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Question 1 (ca. 12 marks)

Decide whether the following statements are true or false, and justify your answers.

a) The (maximal) solution y(t) of the IVP y′ = y2024 − 2, y(0) = 0 satisfies
y(1) = 1.

b) The solution y(t) of the IVP in a) satisfies y(1) = −1.

c) The solution curve of the IVP in a) in the (t, y) plane is point-symmetric to
(0, 0).

d) Every maximal solution of (x2 + 1)y′′ + 2x y′ − 6y = 0 has domain R.

e) The differential equation in d) has a nonzero power series solution y(x) =∑∞
n=0 anx

n that is defined for x = 2.

f) If A ∈ Rn×n satisfies A2 = A then any system y′ = Ay + b, b ∈ Rn, has a
solution of the form y(t) = w0 + tw1 with w0,w1 ∈ Rn.

Question 2 (ca. 10 marks)

Consider the differential equation

2x2y′′ + 3x(x+ 1)y′ − 6y = 0. (DE)

a) Verify that x0 = 0 is a regular singular point of (DE).

b) Determine the general solution of (DE) on (0,∞).

c) Using the result of b), state the general solution of (DE) on (−∞, 0) and on R.

Question 3 (ca. 7 marks)

Consider the differential equation

y′ = y2 +
1

4t2
, t > 0. (R)

a) Show that there exists a solution y1(t) of the form y1(t) = c tr with constants
c, r.

b) Show that the substitution y = y1+1/z transforms (R) into a first-order linear
equation.

c) Using b), determine all maximal solutions of (R) and their domains.

Question 4 (ca. 9 marks)

Consider A =

 −7 −4 5
21 12 −11
15 8 −5

 and b =

0
1
1

.

a) Determine a fundamental system of solutions of the system y′ = Ay.
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b) Solve the initial value problem y′ = Ay + b, y(0) = (0, 0, 0)T.

Hint: y′ = Ay + b has a constant solution.

Question 5 (ca. 6 marks)

For the function f sketched below, solve the initial value problem

y′′ + 5 y′ + 6y = f(t), y(0) = y′(0) = 1

with the Laplace transform.

1 2 3
t

1

y
y= f(t)

Notes: For the solution y(t) explicit formulas valid in the intervals [0, 1], [1, 2],
[2,∞) are required. You must use the Laplace transform for the computation.

Question 6 (ca. 8 marks)

a) Determine a real fundamental system of solutions of

y(4) − 7 y′′ + 4 y′ + 20 y = 0.

b) Determine the general real solution of

y(4) − 7 y′′ + 4 y′ + 20 y = e−2t(1− 8 sin t).
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Solutions

1 a) False. The function f(y) = y2024 − 2 has exactly two real zeros z1 = − 2024
√

2, which
is slightly smaller than −1, and z2 = 2024

√
2, which is slightly larger than 1. Since

f(y) < 0 for y ∈ (z1, z2) and y(0) = 0 ∈ (z1, z2), the solution y(t) must be decreasing
and hence cannot have y(1) > 0. 2

b) False. Integrating the ODE gives∫ 0

−1

dy

y2024 − 2
= −

∫ −1
0

dy

y2024 − 2
= −

∫ y(1)

y(0)

dy

y2024 − 2
= −

∫ 1

0

dt = −1.

The integrand g(y) = 1
y2024−2 is continuous and strictly decreasing with g(0) = −1/2,

g(1) = −1. This implies
∫ 1

0
g(y) dy > −1, contradiction. 2

c) True. Consider z(t) = −y(−t), t ∈ (z1, z2). (For the meaning of z1, z2 see the solution

to a).) We have z(0) = −y(0) = 0 and z′(t) = y′(−t) = y(−t)2024−2 =
(
−y(−t)

)2024−
2 = z(t)2024 − 2. Thus z(t) solves the same IVP as y(t). By the Uniqueness Theorem
we must have z(t) = y(t) for t ∈ (z1, z2), which proves the assertion. 2

d) True. The ODE is linear, and its explicit form is y′′ + 2x
x2+1

y′ − 6
x2+1

y = 0. Since
the coefficient functions have maximal domain R, the same is true of every maximal
solution (by the the sharpened version of the Existence Uniqueness Theorem for linear
ODEs). 2

e) True (surprise?). The ODE has the polynomial solution y(x) = 3x2 + 1, which is a
power series of the required form (with a0 = 1, a2 = 3 and all other an equal to zero).
2

For discovering this solution no ingenuity is required. Putting the power series Ansatz
into the ODE gives

∞∑
n=0

[(
n(n− 1) + 2n− 6

)
an + (n+ 1)(n+ 2)an+2

]
xn = 0.

