This is the review note for Math285 Midterm (Spring 2025) by Jiashen Ren.

First Order ODE

To solve y' = a(t)y + b(t) :
Find A(t): Calculate the integral of a(t): A(t) = [ a(t) dt. You can ignore the constant of integration
for this step.
Calculate e“() and ¢ “(): Compute the exponential of A( ) and its negative

Find the Integral Part: Calculate the integral of b(¢ fb t) dt. Let's call the result of
this integral I(¢).

Particular Solution: A particular solution is given by y,(t) = e4®) - I(¢).

General Solution: The general solution is y(t) = ¢ - eA® 4 Yp(t), where c is an arbitrary constant.

1 For the solution y(t) of the IVP ¥’ = (y/t) — 1, y(1) = In 2, the value y(2) is equal to:

V0
1
2
In2
2In2

2. For the solution y(t) of the IVP ¢/ = 22 4(0) = 2, the value y(1) is equal to:

241"
V2
2
1+v/2
3
21+2v2
3. For the solution y(t) of the IVP ¢/ = @ y(1) = 2, the value y(2) is equal to:
11/2
13/2
15/2
17/2
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Separatble ODEs

Given a separable ODE of the form: % = f(t)g(y)

.y
Separate: o+ = f(t)dt

Integrate:

[ <tdy = [ f(t)dt

let G(y) = [ oydy and F(t) = [ f(t)dt

Then, the equation becomes: G(y) = F(t) + C (where C'is the integration constant)
Apply Initial Condition y(to) = yo: G(yo) = F(to) + C

Solve for C: C = G(yo) — F(to)

Specific Solution (Implicit Form): G(y) = F(t) + G(yo) — F(to)

Solve for y (Explicit Form - if possible):

If possible, solve G(y) = F(t) + C (or G(y) = F(t) + G(yo) — F(to)) for y to get y = h(t,C) or
y = h(t, to, yo)-

Evaluate y(¢1):

Substitute ¢ = ¢; into the explicit solution y = h(¢, C) (or implicit solution and solve for y) to find

y(t1).

For the solution y(t) of the IVP ¢ = yInt, y(1) = 1 the value y(e) is equal to

For the solution y(t) of the IVP ¢/ = y?e~?, y(0) = —1 the value y(—1) is equal to
e
21/(e—2)
e+ 2
1/(e+2)
e—2

For the solution y(t) of the IVP ¢’ = €t=2%, (0) = 0 the value y(1) is contained in
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For the solution y(t) of the IVP ¢/ = (y? — 3)/(ty), y(1) = 2 the value y(2) is equal to
V6
N T
V8
3
V10

For the solution y(t) of the IVP ¢/ = —t(y? + 1), y(0) = 1 the value y(1) is contained in
Y
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Exact Differential Equations and Integrating Factors

Goal: Find integrating factor p for ODE Mdx + Ndy = 0
Exactness Check: Is M, = N,? If yes, ODE is exact.

Integrating Factor Cases:

1 Type Condition for g Formula for g Case No.  /'(s) = Relation
p(z) B — g(a) TRl ® 1 (s) = g(s)u(s)
wy) s =) e W (s) = —g(s)u(s)
wlzy)  w=ar = 9(zy) T ® w'(s) = g(s)p(s)
pld)  TRE =) St ® '(s) = ~g(s)n(s)
Note:

After finding the correct case and g(s), calculate p(s) by solving the p'(s) = £g(s)u(s) relationship
which leads to p(s) = e*J9(s)ds,

Multiply the original ODE by u to make it exact.
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The ODE (32 + y)dz — xdy has the integrating factor

v) y 2
The ODE (z%y? — y)dz + (z%y* — z)dy = 0 has the integrating factor
1/(ay)
1
2 1/(ay)’
1/(zy?)
1/(zy)
The family of curves y = c/:1:2, c € R satisfies the ODE
dy = z %dx
dy = 2z 3dz
v 2zydx + z2dy =0
dx = dy
2yr3dx —x2dy =0
The ODE 3zdz — (y — 3z%/y)dy has the integrating factor
0

T

DY

Radius of Convergence

To find the radius of convergence R of a power series Zi’f’:o cp2™:

Find the Coefficients:

Identify the coefficients ¢, in your power series. This is the number multiplying 2. Look for a
pattern in these numbers as nn changes (0, 1, 2, 3...).
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Important for series with "gaps": If some powers of z are missing (like 23,2 are present but
2

2%, z* are not), the coefficient for the missing power is zero. You need to define ¢, for all n > 0.
Calculate |c,,| /" (or Estimate Its Limit):

Take the absolute value of each coefficient |c,|.

Raise it to the power of 1/n (which is the same as taking the n-th root: {/|c,|).

Think about what happens to |cn|1/” as n becomes very large. What is the limit as n — 00? Let's
call this limit L. In many simple cases, you can just estimate this limit.

Find the Limit Superior I = limsup,, .. (|c.|"/") (More precisely):

For more complicated series, or if the limit from step 2 is not obvious, you might need to find the
limit superior. But often for introductory problems, the simple limit from step 2 works. Assume for
now that I = lim,,_,s(|ca|"/™) exists.

Calculate Radius R:
Once you have L, the radius of convergence R is:
If L > 0, then R = %
If L = 0, then R = oo (series converges for all 2).

