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Question 1 (ca. 12 marks)

Decide whether the following statements are true or false, and justify your answers.

a) There exists a solution y(t) of y′ = ln y2+1
2

satisfying y(0) = 0, y(3) = 3.

b) The maximal solution y(t) of the initial value problem y′ = y2 + t, y(0) = 1
is defined at t = 1

2
.

c) The ODE (x4− 1)y′′+ (x2− 1)y′+ (x− 1)y = 0 has a nonzero power series
solution y(x) =

∑∞
n=0 an(x+ 2)n which is defined at x = −4.

d) Every solution of the system y′ =

(
−1 −3

3 1

)
y satisfies lim

t→+∞
y(t) = (0, 0)T.

e) If A ∈ R3×3 satisfies A3 = A then eAt = I + sinh(t)A + (cosh t− 1)A2.
(I denotes the 3× 3 identity matrix.)

f) Suppose f, g : (0,∞) → R are C1-functions. Then the initial value problem
y′ = f(t)g(y), y(1) = 1 has a solution y(t) that is defined for all t > 0.

Question 2 (ca. 9 marks)

Consider the differential equation

2x2y′′ + (x2 − 3x)y′ + 2y = 0. (DE)

a) Verify that x0 = 0 is a regular singular point of (DE).

b) Determine the general solution of (DE) on (0,∞).

c) Using the result of b), state the general solution of (DE) on (−∞, 0) and on
R.

Question 3 (ca. 6 marks)

For the initial value problem

y′ =
y + t

2y − t
, y(2) = 2, (H)

determine the maximal solution y(t) and its domain.

Hint: The substitution z(t) = y(t)/t transforms (H) into a separable ODE. In order
to see this, rewrite y′ in terms of z. When solving the separable ODE, the formula∫

2az + b

az2 + bz + c
dz = ln

∣∣az2 + bz + c
∣∣+ C may be helpful.

Question 4 (ca. 8 marks)

Consider A =

 3 −2 −1
−1 1 0

8 −6 −2

 and b =

0
1
0

.

a) Determine a fundamental system of solutions of the system y′ = Ay.
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b) Solve the initial value problem y′ = Ay + b, y(0) = (0, 0, 0)T.

Hint: There is a particular solution of the form y(t) = w0+tw1 (w0,w1 ∈ R3).

Question 5 (ca. 6 marks)

For the function f sketched below, solve the initial value problem

y′′ + 2 y′ + y = f(t), y(0) = 1, y′(0) = 0

with the Laplace transform.

1 2 3
t

1

1

y

y= f(t)

Note: For the solution y(t) explicit formulas valid in the intervals [0, 1], [1, 2], [2,∞)
are required. You must use the Laplace transform for the computation.

Question 6 (ca. 6 marks)

a) Determine a real fundamental system of solutions of

y′′′ + y′′ − 2 y = 0.

b) Determine the general real solution of

y′′′ + y′′ − 2 y = 1− 2 t3 + e−t cos t.
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Solutions

1 a) False: y′ = ln y2+1
2

has the constant solution y1(t) ≡ 1. Because of continuity,
a solution y2(t) with the indicated property would have to attain the value 1. If
y2(t0) = 1 then, on the domain of y2(t), we would have two distinct solutions of

the IVP y′ = ln y2+1
2

, y(t0) = 1, which according to the Existence and Uniqueness

Theorem is impossible. 2

b) True. Denoting the maximal domain by (a, b), we have y′(t) > 0 for t ∈ [0, b), i.e.,
y(t) is increasing on [0, b). Thus, if b is finite, we must have limt↑b y(t) = +∞. On
the other hand, as long as 0 ≤ t ≤ 1 and y(t) exists, it is bounded from above by
the solution z(t) of z′ = z2 + 1, z(0) = 1, which is z(t) = tan(t + π/4) and exists for
t ∈ [0, π/4). Hence b ≥ π/4 > 1/2, and y(1/2) is well-defined. 2

c) False. The point x0 = −2 is an ordinary point, so that nonzero power series solutions
y(x) of the indicated form exist, but their guaranteed radius of convergence (and
in fact the true radius of convergence) is only the distance from −2 to the nearest
singularity of q(x) = x−1

x4−1 = 1
(x+1)(x2+1)