Hence the coefficients satisfy the recurrence relation

an+2 = − n2 + n− 6

(n+ 1)(n+ 2)
an = −(n− 2)(n+ 3)

(n+ 1)(n+ 2)
an, n = 0, 1, 2, . . .

Setting (a0, a1) = (1, 0) we obtain an = 0 for odd n, a2 = − (0−2)(0+3)
(0+1)(0+2)

= 3, a4 =

− (2−2)(2+3)
(2+1)(2+2)

= 0, and by induction an = 0 for all even n ≥ 4. Thus
∑∞

n=0 anx
n =

3x2 + 1.

f) True. For y(t) = w0 + tw1 we have

w1 = y′ = Ay + b = A (w0 + tw1) + b ⇐⇒ w1 = Aw0 + b ∧Aw1 = 0.

The latter system has a solution iff there exists w0 ∈ Rn such that A (Aw0 + b) = 0.
Since

A (Aw0 + b) = A2w0 + Ab = Aw0 + Ab = A(w0 + b),
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we can choose w0 = −b, i.e., y(t) = −b + t
(
A(−b) + b

)
= −b + t(I−A)b. 2

Remarks: No marks were assigned for answers without justification.

a) This question was answered correctly by most students. Pictures showing the approx-
imate shape of the solution curve were accepted. If “y′(t) ∈ (−2,−1) for t ∈ (0, 1)”
(instead of “y ∈ (0, 1)”) was stated without justification, I have subtracted 0.5 marks.

A few students claimed that 2024
√

2 ∈ (0, 1) and that the constant solution y(t) ≡ 2024
√

2
prevents y(t) from attaining the value 1, which is of course false.

b) This question was answered correctly by many students, mostly using an argument
like “if true, the average slope of y(t) in [0, 1] would be −1 but y′(t) varies between
y′(0) = −2 and y′(1) = −1.” (Note that this argument also relies on the fact that y(t)
is decreasing in [0, 1]; cf. a).) If one doesn’t assume y(1) = −1, the slope argument
gives y(1) < −1. But also many students failed to produce a correct proof or even
answered “True”, probably because the solution attains the value y(t1) = −1 at some
point t1. However, t1 is not 1 but smaller than 1.

No marks were assigned for observing that if one of a), b) is True then the other must
be False.

c) This was admittedly the most difficult question of the exam. But in the homework we
had an exercise about the logistic equation, where such a symmetry had to be shown
and the suggested solution method was given as a hint. Only a handful of students
solved this problem. Most students claimed that y′(t) must be an even function
(because the exponent 2024 is even), but this is not obvious. In fact, y(t)2024 =
y(−t)2024 can only hold if y(−t) = ±y(t) and thus is merely a restatement of the result
to be proven. If one considers t as function of y, however, one can put this argument to
work. Using the explicit formula y(t) = y(0) +

∫ t

0
y′(s) ds =

∫ t

0
y(s)2024− 2 ds together

with the substitution s = −t also doesn’t work, because from “y(−s) = −y(s) for all
s < t implies y(−t) = −y(t)” one cannot conclude the required symmetry property.
(There is no mathematical induction over the positive reals, because they are not
well-ordered.)

d) Many students answered this question correctly, but also many confused it with a
problem about analytic ODE’s. It is correct that the nonexistence of a singular point
(in R) implies that maximal solutions have domain R, but the reason for this is that
the ODE is linear. It can’t be proved by power series solutions, some of which have
only a finite radius of convergence (due to the singularities at ±i). If students argued
with analytic solutions but“linearity” wasn’t mentioned, I have subtracted 0.5 marks.

e) Only 1 student (if I remember correctly) found the polynomial solution, obtaining 2
marks for this question. Partial credit for observing that the guaranteed radius of
convergence is only 1 wasn’t given this time, because I followed strictly the rule that
wrong answers receive 0 marks. Some students didn’t notice that the power series
solution is required to have center x0 = 0 and used x0 = 2 instead. Subject to this
they answered correctly “True”. But this couldn’t be honored by any marks, of course.

f) Only few students answered this question completely. Many stopped short of com-
pleting the argument after finding the condition w1 = Aw0 + b ∧Aw1 = 0. I have
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assigned 1 mark in such cases. An error that was occasionally made is the false im-
plication “A2 = A =⇒ A = 0∨A = I”. (Projection matrices wouldn’t be interesting
if that were True.) This error is also implicit in the conclusion that A(w0 + b) = 0
implies w0 = −b.