If L = oo, then R = 0 (series only converges for z = 0).
Simplified Steps (Formula Focus):

Get c,,: Identify the coefficient of 2".
Calculate |c,,|'/": Compute the n-th root of the absolute value of c,,.

Find L = lim,,_, |cn|1/” (or lim sup).

Radius R:
R=1/L,if0< L < o0
R=o00,ifL=0
R=0if L=

The power series z + 522 + T2* + $2% + 7=2'% + ... has radius of convergence

, 2 ,
The power series > > | 282*" has radius of convergence

o=
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2

00
The power series z + 22 + 2% + 2% + 216 4+ ... has radius of convergence

|~

N

Picard-Iteration

Problem-Solving Approach for Picard-Lindelof Iterates

To find ¢2(t) (the second Picard-Lindelof iterate) for an Initial Value Problem (IVP) using the iterative
formula:

Prr1(t) = yo + [y f(s,0k(s))ds, k=0,1,2,...
Steps:

Identify f(¢,y) and yo from the IVP:
For an IVP in the form ¢/ = f(¢,y), y(0) = yo, determine the function f(¢,y) and the initial value yj.

Determine the Initial Iteration ¢ (¢):

The starting point for the iteration is the constant function based on the initial condition:

¢o(t) = Yo

Calculate the First Iteration ¢;(t) (for k=0 in the formula):

Use the formula with & = 0:

$1(t) = yo + fy £(s, do(s)) ds

Substitute ¢g(s) = yo into f(s, Po(s)), then evaluate the definite integral with respect to s from 0 to
t.

Calculate the Second Iteration ¢ (t) (for k=1 in the formula):

Use the formula with k = 1:

$a2(t) = yo + [y f(5,¢1(s)) ds

Substitute the expression you found for ¢1(s) into f(s, ¢1(s)), then evaluate the definite integral
with respect to s from ( to .

Select the Correct Option:
Compare your calculated expression for ¢3(t) with the provided multiple-choice options and choose
the one that matches.

Formula-Based Steps Summary:
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Identify: f(t,y),yo fromy’ = f(t,1),4(0) = yo
Set: ¢o(t) = Yo
Calculate ¢;(t):
61(t) =0 + Jy £(5, $o(s)) ds
Calculate ¢ (t):
D2(t) = g0+ [y (s, 61(s)) ds
Match: Compare ¢4 (t) to options.
Important Note: The integral is always evaluated from 0 to t, and in each step you're substituting the

previous iterate into the function f. You are iteratively refining an approximation to the solution of the
IVP.

The sequence ¢, @1, @2, ... of Picard-Lindelof iterates for the IVP y/ = y + ¢, y(0) = —1 has ¢ (%)
equal to

1,3

5t

1,2

—1-t—L¢

v —-1—t+ ¢t?
1,2 | 1,3

—1—t— 124+ L

1t
The sequence ¢y, @1, P, . . . of Picard-Lindelof iterates for the IVP 3y = y + 2t, y(0) = —2 has @5 ()
equal to

—2+2t+ +t°

2, 143

—2 4+ L¢
7 —2— 2t + 3t

t? + 3t°

3,2 | 1,3

1+t4 342+ 14
The sequence Pg, P1, P2, . . . of Picard-Lindeldf iterates for the IVP ¢ = 2y + 2, y(0) = 2 has ¢2(t)
equal to

2t + 6t

2t + 5t2
v 2 + 6t + 6t

2t + 4t?
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1+ 4t + 4¢?

Matrix Norms

For a matrix A, the norm of A can be defined in different ways. Two common matrix norms are the
Operator Norm (|| A||) and the Frobenius Norm (|| A|| p).

- (Subordinate to Euclidean length)

Definition (using unit vectors parameterized by trigonometric functions):

cos T
Operator Norm of A is defined as:||A|| = max{||Az||>}

sin &
Let x = ( ) where z € [0,27]. This z represents any vector on the unit circle in R?. The

where ||Az||2 is the Euclidean norm (length) of the vector Az. This means we find the maximum
length of the vector Az when z is a unit vector.

3 +1
Example Calculation for A = :

0 3

COS T

1
L cossc
2
{| (—smx:l:cosa:) }
2cosac )

= max, {\/(2smm:|:cosa:)2 + (%cos:c)2}

_ 3+ﬁ_

sinz
Using xz = ( ) calculate || Ax||2:

1+v2
T 5 +TN1°207

2. Frobenius Norm (|| A|| r):
Definition:
The Frobenius Norm of a matrix A is defined as the square root of the sum of the squares of all its
elements:||A|[rF = />, ;aij|?
This is essentially calculating the Euclidean norm of the matrix treated as a vector.

0 1

3+l
Example Calculation for A = :
2

Allr =/ ()? + (£1)2 4 (02 + (3)°
= /1414041
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= Ji+1=/8 =L ~12%5

2 -3
The matrix norm of (3 5 ) (subordinate to the Euclidean length on R?) is contained in the interval

[1,2]
2,3]
2 (3,4]
14, 5]
5, 6]

1
The matrix norm of (1

1 ) (subordinate to the Euclidean length on R2) is equal to

2 1
The matrix norm of (1 0) (subordinate to the Euclidean length on R?) is equal to

0
1
V2

2

V1442
Phase Line

1. Basic Concepts

Autonomous Equation: A differential equation (y' = f(y) ) that depends only on the variable (y ) and
does not explicitly contain the independent variable ( t).