, which is −1. Thus R = 1 and y(x) is not

defined at x = −4. 2

d) False. As derived in the lecture, this is true iff the system is asymptotically stable,
which in turn is the case iff the eigenvalues of A = ( −1 −33 1 ) have negative real part.
But λ1 + λ2 = tr(A) = −1 + 1 = 0, contradiction! (In fact χA(X) = X2 + 8, and
λ1/2 = ±2

√
2 i are purely imaginary. 2

e) True. We have a(A) = 0 for a(X) = X3 − X = X(X − 1)(X + 1). The ODE
a(D)y = 0 has the fundamental system 1, et, e−t, Hence 1, sinh t = 1

2
et − 1

2
e−t,

cosh t− 1 = −1 + 1
2

et + 1
2

e−t solve the ODE. Since the corresponding Wronski matrix

is the 3× 3 identity matrix, eAt admits the indicated representation; cf. lecture. 2

f) False. Here is a counterexample: Take f(t) = 1, g(y) = y2, so that the ODE is y′ = y2.
Its solutions are y(t) = 1/(C − t), C ∈ R. The (maximal) solution satisfying y(1) = 1
is the one with C = 2, and is defined on (−∞, 2). Hence no solution of the IVP is
defined at t = 2 (or at larger t). 2

∑
1

= 12

2 a) The explicit form of (DE) is

y′′ +

(
1

2
− 3

2x

)
y′ +

1

x2
y = 0

p(x) := 1
2
− 3

2x
has a pole of order 1 at 0, and q(x) := 1

x2 has a pole of order 2 at 0.

This shows that 0 is a regular singular point of (DE). 1

Alternatively, use that the limits defining p0, q0 below are finite.
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b) From a) we have p0 = limx→0 x p(x) = −3/2, q0 = limx→0 x
2 q(x) = 1. (These

coefficients can just be read off from the explicit form.)
=⇒ The indicial equation is

r2 + (p0 − 1)r + q0 = r2 − 5

2
r + 1 = (r − 2)(r − 1/2) = 0.

=⇒ The exponents at the singularity x0 = 0 are r1 = 2, r2 = 1/2. Since r1 − r2 /∈ Z,
there exist two fundamental solutions y1, y2 of the form

y1(x) = x2
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+2,

y2(x) = x1/2
∞∑
n=0

bnx
n =

∞∑
n=0

bnx
n+1/2 1

with normalization a0 = b0 = 1.

First we determine y1(x). We have

0 = 2x2y′′1 + (x2 − 3x)y′1 + 2 y1

= 2x2
∞∑
n=0

(n+ 2)(n+ 1)anx
n + (x2 − 3x)

∞∑
n=0

(n+ 2)anx
n+1 + 2

∞∑
n=0

anx
n+2

=
∞∑
n=0

[2(n+ 2)(n+ 1)− 3(n+ 2) + 2] anx
n+2 +

∞∑
n=0

(n+ 2)anx
n+3

=
∞∑
n=0

(2n2 + 3n)anx
n+2 +

∞∑
n=1

(n+ 1)an−1x
n+2

=
∞∑
n=1

[n(2n+ 3)an + (n+ 1)an−1]x
n+2.

Equating coefficients gives the recurrence relation

an = − n+ 1

n(2n+ 3)
an−1 for n = 1, 2, 3, . . . , 1

and with a0 = 1 further an = (−1)n n+1
5·7·9···(2n+3)

for n ≥ 1.

=⇒ y1(x) =
∞∑
n=0

(−1)n
n+ 1

5 · 7 · 9 · · · (2n+ 3)
xn+2 11

2

= x2 − 2

5
x3 +

3

5 · 7
x4 − 4

5 · 7 · 9
x5 +

5

5 · 7 · 9 · 11
x6 ∓ · · ·

(For n = 1 the product in the denominator is understood as the the empty product
1.)

For the determination of y2(x) we repeat the process with exponents decrreased by
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1.5 :

0 = 2x2 y′′2 + (x2 − 3x)y′2 + 2 y2

= 2x2
∞∑
n=0

(
n+ 1

2

) (
n− 1

2

)
bnx

n−3/2 + (x2 − 3x)
∞∑
n=0

(
n+ 1

2

)
bnx

n−1/2 + 2
∞∑
n=0

bnx
n+1/2

=
∞∑
n=0

[
2
(
n+ 1

2

) (
n− 1

2

)
− 3

(
n+ 1

2

)
+ 2
]
bnx

n+1/2 +
∞∑
n=0

(
n+ 1

2

)
bnx

n+3/2

=
∞∑
n=0

(2n2 − 3n)bnx
n+1/2 +

∞∑
n=1

(
n− 1

2

)
bn−1x

n+1/2

=
∞∑
n=1

[
n(2n− 3)bn +

(
n− 1

2

)
bn−1

]
xn+1/2.