∑
1

= 12

2 a) The explicit form of (DE) is

y′′ +
3(x+ 1)

2x
y′ − 3

x2
y = 0

p(x) := 3
2

1
x

+ 3
2

has a pole of order 1 at 0, and q(x) := − 3
x2 has a pole of order 2 at 0.

This shows that 0 is a regular singular point of (DE). 1

Alternatively, use that the limits defining p0, q0 below are finite.

b) From a) we have p0 = limx→0 x p(x) = 3
2
, q0 = limx→0 x

2 q(x) = −3. (These coefficients
can just be read off from the explicit form.)
=⇒ The indicial equation is

r2 + (p0 − 1)r + q0 = r2 +
1

2
r − 3 =

(
r − 3

2

)
)(r + 2) = 0.

=⇒ The exponents at the singularity x0 = 0 are r1 = 3/2, r2 = −2. 1

Since r1 − r2 /∈ Z, there exist two fundamental solutions y1, y2 of the form

y1(x) = x3/2
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+3/2,

y2(x) = x−2
∞∑
n=0

bnx
n =

∞∑
n=0

bnx
n−2

with normalization a0 = b0 = 1.

First we determine y1(x). We have

0 = 2x2y′′1 + 3x(x+ 1)y′1 − 6 y1

= 2x2
∞∑
n=0

(n+ 3/2)(n+ 1/2)anx
n−1/2 + (3x2 + 3x)

∞∑
n=0

(n+ 3/2)anx
n+1/2 − 6

∞∑
n=0

anx
n+3/2

= 2
∞∑
n=0

(n+ 3/2)(n+ 1/2)anx
n+3/2 + 3

∞∑
n=0

(n+ 3/2)anx
n+5/2 + 3

∞∑
n=0

(n+ 3/2)anx
n+3/2 − 6

∞∑
n=0

anx
n+3/2

= 2
∞∑
n=0

(n+ 3/2)(n+ 1/2)anx
n+3/2 + 3

∞∑
n=1

(n+ 1/2)an−1x
n+3/2 + 3

∞∑
n=0

(n+ 3/2)anx
n+3/2 − 6

∞∑
n=0

anx
n+3/2

= 0 a0 +
∞∑
n=1

[(
2n2 + 4n+ 3/2 + 3n+ 9/2− 6

)
an + 3(n+ 1/2)an−1

]
xn+3/2

=
∞∑
n=1

[(
2n2 + 7n

)
an + 3(n+ 1/2)an−1

]
xn+3/2.
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Equating coefficients gives the recurrence relation

an = −3(n+ 1/2)

2n2 + 7n
an−1 =

3(2n+ 1)

2n(2n+ 7)
an−1 for n = 1, 2, 3, . . . , 1

and with a0 = 1 further an = (−1)n 3n·3·5···(2n+1)
2·4···(2n)·9·11···(2n+7)

for n ≥ 1. 1

=⇒ y1(x) = x3/2 − 3 · 3
2 · 9

x5/2 +
32 · 3 · 5

2 · 4 · 9 · 11
x7/2 − 33 · 3 · 5 · 7

2 · 4 · 6 · 9 · 11 · 13
x9/2 +

34 · 3 · 5 · 7
2 · 4 · 6 · 11 · 13 · 15

x11/2 + · · ·

= x3/2 − 1

2
x5/2 +

15

88
x7/2 +

35

16

∞∑
n=3

(−1)n3n

(2n+ 3)(2n+ 5)(2n+ 7)
xn+3/2. 1

2

For the determination of y2(x) we repeat the process with exponents decreased by 3.5 :

0 = 2 x2y′′2 + 3x(x+ 1)y′2 − 6 y2

= 2x2
∞∑
n=0

(n− 2)(n− 3)bnx
n−4 + (3x2 + 3x)