Equilibrium Points: The values of ( y ) that make ( f(y) = 0 ), which are critical points where the
solution remains constant.

Phase Line: A representation on the (y )-axis that marks equilibrium points and analyzes the sign of (
y') in their vicinity to determine the increasing or decreasing trend of solutions.
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2. Steps of Phase Line Analysis

(1) Find Equilibrium Points
Solve the equation ( f(y) = 0 ) to obtain all equilibrium points (y = c_1, c 2, \dots ).
(2) Divide into Intervals

Divide the ( y )-axis into several intervals using the equilibrium points as dividers. For example, if
equilibrium points are (y = -2, 0, 2), the intervals are:
[ (\infty, -2)\ (-2, 0)\ (0, 2)\ (2, +\infty) ]

(3) Analyze the Sign of the Derivative
In each interval, choose any point (y 0) and substitute it into ( f(y) ) to calculate the sign of (y'):

If (y' > 0), the solution is increasing in this interval (arrow points to the right).

If (y' < 0), the solution is decreasing in this interval (arrow points to the left).
(4) Determine Stability of Equilibrium Points

Stable: If arrows on both sides point towards the equilibrium point (e.g., (\rightarrow \leftarrow )).

Unstable: If arrows on both sides point away from the equilibrium point (e.g., ( \leftarrow \rightarrow
).

Semi-stable: If on one side the arrow points towards, and on the other side it points away (e.g., (
\rightarrow \rightarrow ) or ( \leftarrow \leftarrow )).

3. Application Examples

Example 1: (y' = y*4 - 4y~ 2), initial value (y(4.29) = 1)

Equilibrium Points: Solve (y~4 - 4y”~2 = 0), yielding (y =-2,0, 2).
Sign of Derivative in Intervals:
(y>2):(y' =(+)) (increasing, arrow to the right).
(0<y<2)(y =()) (decreasing, arrow to the left).
(-2<y<0):(y" =(+)) (increasing, arrow to the right).
(y <-2):(y" =(-)) (decreasing, arrow to the left).
Stability:
(y = -2): Stable (arrows on both sides point towards it).
(y = 0): Semi-stable (right arrow points left, left arrow points right).
(y = 2): Unstable (arrows on both sides point away).

Solution Trend: Initial value (y = 1)isin ((0, 2) ), (y' < 0), solution is decreasing and trends towards (
y=0).
Limit: (\boxed{0})
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Example 2: (y' = y*3 - 7y + 6), initial value (y(0) = 0)

Equilibrium Points: Solve (y*3 -7y + 6 = 0), yielding (y = -3, 1, 2).
Sign of Derivative in Intervals:

(y>2)(y =(+)).

(1<y<2)(y=0))

(3<y<1)(y=(+)

(y<-3)(y'=0))
Stability:

(y = -3): Unstable.

(y = 1): Stable.

(y = 2): Unstable.

Solution Trend: Initial value (y = 0)isin ((-3, 1)), (y' > 0), solution is increasing and trends towards
(y=1).
Limit: (\boxed{1})

Example 3: (y' = y*4 - 1), initial value (y(2021) =0)

Equilibrium Points: Solve (y*4 -1 =0), yielding (y =-1,1).
Sign of Derivative in Intervals:

(y>1):(y =(+).

(-T<y<T)(y =0)).

(y <-1)(y =(+))
Stability:

(y =-1): Stable.

(y =1): Unstable.

Solution Trend: Initial value (y = 0)isin ((-1, 1)), (y' < 0), solution is decreasing and trends towards
(y=-1).
Limit: (\boxed{-1})

Second Order ODE (homogenous and inhomogenous)

ay’ + by + cy = r(z)

where a, b, ¢ are constants, and () is a function of x.

Homogenous Second Order ODEs: ay” + by’ +cy =0

Write down the Characteristic Equation: ar? +br +c¢ =0

Solve the Characteristic Equation:
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« Find the roots a1, a2 of this quadratic equation using the formula:

—rlj:\/r%—4r0

2

Q1,2 =
Check Root Type:
A. Distinct Roots (a1 # ag, when 72 # 4r()
Real Distinct Roots
General Solution: y = Cie®? + Coe?t
Complex Conjugate Roots (12 = ( £ 1)
General Solution: y = e%(C} cos(Bt) + Ca sin(ft))
B. Repeated Roots (a7 = a9 = o, when 'r'% = 4r()

General Solution: y = Cie® + Cyte™

Note: In all cases, C'; and (5 are arbitrary constants determined by initial conditions.

Inhomogeneous Second Order ODEs: ay” + by’ + cy = r(x)

This section details the "Method of Undetermined Coefficients" (fF & #{%) to find a particular solution
yp(z) for the inhomogeneous equation.