Here we obtain the recurrence relation

bn = −
n− 1

2

n(2n− 3)
bn−1 = − 2n− 1

2n(2n− 3)
bn−1 for n = 1, 2, 3, . . . , 1

and with b0 = 1 further bn = (−1)n 1·3·5···(2n−1)
2·4·6···(2n)(−1)1·3···(2n−3) = (−1)n−1 2n−1

2·4·6···(2n) for n ≥ 1.

=⇒ y2(x) = x1/2 +
∞∑
n=1

(−1)n−1
2n− 1

2 · 4 · 6 · · · (2n)
xn+1/2 11

2

= x1/2 +
1

2
x3/2 − 3

2 · 4
x5/2 +

5

2 · 4 · 6
x7/2 − 7

2 · 4 · 6 · 8
x9/2 ∓ · · ·

Alternative solution: We use the general recurrence relation for the rational functions
an(r), viz. a0(r) = 1 and

an(r) = − 1

F (r + n)

n−1∑
k=0

[(r + k)pn−k + qn−k] ak(r) for n ≥ 1.

Since F (r) = (r − 2)(r − 1/2) and all coefficients pi, qi except for p0, q0 and p1 = 1/2
are zero, we obtain

an(r) = − (r + n− 1)p1
(r + n− 2)(r + n− 1/2)

an−1(r)

= − r + n− 1

(r + n− 2)(2r + 2n− 1)
for n ≥ 1.

Thus the coefficients an(2) of y1(x) satisfy the recurrence relation an(2) = − n+1
n(2n+3)

an−1(2)

(the same as for an above) and the coefficients an(1/2) of y2(x) satisfy the recurrence

relation an(1/2) = − n−1/2
(n−3/2)2n an−1(1/2) = − 2n−1

(2n−3)2n an−1(1/2) (the same as for bn
above). The rest of the computation remains the same.

The general (real) solution on (0,∞) is then y(x) = c1 y1(x) + c2 y2(x), c1, c2 ∈ R. 1
2

That solutions are defined on the whole of (0,∞), is guaranteed by the analyticity of
p(x), q(x) in C \ {0}, but follows also readily from the easily established fact that the

radius of convergence of both power series is ∞. 1
2
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c) The solution on (−∞, 0) is y(x) = c1 y1(x)+c2 y
−
2 (x) with the same power series y1(x)

as in b) and

y−2 (x) = (−x)1/2
∞∑
n=0

(−1)n−1(2n− 1)

2 · 4 · 6 · · · (2n)
xn. 1

(This is not the same as y2(−x), which has negative coefficients when written in terms
of powers of −x.)

Since y1(x) is analytic at zero but y2(x) is not, the general solution on R is y(x) =
c y1(x), c ∈ R. 1∑

2

= 10

3 Suppressing the argument t as usual, we have y′ = y/t+1
2y/t−1 = z+1

2z−1 and hence

z′ =
(y
t

)′
=
y′t− y
t2

=
y′ − z
t

=
1

t

(
z + 1

2z − 1
− z
)

=
−2z2 + 2z + 1

t(2z − 1)
. 2

This is a separable equation and can be solved by the usual method, noting that y(2) = 2
corresponds to z(2) = 1:

2z − 1

−2z2 + 2z + 1
dz =

dt

t∫ z

1

2ζ − 1

−2ζ2 + 2ζ + 1
dζ =

∫ t

2

dτ

τ[
−1

2
ln
∣∣−2ζ2 + 2ζ + 1

∣∣]z
1

= [ln |τ |]t2

−1

2
ln
(
−2z2 + 2z + 1

)
= ln t− ln 2 = ln

t

2

ln
(
−2z2 + 2z + 1

)
= −2 ln

t

2

−2z2 + 2z + 1 = e−2 ln
t
2 =

4

t2

2z2 − 2z − 1 +
4

t2
= 0

z =
1

4

(
2±

√
4− 8

(
4

t2
− 1

))
=

1

2

(
1±

√
3− 8

t2

)
3

Since z(2) = 1, the correct sign is ’+’. The solution of (H) is then

y(t) = t z(t) =
t

2

(
1 +

√
3− 8

t2

)
1

with maximal domain determined by 3 − 8/t2 > 0, i.e., t >
√

8/3 = 2
√
2√
3

(since it must

be an interval containing t = 2). 1 .∑
3

= 7
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4 a) The characteristic polynomial of A is