∞∑
n=0

(n− 2)bnx
n−3 − 6

∞∑
n=0

bnx
n−2

= 2
∞∑
n=0

(n− 2)(n− 3)bnx
n−2 + 3

∞∑
n=0

(n− 2)bnx
n−1 + 3

∞∑
n=0

(n− 2)bnx
n−2 − 6

∞∑
n=0

bnx
n−2

= 2
∞∑
n=0

(n− 2)(n− 3)bnx
n−2 + 3

∞∑
n=1

(n− 3)bn−1x
n−2 + 3

∞∑
n=0

(n− 2)bnx
n−2 − 6

∞∑
n=0

bnx
n−2

= 0 b0 +
∞∑
n=1

[(
2n2 − 10n+ 12 + 3n− 6− 6

)
bn + 3(n− 3)bn−1

]
xn−2

=
∞∑
n=1

[(
2n2 − 7n

)
bn + 3(n− 3)bn−1

]
xn−2.

Here we obtain the recurrence relation

bn = − 3(n− 3)

n(2n− 7)
bn−1 for n = 1, 2, 3, . . . . 1

Setting b0 = 1 gives bn = (−1)n 3n·(−2)(−1)···(n−3)
n!(−5)(−3)···(2n−7) for n ≥ 1, i.e., b1 = −6/5, b2 = 3/5

and bn = 0 for all n ≥ 3.

=⇒ y2(x) = x−2 − 6

5
x−1 +

3

5
. 11

2

Alternative solution: We use the general recurrence relation for the rational functions
an(r), viz. a0(r) = 1 and

an(r) = − 1

F (r + n)

n−1∑
k=0

[(r + k)pn−k + qn−k] ak(r) for n ≥ 1.

Since F (r) = (r − 3/2)(r + 2) and all coefficients pi, qi except for p0 = p1 = 3/2,
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q0 = −3 are zero, we obtain

an(r) = − (r + n− 1)(3/2)

(r + n− 3/2)(r + n+ 2)
an−1(r)

= − 3(r + n− 1)

(2r + 2n− 3)(r + n+ 2)
an−1(r)

= · · · = (−1)n3nr(r + 1) · · · (r + n− 1)

(2r − 1)(2r + 1) · · · (2r + 2n− 3)(r + 3)(r + 4) · · · (r + n+ 2)

(valid for r /∈ {1/2,−1/2,−3/2, . . . } and r /∈ {−3,−4,−5, . . . }). For n ≥ 4 this
simplifies to

an(r) =
(−1)n3nr(r + 1)(r + 2)

(2r − 1)(2r + 1) · · · (2r + 2n− 3)(r + n)(r + n+ 1)(r + n+ 2)
.

Substituting r1 = 3/2, r2 = −2 into the recurrence relation for an(r) gives the re-
currence relations for an, bn obtained above. (In terms of the functions an(r) these
numbers are an(3/2) and an(−2), respectively.) The explicit form of an, bn can be
obtained from the explicit form of the functions an(r) in the same way.

The general (real) solution on (0,∞) is then y(x) = c1 y1(x) + c2 y2(x), c1, c2 ∈ R. 1
2

That solutions are defined on the whole of (0,∞), is guaranteed by the analyticity of
p(x), q(x) in C \ {0}, but follows also readily from the easily established fact that the

radius of convergence of
∑∞

n=0 anx
n is ∞. 1

2

c) The solution on (−∞, 0) is y(x) = c1 y
−
1 (x) + c2 y2(x) with the same function y2(x) as

in b) and

y−1 (x) = (−x)3/2
∞∑
n=0

anx
n = |x|3/2

∞∑
n=0

anx
n. 1

(The functions y1(−x) and y2(−x) are defined on (−∞, 0), but they are not solutions!)

Since y1(x) ' x3/2 for x ↓ 0, the (unique) continuous extension of y1(x) to [0,∞)
(obtained by setting y1(0) = 0) is not twice differentiable at x = 0 (only once differ-
entiable). Hence it cannot be a solution on [0,∞). The same argument works for any
constant multiple of y1(x), showing that the only solution on [0,∞), and hence on R,
is y(x) ≡ 0. 1
Remarks: In b) some students obtained wrong singularity exponents r1, r2, which

invalidates almost all remaining computations. If that error has happend, the only way
to cure this problem is to note when equating coefficients that the first equation im-
plies a0(ri) = 0 for those ri, which shows that something is wrong, and then redo the
computation of ri.