1. Choosing the Form of y, () - Based on r(x)

The choice of the form of the particular solution y,(z) depends on the form of the function r(z). Use
the following table as a guide:

Term in r(x) Choice for y,(x)

ke Ce’®

kx™(n=0,1,.) K, 2"+ K, 12" '+... +Kiz + Ko
k cos wx K coswz + M sin wz

ksin wx K coswz + M sinwzx

ke®® cos wz e (K coswz + M sinwz)

ke®® sin wzx e**(K coswz + M sin wz)

where k,~,n,w, a are known constants, and C, K;, M are undetermined coefficients that need to be
determined by substituting y,(x) into the ODE.

2. Rules for Determining y, ()

Basic Rule :
If r() consists of terms listed in the table above, then choose y,(x) to have the corresponding form
from the "Choice for y,(z)" column and solve for the undetermined coefficients.
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Modification Rule :

If a term in the initially chosen y,(z) is already a solution to the corresponding homogeneous ODE (
ay” + by’ + cy = 0), modify the choice for y,(z) by multiplying it by z (or by z* if necessary, where
s is the smallest positive integer that makes no term in the modified y,(z) a solution to the

2

homogeneous equation. Usually, multiplication by x or “ is sufficient).

Sum Rule :

If () is a sum of several terms, the particular solution y,(x) should be taken as the sum of the
particular solutions corresponding to each term in r(x), adjusting each component with the
Modification Rule if needed.

Basic Rule: & r(z) @& LRAFID, BA yp(z) REENNMARTN, ZERAKREH

Modification Rule: #{gif3Basic RuleifBY y,(z) & (6.1) Xjr“E’JJ.//’tODEE’Jﬁ’q’:ET B yp(z) 5 = HIRIAE
PRFTY v, (z) (EFPRODEEEIRE. B y,(z) SEEMER, RLME 2*)

Sum Rule: & r(z) 2 EREFUMERNIN, A yp(z) L2EMXIRAUFFERAMN, T8, &R
#EModification RuleXIEIuH T/EEE

3. Example: Find the General Solution of ¥/ — y = 16e™*

STEP1: Solve the corresponding homogeneous equation y" - y = 0. The characteristic equation is
r? —1 =0 = r = £1. Therefore, the complementary function is

—Z

Ye(x) = c1€” 4 coe

STEP2: According to the table, assume yp(ac) = Be . However, because it duplicates a term from the
complementary function, according to the Modification Rule, we need to multiply by an z, so assume

yp(x) = Bze™®.
STEP3: Substitute into the original equation, solve for coefficients.

16e™* = yg —yp =B(z —2)e™® — (Bze ®) = —2Be™*
= B= -8 = y,(z) = —8ze™”

Final general solution for y(x) is y(z) = —8ze™® + c1e® + cpe™®

HFERHBET S IRAAIR

BHUEFiZ (Method of Annihilators)

ZUEE: BEWE— B "B IBRIMOE T, BRIEIRGEERAAENTIRGTE, NmiEERRL
F=.

RESHEF:
ERIIESTRIA f () HOKRBUEIRERINOEF L, FBL[f(x)] = 0.

£ f(z) = Pu(x)e™® (Heh P,(z) Anxs2my) , WEKEFHR (D — )",
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pim: & f(z) = 2ve”, MEXETH (D - 1)°
MR RATE:
BEUWEFERTRAERL, B2FTRARE: (D — 1)2 . (D2 —3D+2)y=0.
HYMNAHERARAERR (A = 1, 2) UIRBHEFSIANNER (A =1=5F1R) .
k] e
PR ARENERE RN y= (01 + Cox + 03332)650 + 04623:.,
MEIEE SRR R Y = C’lex + Ozezx
SUTFAEPOERSEFN: yv* = 2(Az + B)e” = Az’e” + Bze®.
RARBERZRE:
By KNEARE o' — 3y + 2y = 2ze”, BILRREM@E A=-2, B=-1,
RSN y* = —2z%e® — ze”.

o EFiZ(used in final exam)

BT 5final BEHE Y

Euler Equation

Equation Form: az?y” + bzy +cy =10
Steps:
Characteristic Equation: Substitute y = a" and derive the characteristic equation:
ar(r — 1) + br + ¢ = 0 which simplifies to ar? + (b —a)r + ¢ = 0.
Solve for Roots (r): Use the quadratic formula to find the roots 71, 72 of the characteristic equation:

—(b—a)£+/(b—a)?—4ac
2a

’[” _=
General Solution based on Roots:

Distinct Real Roots (7] #* 5 and real):
y(z) = Az™ + Ba™

Repeated Real Roots (r; = ry = 7):
y(x) = Az" + Bx"Inzx

Complex Conjugate Roots (r = a + i9):
y(z) = z*(Acos(flnz) + Bsin(Slnx))
For Non-Homogeneous Equations (az2y” + bzy’ + cy = f(z)):
Homogeneous Solution (y;): Find the general solution of the associated homogeneous equation
(steps 1-3).

Particular Solution (y,): Find a particular solution y, for the non-homogeneous equation (e.g.,
using undetermined coefficients or variation of parameters, guessing form based on f(x)).
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General Solution (v): y(z) = yn(z) + yp(z)
Apply Initial Conditions (if given): Use initial conditions to determine the constants A and B in the
general solution.