χA(X) =

∣∣∣∣∣∣
X − 3 2 1

1 X − 1 0
−8 6 X + 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
X − 3 2 1

1 X − 1 0
−2 +X −X2 2− 2X 0

∣∣∣∣∣∣
=

∣∣∣∣∣∣
X − 3 2 1

1 X − 1 0
X −X2 0 0

∣∣∣∣∣∣ = (−1)(X −X2)(X − 1) = X(X − 1)2.

=⇒ The eigenvalues of A are λ1 = 0 with algebraic multiplicity 1 and λ2 = 1 with
algebraic multiplicity 2. 2

A− 0 I =

 3 −2 −1
−1 1 0

8 −6 −2

→
 −3 2 1

1 −1 0
0 0 0


(Substitute X = 0 in the computation above.)
=⇒ The eigenspace corresponding to λ2 = 1 is one-dimensional and generated by
v2 = (1, 1, 1)T. (This is also clear from the fact that A has constant row sums zero.)

A− I =

 2 −2 −1
−1 0 0

8 −6 −3

→
 −2 2 1

1 0 0
0 0 0


(Substitute X = 1 in the computation above.)
=⇒ The eigenspace corresponding to λ1 = 1 is one-dimensional and generated by
v2 = (0, 1,−2)T.

A further generalized eigenvector v3 can be found by solving (A− I)v3 = v2 : 2 −2 −1 0
−1 0 0 1

8 −6 −3 −2

→
 −1 0 0 1

0 −2 −1 2
0 −6 −3 6

→
 −1 0 0 1

0 −2 −1 2
0 0 0 0

 ,

e.g., v3 = (−1,−1, 0)T.

The corresponding fundamental system of solutions is:

y1(t) =

1
1
1

 ,

y2(t) = et

 0
1
−2

 ,

y3(t) = et

 −1
−1

0

+ t et

 0
1
−2

 . 3

Changing signs in y3(t), i.e., choosing (0,−1, 2) as generator of the eigenspace for
λ2 = 1 makes the figures slightly simpler.
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b) y(t) = w0 + tw1 is a solution iff w1 = y′(t) = Ay(t) + b = Aw0 + tAw1 + b, which
is equivalent to w1 = Aw0 +b∧Aw1 = 0. Thus we need to solve A2w0 +Ab = 0. 1

A2 =

 3 −2 −1
−4 3 1
14 −10 −4

 , Ab =

 −2
1
−6


 3 −2 −1 2
−4 3 1 −1
14 −10 −4 6

→
 −1 1 0 1
−4 3 1 −1
−2 2 0 2

→
 −1 1 0 1
−4 3 1 −1

0 0 0 0


The solution with x1 = 0 is x2 = 1, x3 = −4, i.e., w0 = (0, 1,−4)T, giving

w1 =

 3 −2 −1
−1 1 0

8 −6 −2

 0
1
−4

+

0
1
0

 =

2
2
2

 ,

yp(t) =

 0
1
−4

+ t

2
2
2

 . 2

The general solution of y′ = Ay + b is y(t) = yp(t) + c1y1(t) + c2y2(t) + c3y3(t). In
order to satisfy the required initial condition, (c1, c2, c3) needs to solve 1 0 −1 0

1 1 −1 −1
1 −2 0 4

→
 1 0 −1 0

0 1 0 −1
0 −2 1 4

→
 1 0 −1 0

0 1 0 −1
0 0 1 2


=⇒ c3 = 2, c2 = −1, c1 = 2, and the final answer is

y(t) = 2

1
1
1

− et

 0
1
−2

+ 2 et

 −1
−1

0

+ 2t et

 0
1
−2

+

 0
1
−4

+ t

2
2
2


=

 2 + 2t− 2 et

3 + 2t− 3 et + 2t et

−2 + 2t+ 2 et − 4t et

 . 2

∑
4

= 10

5 Writing Y (s) = L{y(t)}, F (s) = L{f(t)}, and applying the Laplace transform to both
sides of the ODE gives

L{y′′ + 2 y′ + y} = s2 Y (s)− s y(0) + 2
(
s Y (s)− y(0)

)
+ Y (s)

= (s2 + 2s+ 1)Y (s)− s− 2 = L
{
f(t)

}
= F (s).