In b), as every year, quite a few students copy & pasted the sentence “That solutions
are defined on the whole of (0,∞) . . . ” into the exam paper. Of course this gives the
final 0.5 marks for b), but it is a waste of time. For example, you could just use the first
half of it, and in abbreviated form.

In c) many students got the solution on (−∞, 0) wrong (either by using y1(−x) and
y2(−x), which is wrong in both cases, or by not specifying the meaning of y−1 (x)). Many
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more claimed that the solution on R is all constant multiples of

x 7→


y1(x) if x > 0,

0 if x = 0,

y−1 (x) if x < 0,

which is false as explained above. ∑
2

= 10

3 a) Substituting y1(t) = c tr into the ODE gives

cr tr−1 = c2t2r +
1

4
t−2,

which holds if r = −1 and −c = c2 + 1
4
, i.e., 4c2 + 4c+ 1 = 0, which has the solution

c = −1
2
. Thus we can take y1(t) = − 1

2t
. 1

b) Substituting y = y1(t) + 1
z

= − 1
2t

+ 1
z

in (R) we obtain

1

2t2
− z′

z2
=

(
− 1

2t
+

1

z

)2

+
1

4t2
=

1

4t2
− 1

tz
+

1

z2
+

1

4t2

⇐⇒ − z
′

z2
= − 1

tz
+

1

z2

⇐⇒ z′ =
1

t
z − 1 2

c) The general solution of z′ = (1/t)z is

z(t) = c exp

∫
1

t
dt = ct, c ∈ R. 1

Variation of parameters then yields a particular solution zp of z′ = (1/t)z − 1 :

zp(t) = t

∫
1

t
(−1) dt = −t ln t. 1

=⇒ The general solution of z′ = (1/t)z − 1 is

z(t) = ct− t ln t, c ∈ R.

=⇒ The general solution of (R) is

y(t) = − 1

2t
+

1

ct− t ln t
=

1

t

(
1

c− ln t
− 1

2

)
, c ∈ R ∪ {∞}, 1

where c =∞ represents the solution y1.

The maximal domain of y1 is (0,∞). For c ∈ R the expression for y(t) defines two

maximal solutions y
(1)
c with domain (0, ec) and y

(2)
c with domain (ec,∞). 1
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Remarks: Many students had problems with this question, which is considered fairly
standard (and similar problems have been discussed in the homework). Most students
were able to solve a), but then stopped short of finding the first-order linear equation for
z(t) in b). In c) I noted that even of those who solved a) and b) correctly quite a few
couldn’t identify the corresponding maximal domains, which must be intervals! ∑

3

= 7

4 a) The characteristic polynomial of A is

χA(X) = (−1)3

∣∣∣∣∣∣
−7−X −4 5

21 12−X −11
15 8 −5−X

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
−7−X −4 5
−3X −X 4

1− 2X 0 5−X

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
5−X −4 5

0 −X 4
1− 2X 0 5−X

∣∣∣∣∣∣ =

∣∣∣∣∣∣
5−X −4 5

0 X −4
1− 2X 0 5−X

∣∣∣∣∣∣
= X(X − 5)2 + 16(1− 2X)− 5X(1− 2X)

= X3 − 12X + 16

= (X − 2)(X2 + 2X − 8)

= (X − 2)2(X + 4).

=⇒ The eigenvalues of A are λ1 = 2 with algebraic multiplicity 2 and λ2 = −4 with
algebraic multiplicity 1. 2

A−2I =

 −9 −4 5
21 10 −11
15 8 −7

→
 −9 −4 5

3 2 −1
15 8 −7

→
 3 2 −1

0 2 2
0 −2 −2

 →
 3 2 −1

0 2 2
0 0 0


=⇒ The eigenspace corresponding to λ1 = 2 is generated by v1 = (1,−1, 1)T, and A
is not diagonalisable.

A further generalized eigenvector v2 corresponding to λ1 = 2 is obtained by solving
(A− 2I)x = v1. −9 −4 5 1

21 10 −11 −1
15 8 −7 1

→
 −9 −4 5 1

3 2 −1 1
15 8 −7 1

→
 3 2 −1 1

0 2 2 4
0 −2 −2 −4

 →
 3 2 −1 1

0 2 2 4
0 0 0 0


=⇒ We can take v2 = (0, 1, 1)T.