1. For the solution y : (0,00) — R of the IVP %" —ty/ + y=1,y(1) = /(1) = 0 the value y(e) is
equal to

In4

91
-1
1+1In4
—1+1n4

2. For the solution ¥ : (0, +00) — R of the IVP t2y” + 2ty' — 2y = 1,y(1) = 0,3'(1) = 1 the value
y(2) is equal to

13

8

1

13

24
19

8

19
Y

How to expand e*!

b
For a 2x2 matrix A = (a ):
c d

Calculate A? in the Form: Find scalars p and g such that:
A% =pl, +qA
0
where I, = <0 1). (Often, p =bc —ad and g = a + d, based on characteristic polynomial

properties).

A

Assume Form for e“!: Assume e can be written as:

eAt = Co(t)Ig + Cl(t)A

Set up ODE System for ¢((t), c1(%): Differentiate the assumed form and equate coefficients of 12 and
A using the relation A2 = pI, + gA. You will get a system:

co(t) = pea(t)
ci(t) = co(t) + gei(?)
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Initial Conditions: Use e?'

CO(O) =1
61(0) =0

0 = I, to get initial conditions:

Solve for ¢y (t): Convert the system into a second-order ODE for ¢y(t):

cg(t) = geo(t) — peo(t) =0

Solve this ODE with derived initial conditions (e.g., ¢o(0) = 1,¢,(0) = pc1(0) = 0). Let the solution

be Co (t)

Solve for ¢y (t): Use the relation ¢y (t)

=1
2

co(t) (if p # 0) to find ¢4 (¢) from ¢o(t).

Construct e“’: Substitute co(t) and c1(t) back into the assumed form:

eAt = Co(t)Iz + Cl(t)A

0 6
A= ( ) to find et
1 1

1. Find p and g such that A% = pI, + qA:
We found A2 =61, + A.So,p=6,q = 1.

2. Solve ODE for ¢((t):

Equation: ¢jj(t) — c(t) — 6¢o(t) = 0.
Characteristic roots: 71 = 3,7y = —2.

General solution: ¢g(t) = ajpe 2 + age.

3. Find ¢ (¢):
Using c1(t) = +cp(t), we get:

a10

c1(t) = — e + e = ae? + agyed (where ayy = —ay0/3,a21 = a/2).

4. Use Initial Conditions to find a1, asy (and thus a1, as):

From ¢¢(0) = 1 and ¢1(0) = 0, we solve for a1y and asy:

aip = % az0 = %
Then ayj; = —%, as = %
5. Substitute back to find c((t), c¢1(¢):
colt) = 2e % + Ze¥
ct) = —fe 2 4 et

6. Construct et = c(t) I + c1(t) A:

eAt — (%e*2t _|_ %e3t)12 + (_%e*2t _|_ %e3t)A
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1 (3e* +2e% 6ed —6e
T 5 @3t o2 9e—2 | 33t

Maximal solutions

1. For the maximal solutions of ¢’ = y° + y satisfying y(0) = 1, the interval of definition is of the form:
(a,b)
[a, b]
(@, +00)
7) (=00, b)
(—00, +00)
with a,b € R.

2. For the maximal solutions of y' = y? + y satisfying y(0) > 0, the interval of definition is of the form:
(a,b)
[a, b]
(@, +00)
7 (—o0,b)
(=00, +00)
witha,b € R.

3. For the maximal solutions of 3’ = y® + 1 satisfying y(0) = 0, the interval of definition is of the form:
(a,b)
[a, b]
(a, +0)
7 (—00,b)
(—00, +00)
with a,b € R.
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Point-wise and Uniform Convergence

Video available on Bilibili

Differentiable

F—’

[AIREHRBIRARIEEL s, FEERE fs(z) = D, osln'7) 25 R Eaps.
ATHIT fo(x) RORTRME, FROISREEFHTHEIRS :

f;(x) _ % (Zzo_l cosi:; x)) _ Zzozl % ( c0s7(17; m)) _ ZSLO . —n®sin(n ac) . Zn . su;(;ia:

ATIRE fo(z) £ R LAH, RIBESHES fl(z) = — S0, s“;; £ R t—5ugs:
(EFRERAPRERMEIRIE, Bl 1 B TS A0 L 57

sin(n®z) 1
n3—s — p3-s

ATERE Y | 3 W88 (p-RE)  BIIEE3 —s> 1, Bls <2
EADRERBANEL s, BEs < 2 WEAEHE s =1,

L i

MESSHEERE fo(2) = Y00, 000 o R FATAI0R/NER 5.
MRS BERH f(x) T, ROSELRESH, BNSEN f,(2) $TETRE,
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FERS: WE—m 200 ke

£ (=) = 2L (@sin(na))
ERFRFNANRS o sin(n):

4 (zsin(nz)) = (1) - sin(nz) + z - & (sin(nz)) = sin(nz) + z - (ncos(nz)) = sin(nz) + nz cos(nz)

FTLA, SEI:
d [ zsin(nz) \ _ sin(nz)+nzcos(nz) _ sin(nz) nz cos(nz)
dzx ns+1 _ ns+1 T ont+l + ns+1

