|} = \begin{cases} \sqrt[n^2]{n^n} = \sqrt[n]{n} & \text{if } k = n^2 \text{ is a perfect square,} \\ 0 & \text{if } k \text{ is not a perfect square,} \end{cases}
$$

and $\sqrt[n]{n} \to 1$ for $n \to \infty$, the limit superior of the sequence $\left(\sqrt[k]{|a_k|}\right)$ is $L = 1$. $\Longrightarrow R = 1/L = 1.$

7 In the lecture it was shown that $f_1(x) = \sum_{n=1}^{\infty}$ $\frac{\cos(nx)}{n} = -\ln(2\sin\frac{x}{2})$ for $x \in (0, 2\pi)$. Clearly this function is differentiable. For $k \leq 0$ the series defining $f_k(x)$ doesn't converge anywhere.

8 The correct answers are (C) and (E).

In (A) the limit function is $x \mapsto 0$, but $f_n(e^{-n}) = -1$ for $n = 1, 2, \dots$, showing that no uniform response to $\epsilon = 1$ (and smaller values of ϵ) can exist.

In (B) the limit function is $x \mapsto 1$, but $f_n(1/2^n) = 1/2$ for $n = 1, 2, \dots$, showing that no uniform response to $\varepsilon = 1/2$ can exist.

In (C) the limit function is $x \mapsto x$, and we have

$$
\left|\frac{nx}{x+n} - x\right| = \left|\frac{-x^2}{x+n}\right| \le \frac{1}{n} \quad \text{for } 0 < x < 1,
$$

implying uniform convergence. (As uniform response to $\varepsilon > 0$ we can take $N = \lceil 1/\varepsilon / \rceil$.) In (D) the limit function is $x \mapsto 0$, but $f_n(1/\sqrt{n}) = 1/e$ for $n = 2, 3, \ldots$, showing that no uniform response to $\varepsilon = 1/e$ can exist.

In (E) the limit function is $x \mapsto 0$, and $0 < x/n < 1/n$ and $\lim_{y \downarrow 0} (y \ln y) = 0$ imply uniform convergence. (If $\delta > 0$ is such that $|y \ln y| < \epsilon$ for $0 < y < \delta$, we can take $N = \lfloor 1/\delta / \rfloor$ as uniform response to ε.)

9 Rewriting the equation as $ye^{-x} = C$, we see that the curves are the contours of $f(x, y) = ye^{-x}$ and hence satisfy the ODE

$$
f_x dx + f_y dy = -e^{-x}y dx + e^{-x} dy = 0 \iff -y dx + dy = 0.
$$

The orthogonal trajectories then satisfy $dx + y dy = 0$, which is exact (even separable) and solved by $x + y^2/2 = C$. Hence the correct answer is (D).

10
$$
\phi_0(t) = 2
$$
, $\phi_1(t) = 2 + \int_1^t \frac{1}{2} \phi_0(s)^2 ds = 2 + \int_1^t 2 ds = 2 + 2(t - 1) = 2t$, $\phi_2(t) = 2 + \int_1^t \frac{1}{2} \phi_1(s)^2 ds = 2 + \int_0^t 2s^2 ds = 2 + \left[\frac{2}{3} s^3\right]_1^t = 2 + \frac{2}{3} t^3 - \frac{2}{3} = \frac{2}{3} t^3 + \frac{4}{3}$.

11 This ODE has characteristic polynomial $X^2 + X - 2 = (X - 1)(X + 2)$, which has roots $\lambda_1 = 1, \lambda_2 = -2$, both with multiplicity $m = 1$. Superposition gives a solution $y = y_1 + y_2$ from solutions *y*₁ of $y'' + y' - 2y = 1$ and *y*₂ of $y'' + y' - 2y = e^t$. We can take $y_1(t) = -1/2$ and for *y*₂ use the Ansatz $y_2(t) = ct e^t$, which after a short computation gives $c = 1/3$. Hence (B) is the correct answer. (The general solution is $y(t) = -\frac{1}{2} + \frac{1}{3}$ $\frac{1}{3} t e^{t} + c_1 e^{t} + c_2 e^{-2t}$, none of which fits any of the answers (A) , (C) , (D) , (E) .)

12 The function $f(y) = y^6 - 1 = (y^2 - 1)(y^4 + y^2 + 1)$ has zeros $z_1 = -1$, $z_2 = 1$. Since $y(-2) =$ 0 ∈ (*z*1,*z*2), the domain of the maximal solution is (−∞,+∞) according to the theorem about the phase line from the lecture.

13 ||A|| is equal to the square root of the largest eigenvalue of A^TA , which in this case is $(\frac{1}{1}\frac{1}{2})$. This matrix has characteristic polynomial $\chi_A(X) = X^2 - 3X + 1$ and eigenvalues $\lambda_{1/2} = \frac{3 \pm \sqrt{5}}{2}$ $\frac{2}{2}$. \Longrightarrow $||A|| = \sqrt{\frac{3+\sqrt{5}}{2}} = \frac{1+\sqrt{5}}{2} \approx 1.62$ (the golden ratio). √

Alternatively we can reason as follows: For $\mathbf{x} = (0,1)^\mathsf{T}$ we have $|\mathbf{A}\mathbf{x}|/|\mathbf{x}| =$ tively we can reason as follows: For $\mathbf{x} = (0,1)^T$ we have $|\mathbf{A}\mathbf{x}|/|\mathbf{x}| = \sqrt{2}$, implying $||A|| \ge \sqrt{2}$. On the other hand, $||A|| \le ||A||_F = \sqrt{3}$. Hence $||A|| \in [\sqrt{2}, \sqrt{3}]$, and the correct answer must be (B).

14 Calling the matrix function $\Phi'(t)$, we have

$$
\Phi'(t) = \begin{pmatrix} e^{2t} - e^{-2t} & 2e^{2t} + 2e^{-2t} \ 2e^{2t} + e^{-2t} & e^{2t} - e^{-2t} \end{pmatrix} = \begin{pmatrix} 0 & 4 \ 1 & 0 \end{pmatrix} \Phi(t).
$$

Since $t \mapsto e^{At}$ solves the matrix ODE Y' = AY, the correct answer must be (D). (All but (D), (E) can also be excluded by the fact that for a diagonal matrix \bf{A} the matrices $e^{\bf{A}t}$ must also be diagonal.)

15 This was probably the most difficult question. The correct answer is (D). The map $T: [1,2] \rightarrow$ $\mathbb{R}, x \mapsto (x^2 + 5)/6$ is increasing with $\overline{T}(1) = 1, T(2) = 3/2$, and hence maps [1,2] into itself. The Mean Value Theorem gives

$$
|T(x) - T(y)| = |T'(\xi)| |x - y| = \frac{\xi}{3} |x - y| \text{ for } x, y \in [1, 2],
$$

where ξ is some number between *x* and *y*. Since ξ < 2, the map *T* defines a contraction of [1,2] with contraction constant $C = 2/3$.

In (A), (B) the map *T* satisfies $T'(2) = 1$. The argument using the Mean Value Theorem gives $|T(x) - T(2)| = |T'(\xi)||x - 2|$ with $\xi \in (x, 2)$ for arbitrarily chosen $x \in [1, 2]$. By choosing *x* close to 2 we can make the factor $|T'(\xi)|$ arbitrarily close to 1. Thus $|T(x) - T(2)| \le C |x - 2|$ for a constant $C < 1$ is impossible.

In (C), (E) the map *T* satisfies $T(1) = 1/2$ and hence doesn't map [1,2] into itself.