A + 4I =

 −3 −4 5
21 16 −11
15 8 −1

→
 −3 −4 5

0 −12 24
0 −12 24

→
 −3 −4 5

0 −1 2
0 0 0


=⇒ The eigenspace corresponding to λ3 = −4 is generated by v3 = (−1, 2, 1)T
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A real fundamental system of solutions is then

y1(t) = e2tv1 = e2t

 1
−1
1

 , 1

y2(t) = e2tv2 + t e2tv1 = e2t

0
1
1

+ t e2t

 1
−1
1

 , 2

y3(t) = e−4tv3 = e−4t

−1
2
1

 . 1

b) Since A is invertible, y′ = Ay + b has the constant solution y(t) ≡ −A−1b, which is
obtained by solving Ax = −b. −7 −4 5 0

21 12 −11 −1
15 8 −5 −1

→
 −7 −4 5 0

0 0 4 −1
1 0 5 −1


=⇒ x3 = −1/4, x1 = −1− 5x3 = 1/4, x2 = (−7x1 + 5x3)/4 = −3/4, so that

yp(t) ≡
1

4

 1
−3
−1

 is a particular solution. 1

The general solution of y′ = Ay + b(t) is y(t) = yp(t) + c1y1(t) + c2y2(t) + c3y3(t).
In order to satisfy the required initial condition, (c1, c2, c3) needs to solve 1 0 −1 −1

4

−1 1 2 3
4

1 1 1 1
4

→
 1 0 −1 −1

4

0 1 1 1
2

0 1 2 1
2

→
 1 0 −1 −1

4

0 1 1 1
2

0 0 1 0


=⇒ c1 = −1/4, c2 = 1/2, c3 = 0, 2
and the final answer is

y(t) =
1

4

 1
−3
−1

− 1

4
e2t

 1
−1
1

+
1

2

e2t

0
1
1

+ t e2t

 1
−1
1


=


1
4
− 1

4
e2t + 1

2
t e2t

−3
4

+ 3
4

e2t − 1
2
t e2t

−1
4

+ 1
4

e2t + 1
2
t e2t

 .

Remarks: a) was solved by many students. Many others didn’t know enough about
generalized eigenvectors to produce a 3rd fundamental solution. Those who attended
Lectures 37 and 38 had an advantage, because this year we have discussed an example of
exactly the same type (with A nondiagonalizable and having two distinct eigenvalues);
see the lecture37-38 handout.pdf, Slides 46–48.

– 10 –



Math285 Differential Equations
Prof. Honold Final Examination

May 26, 2024
14:00–17:00

b) was solved by considerably fewer students. Some students couldn’t make sense of
the hint given in the statement of b) and tried the more general Ansatz y(t) = w0 + tw1

(which nevertheless should have produced the constant solution as well!). But perhaps
the most frequent problem was lack of time at the end of the examination. ∑

4

= 9

5 Writing Y (s) = L{y(t)}, F (s) = L{f(t)}, and applying the Laplace transform to both
sides of the ODE gives

L{y′′ + 5 y′ + 6 y} = s2 Y (s)− s y(0)− y′(0) + 5
(
s Y (s)− y(0)

)
+ 6Y (s)

= (s2 + 5s+ 6)Y (s)− s− 6 = L
{
f(t)

}
= F (s).

Further we have

f(t) = u1(t)− u2(t)

=⇒ F (s) =
e−s − e−2s

s
. 1

=⇒ Y (s) =
F (s) + s+ 6

s2 + 5s+ 6
=

e−s − e−2s

s(s+ 2)(s+ 3)
+

s+ 6

(s+ 2)(s+ 3)
1

Together with

1

s(s+ 2)(s+ 3)
=

1

6s
− 1

2(s+ 2)
+

1

3(s+ 3)
,

s+ 6

(s+ 2)(s+ 3)
=

4

s+ 2
− 3

s+ 3
, 1

L
{

1

6
− 1

2
e−2t +

1

3
e−3t

}
=

1

6s
− 1

2(s+ 2)
+

1

3(s+ 3)
,

L
{

4 e−2t − 3 e−3t
}

=
4

s+ 2
− 3

s+ 3
1

this gives

y(t) = 4 e−2t − 3 e−3t

+ u1(t)