SHRE: BA, B f:(x) S fi(z) BFEUER SEIRAIREF:
file) = S50, (S 4 neenlin) ) yoo | ) 4y | mecel)
SEFEANIENE: ATERE f(x) R LT, BNBE fl(x) OEHE R Lt B2 BIEFRXE D
RETHIBTER S,
g Y, )
FXNREL, Tl )ERE/REMFREIMABEH T o,

sin(nz) 1
ns+1 | — n’+1

HTEE Y, it 8 (p-REFIBIEREIK) |, RAVEE s > 0,
o ) S el
RIFXANEE, RAVEEER o B, AT ERENAE v ¢ RSN, RiVEREEHEN LR,

nzcos(nz) | |z|-n|cos(nz)| < |z|-n
n*+1 o ns+1 — nf4l
T Y, I ey, OFERN ¢, RIOEEE n 0OFR. 4 n RAR, 20~ o

HTRERE >, 2 des (p-Bs) |, RVEBs—1>1, Bs > 2,

RERDEL s: ATHE fi(z) NRNEBLEBEY, RNFEREHE s > 051 s > 2. BEENRHR
s> 2, B, HEs>2HNENEHE s = 3.

W 5=3 R 2 s = 36, SEREEn Yo, (B + ), F s = 3, RIEESH
i, AT B (BLBRIMSREIMASS, FEEE |o| (0, EATTENEEERS
BBl EAENTERN x e, ENTERRNES, HANSFEBAN . Eit, % s — 3§,

fs(z) BT,

ZOO cos(nz) _ In (2 sin ﬁ)

n=1 n 2

S sin(ne) _ =2 (0 <z < 2m)

n=1 n

Function Sequence Converge Uniformly

Definition

I. Understanding Definitions:

Pointwise Convergence (Point-wise Convergence):
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Definition: A function sequence (f,,) converges pointwise on an interval I if, for every fixed point
x € I, the sequence of function values (f,(x)) (which becomes an ordinary sequence of real
numbers) converges.

Limit Function: If pointwise convergence occurs, we can define a limit function f: I — R, where
f(z) = lim,,_,o fn(z). This f(z) is called the "limit function" or "pointwise limit" of the sequence

(fn)-

Key Point: Convergence is considered independently for each point x. For different z, the
sequence may converge at different rates, and even the choice of N might depend on z.
Uniform Convergence (Uniform Convergence):

Definition: A function sequence (f,) converges uniformly on an interval I if it is first pointwise
convergent, and its limit function f : I — R must also satisfy the following property:

Uniform Response N: For every given tolerance of error € > 0, there exists a "uniform
response” positive integer N € N (depending only on ¢, not on ), such that for all n > N
and all z € I, the inequality | f(z) — fn(z)| < € holds.

Key Point: The key to "uniform" is that the choice of /V is independent of . This means that for a
given accuracy requirement ¢, we can find a common NN, from which point onwards, all functions
fn(z) (for n > N) will be "sufficiently close" to the limit function f(z) across the entire interval I,
with the error being less than e.

Il. Methodology Steps for Checking Uniform Convergence of a Function Sequence:

To determine whether a function sequence (f,) converges uniformly on an interval I, you can follow
these steps:
Find the Pointwise Limit Function:
For each fixed « € I, calculate the limit lim,, ., f,(z) = f(z).

Determine the pointwise limit function f(z). If for some x € I, the limit does not exist or is not a
finite value, then the function sequence cannot converge uniformly to a finite function on I.

Calculate the Error Function:

Define the error function (or remainder term) e,,(z) = f,(x) — f(x), or consider its absolute value
len(2)] = |fa(z) — ().
Find the Supremum (Uniform Norm) of the Error Function:

Find the supremum (or maximum, if it exists) of the absolute value of the error function on the
interval I:

M, = sup,cr [fn(z) — f(2)|
This step may require using calculus methods (finding derivatives to find extrema, considering
interval endpoints, etc.) or using inequalities to estimate an upper bound.

Determine the Limit of the Supremum:
Calculate the limit of the sequence { M} as n — oo:lim,, oo M,, = L.
Draw a Conclusion:

If L = 0: Then the function sequence (f,) converges uniformly on the interval I to the limit
function f(x).



If L > 0 or the limit does not exist (and is not 0): Then the function sequence (f,) is not
uniformly convergent on the interval I to the limit function f(z).

SR

BR—TRE—HES, ME—PAEHREHRAESE (RIREE) .

1. Z=U8Y (Point-wise Convergence) Fiig: SN M FiXEHE%,
FREMELN ZM/E (B R z): BEEREXMIB FIEE (REE f.(z) EE)IE (n X)) E
T BERANESEE (RRE f(2)) .
BN B BikEa%. BREsIRAEE—TTRiEEE, BEREBREZEEENL, MEERKET.
e ERENMIEREENEE T BiR, B AFBIXELSANEELFER—H , BRNETRER, BIAETEE
=N

2. —Hi8% (Uniform Convergence) #if&: FRBA FEE, Z75FE— EAE L%,

MIEENANERIER R, EF A5,

RRE—MREBE, il "KRERBER[/LEREBFERY 1K . —HHER, $AEE—1A—0I%
it (— MR N) |, ERNGE—ERER, AEA T FHIZ, BERSENESEHNFIRIENRE
iCE.

s —SUStEERBEE "B |, B " . ERIETENREFS 9T SRRREREL.
SRR ERIRBISIE— B En G E:

REETNA RLEMFINE (RERBREY f(2). EBENESME c, REE f(z) RESTEH

N f(z)?