– 8 –



Math286 Differential Equations Plus
Prof. Honold Final Examination

May 27, 2022
9:00–12:00

Further we have

f(t) = u(t)− u(t− 1)−
(
u(t− 1)− u(t− 2)

)
= u(t)− 2u(t− 1) + u(t− 2), 1

=⇒ F (s) =
1− 2 e−s + e−2s

s
. 1

=⇒ Y (s) =
s+ 2

(s+ 1)2
+

1− 2 e−s + e−2s

s(s+ 1)2
1

=
1

s
+
−2 e−s + e−2s

s(s+ 1)2

=
1

s
+

(
1

s
− 1

s+ 1
− 1

(s+ 1)2

)
(−2 e−s + e−2s) 1

The inverse Laplace transform of 1
s
− 1

s+1
− 1

(s+1)2
is 1− e−t − t e−t.

=⇒ y(t) = 1− 2 u1(t)
(
1− e1−t + (1− t)e1−t

)
+ u2(t)

(
1− e2−t + (2− t)e2−t

)
= 1− 2 u1(t)

(
1− t e1−t

)
+ u2(t)

(
1 + e2−t − t e2−t

)
1

=


1 for 0 ≤ t ≤ 1,

−1 + 2t e1−t for 1 ≤ t ≤ 2,

2t e1−t + e2−t − t e2−t for t ≥ 2.

1

The 3rd expression can also be written as (2t+ e− t e)e1−t. ∑
5

= 6

6 a) The characteristic polynomial is

a(X) = X3 +X2 − 2

= (X − 1)(X2 + 2X + 2)

= (X − 1)(X + 1− i)(X + 1 + i).

with zeros λ1 = 1, λ2 = −1 + i, λ3 = −1− i, all of multiplicity 1. 1

=⇒ A complex fundamental system of solutions is et, e(−1+i)t, e(−1−i)t, and the corre-
sponding real fundamental system is

et, e−t cos t, e−t sin t. 11
2

b) In order to obtain a particular solution yp(t) of the inhomogeneous equation, we solve
the two equations a(D)yi = bi(t) for b1(t) = 1 − 2 t3, b2(t) = e−teit = e(−1+i)t. Super-
position then yields the particular solution yp(t) = y1(t) + Re y2(t).

(1) Since µ = 0 is not a root of a(X), the correct Ansatz is y1(t) = c0+c1t+c2t
2+c3t

3.

y′′′1 + y′′1 − 2 y1 = 6c3 + 2c2 + 6c3t− 2(c0 + c1t+ c2t
2 + c3t

3)

= 6c3 + 2c2 − 2c0 + (6c3 − 2c1)t− 2c2t
2 − 2c3t

3 !
= 1− 2 t3

=⇒ c3 = 1, c2 = 0, c1 = 3c3 = 3, c0 = (6c3 + 2c2 − 1)/2 = 5/2, so that
y1(t) = 5

2
+ 3 t+ t3. 1
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(2) Since µ = −1 + i is a zero of a(X) of multiplicity 1, the correct Ansatz is y2(t) =
ct e(−1+i)t.

y′′′2 + y′′2 − 2 y2 = (D− 1)(D + 1 + i)(D + 1− i)
[
ct e(−1+i)t

]
= c(D− 1)(D + 1 + i)e(−1+i)t

= c(D− 1)
[
2i e(−1+i)t

]
= c 2i(−2 + i)e(−1+i)t = c(−2− 4i)e(−1+i)t

=⇒ c = 1
−2−4i = −2+4i

22+42
= −1+2i

10
=⇒ y2(t) = −1+2i

10
t e(−1+i)t. 11

2

Putting things together gives

yp(t) =
5

2
+ 3 t+ t3 + Re

(
−1 + 2i

10
t e(−1+i)t

)
=

5

2
+ 3 t+ t3 − 1

10
t e−t cos t− 1

5
t e−t sin t. 1

The general real solution is then

y(t) = yp(t) + c1e
t + c2e

−t cos t+ c3e
−t sin t, c1, c2, c3 ∈ R. 1

∑
6

= 7

∑
Final Exam

= 52
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