(
1

6
− 1

2
e−2(t−1) +

1

3
e−3(t−1)

)
− u2(t)

(
1

6
− 1

2
e−2(t−2) +

1

3
e−3(t−2)

)
1

=


4 e−2t − 3 e−3t for 0 ≤ t ≤ 1,
1
6

+
(
4− 1

2
e2
)

e−2t −
(
3− 1

3
e3
)

e−3t for 1 ≤ t ≤ 2,(
4− 1

2
e2 + 1

2
e4
)

e−2t −
(
3− 1

3
e3 + 1

3
e6
)

e−3t for t ≥ 2.

1

Remarks: This question was easier than those involving the Laplace transform in previous
semesters. Nevertheless many students had problems with it—at least in the final step
of producing the case-by-case definition of y(t) errors jumped in frequently. ∑

5

= 6
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6 a) The characteristic polynomial is

a(X) = X4 − 7X2 + 4X + 20

= (X + 2)(X3 − 2X2 − 3X + 10)

= (X + 2)2(X2 − 4X + 5)

= (X + 2)2(X − 2− i)(X − 2 + i) 1

with zeros λ1 = −2 of multiplicity 2 and λ2/3 = 2± i of multiplicity 1.

=⇒ A complex fundamental system of solutions is e−2t, t e−2t, e(2+i)t, e(2−i)t, and the
corresponding real fundamental system is

e−2t, t e−2t, e2t cos(t), e2t sin(t). 2

b) In order to obtain a particular solution yp(t) of the inhomogeneous equation, we solve
the two equations a(D)yi = bi(t) for b1(t) = e−2t, b2(t) = e(−2+i)t. Superposition then
yields the particular solution yp(t) = y1(t)− 8 Im y2(t).

(1) Since µ = −2 is a root of a(X) of multiplicity 2, the correct Ansatz is y1(t) =
c t2e−2t with c a constant. Since

a(D)
[
t2e−2t

]
= (D2 − 4D + 5)(D + 2)2

[
t2e−2t

]
= (D2 − 4D + 5)

[
2e−2t

]
= 2
(
(−2)2 − 4(−2) + 5

)
e−2t = 34 e−2t,

we obtain c = 1
34

, y1(t) = 1
34
t2e−2t. 11

2

(2) Since µ = −2+i is not a root of a(X), here the correct Ansatz is y2(t) = c e(−2+i)t.
Since a(D)

[
e(−2+i)t

]
= a(−2 + i)e(−2+i)t, we must take

c =
1

a(−2 + i)
=

1

i2(−4)(−4 + 2i)
=

1

−16 + 8i
=

1

8

1

−2 + i
=

1

8

−2− i

5
= −2 + i

8 · 5
,

y2(t) = −2+i
8·5 e(−2+i)t. 11

2

Putting things together gives

yp(t) =
1

34
t2e−2t + Im

(
2 + i

5
e(−2+i)t

)
=

1

34
t2e−2t +

2

5
e−2t sin t+

1

5
e−2t cos t. 1

The general real solution is then

y(t) = yp(t) + c1e
−2tt+ c2t e−2t + c3e

2t cos(t) + c4e
2t sin(t), c1, c2, c3, c4 ∈ R. 1

Remarks: a) was solved by most students. Some students produced a wrong factoriza-
tion of a(X), which didn’t automatically result in the loss of all marks. (A fundamental
system of solutions that is correct relative to the wrong factorization was normally hon-
ored by at least some marks.) But it usually lead to a false Ansatz in b), costing marks
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there. (Unsolvability of an equation in b) should ring a bell that something is wrong with
the factorization in a).)

When grading b), it was very visible that students who knew about complexification
and the computational trick to evaluate a(D)y using the factorization of a(X) (see the
computation above) made less errors in the computations than those who computed the
first 4 derivatives of the candidate functions y1(t), y2(t) and substituted these into the
ODE’s. In order to use the trick for the computation of y2(t), the corresponding ODE
needs to be complexified first. You should have known about these things, because they
were mentioned in the remarks accompanying the solutions to the first sample exam.∑

6

= 8

∑
Final Exam

= 12 + 10 + 7 + 9 + 6 + 8 = 52 = 45 + 7
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