HEENA BEEHEE 8% (ZERY | f.(x) — f(2)]). SFENIGNER n, EREN SMIE «,
BRINEEE fn(z) FIREER f(z) Z207

#E EA WIEE (—BEH sup,., |fu(z) — f(z)). NG n, £ Z1NEE £, EHREER Riz
BERZIE? BAERRIRRERER TRIRE,

EE EAEE s4a g F lin, o M, = 0). EEIGHHT, X0 ZAEE &SR TR
£) SA2FHE0NE 0?7 RS, BHE—EE, NRF=, BAE.

iCEXES:
ZRlsR FEF B REET R

—HISE 25 1 BEAIKE, ERHNMER.
Rt Rt :
—HIEy = FRIREY + "B NREERIRERLY,
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Sample Questions

8. ¥WF fn(x) RIMANERR, BEFS (f,) EXE (0,1) E—Hgss?
i1 il
(A) B2

(B) ny/z

© 2%

(D) e—na:2
() £In £

IEIRERE (C) # (E).
fRRE:

£ (A) B, IBIREAXKEYE -z — 0/, BFn=1,2,..., i1\ fule™) = -1, TFXBEWF e =1 (UK
B e (H) ATEEREI—BMAR (uniform response, XBISYIFFIE « IEBIBKAE n, REENMF eI N
) .
FHRFRE (A):
BRI HFER 2 € (0,1), lmyo fule) = limio B2 = 0 @ Inz HFEE 2 < (0,1)
NEE, TIDE n BATFESK). BARREH f(z) =

{E—E8: ATIRRE B, BAIFBEEE sup,c) [fn(z) — f(2)| = sup,co) | 55| BEE
MF0Hn — oo,

BAY z—0" B, lnm—> —oco , FFll |lnz|— oo, MFEMBEEN n,

SUPze(0,1) |ln7| SUPge(0,1) —p - = 00 (B — Inz AILATIRK),

Eitt, —BEERET 0, HSZﬁSWxE—:SIEI’\Jo

RhE T =e " mwﬁ'- M —e " lf, fole ™) =2 on o 1 mEREGERL
28 Bz —e™) , B8 |fu(@) —0| = |—1—0| = 1, Fit n BX, 135%%54%?—17_1 y S i

0, FTLARR—EUEL,

£ (B) W, WIBRHEL z — 1 W, EBNFn=1,2,..., HiE f.(1/n?) =1/2forn =1,2,..., ¥E
BBRSF e = 1/2 RaJgedkBI—EmaRs,
EHRRER (B):
(0,1) ERZESUSBIEIREEL.
JE—E0U80: BITFREFFFIAESSEIERES, BABRT s —BUSEIERES.
BRGET z=1/n’, Hz=1/n’1 (FEXERBHISHE 1/2" WFEIE, MxE 1/n’ E8
), fo(1/n?) =ny/1/n2=n-(1/n)=1. NBEEEHISHE 1/2", Yz =1/2" §,
Fu(1/27) =n4/1/27" =n/2" = 0asn — oo, XIUFRMEFTYN, SHEEFE. NXERE
HEEPNRSESR. B NERERSHE f,(1/27) = 1/2 THEBEER, BiFERANEE

RIS, EE RGOSR RS, SRR R nyT ¥ n — oo i, WTF z > 0 BT ESS
K, FARATEe—E e EIE BREREK,
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£ (C) th, RBREAREIR « — =, BB

ne
z+n

=2 <l wWFo<z<l,

z+n — n

_x‘_‘:c—l—n

B3 T —BUEE, (R e > 0 B9—BUARL, FAITLIB N = [1/€].)

FRERE (C):

BRI TR 2 € (0,1), im0 fr(2) = limy o0 25 = lim, oo 727 = o, FARR
B f(z) =

—BU8S: BAVBEBE sup,c (o) | fn(2) — f(2)] = suP,e(o) |25 — 2| = sUp,e (o) 257 BEH
HMF0YEn— oo,

AR RS, M < i, XERAWFz e (0,1) < YA
?J T € (0 )zl <l <1 & EF‘E’J{EL‘I‘EXTHZ:B € (0, 1) 22 <1c4in>n Ml
x+n < n

XHE sup,e(0,1) [ fn(®) — f(@)] = SuPseo1) 7507 < -

BT L — 0% n — oo, FIA—SCBHEET 0, FEHEEFI—E0sL.

ﬁ’iﬁﬂP?—EEU YERXS € > 0 (—BUARL, FATTIUR N = [1/€]." iXFx, MBLE e >0, HAEIL
|fo(z) — 2| < eXtFFE € (0,1) B3z, REEWMn > N = [1/e]. BA%n > Nit, L <L <e
W | fo(z) — 2| < L < exdfiE = € (0,1) Biaz.

% (D) B, MIBEHE z — 0, BNF n =2,3,..., BIG f.(1/v/n) = 1/eforn =2,3, ..., XEHEx
F € = 1/e FEIBEHREI—BIRARL,

FHIRERE (D):

FEtR: WFER « € (0,1), lim, o fr(z) = lim, e —0(@EB22>09Fzc (0,1),

FL —nz? — —co B e ™ — 0), FURBREH f(z) =

- BEEE SuP,c(o,1) | fo(@) — £(2)] = sup,c(o) 6| = sup,e(y e ™ BEEETF 0

Hn — oo,

W 0B, —nz? =0, FFllle ™ — e =1,

JJ:l:, sup,cone ™ =1 (@A™ <1xFz >0, BRAMERBE 1 4 — 07). —BEH

, T 0, FriAdE—Buksy.

BERFE z=1/VnERBF, Y z=1/vVn aj fn(l/f) — eIV —gnin — el =1/e
XEREFERL 2B (Bl z =1/v/n) , 5 |fu(z) -0 =|1/e— 0| =1/e, Tt nEXK,

IREIITISE 1 /e, FBETF O, FELATE—tSIW_AL

£ (E) b, HMIREHR v —~ 0, HO0<z/n<1/n, UK limyoylny =0 BRT—HULHE. (MR
§>0fFBL0<y<dME |ylny| <e BAITLE N = [1/0] fERT € BINDRL, )

VFHRERE (E):

Z R WFER z € (0,1), lim, oo fr(2) = limp oo 10 2 = 0 (SEFIRER limy o+ yIny =0
, Sy==x/n.%n— coft, z/n— 0", EURREE f(z) =

—HIIES: REEE sup,c(o,) | fn(2) — f(2)| = supec) [51n | EEEAET 0 = n — oo,
Cy=a/nEBRzc (0,1) flly =z/n € (0,1/n) BAIEER sup,c g1/ [y Inyl.



A& limy o ylny =0, FE g(y) = ylny & (0,1/n] J:E’Jﬂ—jcfﬁXﬂEABLE 1/n — 0 MEaFT
0. BERWMIISH, TUKS ¢'(y) = 1ny+ 1=0#B3ly=e'=1/e 2 ylny WRIMES (£
y > 058EM). &IMER e tln(e!) = = —1/e. RAEHIEX @RS ETFRRRR. 2
y— 0" B ylny — 0. 24 yzl/n B, ylny:%ln%:—ln—" . Fr LA

SUDye(0,1/n) lylny| = SUPyc(o,1/n) —YInY (AR ylny<O0{F 0<y<1). WF n>3 (AR
1/n<1/3 <1/e~0.368), 2 —ylny 7 (0,1/n] LBEEHN, FAILSKEE y — 07 &R 0,
HEEyY=1/n&R thn ELt, supge(o,1) [+n & | = SUPye(0,1/n) lylny| = max{0, [+ nn |} = lnn
FF n > 1).

BT hmTHoo =% =0, ATLA—ECeiiaT 0, EIREFYI—Bula.

ﬁﬁrﬁqﬂiﬂhﬂ? limyoylny = 0 BER T —EMLStE, FiRBBMBIBIMAIERN 0 £18 0 <y < J B
lylny| < e, MATLUHKFIRIRIE N.

RIZEZRZ: W (C) 7 (E) —Euigs.

Unique and Existence Theorem

Sample Questions

Question 1:

Which of the following ODEs has distinct solutions yi,ys : R — R satisfying y1(0) = y2(0) and
y1(0) = 55(0)?
=y

y' =Vi-y
7 yll — t\/@

y" =yl

y-y' =0
Question 2:

Which of the following ODEs has distinct solutions y1,ys : [—1, 1] — R satisfying y1(0) = y2(0) = 1?7
Yy =y +1
t2y// =y
v =ty
2 () =y
y = tlyl
Question 3:

Which of the following ODEs has distinct solutions y1,ys : (0,2) — R satisfying y1(1) = y2(1)?

—|y|
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y/ — _y2

y =yt
vty =y
y =ty

Question 4:

Which of the following ODEs has distinct solutions y1,ys2 : I — R satisfying y1(t9) = y2(to) for some
to € I?

v =y

Some easy ways to check uniqueness and existence of solutions

RIEHERRZE SR &5, RIETHETEIEIN, HHEERS G2 (Linear ODE) AYEIR, %&ODEL% 551
RERERAFEELTRERN, MATHRBE—#E, ALl NRENPERENEEODE, BEALITE

HEi2, [SIEER BB AT SIS,
tnfEliRBIL 1 ODE: £t ODE fF 2, RTE (YRESH) RERXNCHELHEXERE, MSIHLHE
u, ',y Ly MRS, RETUEXTETE (BHEE t5x) MRS, ERTUR y KR,

TG (AHES): v = Vity, ¥ = ty, t2y" = y EUMEREIKIRT t, S LBAREMNXTFYRES
#).

SIS ERERN (IESEIET K8 ERTHIESIHERT, SEEETERUNIESHR, XIwe

SHBNAIE—IEN "BRss
EIHEFEL: I |y, || S (SIFEE)

fl: " = || EEFET), v =ty GRERE2EN6F), v = /|y| GEPIEIF)
EEE (y) WOEIREHIRN: BT /Y, v?/3, yv'/? ST (SIFEE)

Bl: o = y*® @EBEFET), v = t/y EEHFIE)
SHpIESIETE: B (v)° XA SEERAIIEE RS (RS IFERE). XM S B v Li3E
S RS SRR ME—IE,
SBHHMETE y: By SR, It/ y + 1)y, ST SBRINFER SR, ATt
BUREORIE—E, (BARGILA_EFERIBRH (IR,
@R EMETE v: B yln |y S5 (hEFRE), XETUESE v = 0 fHA Lipschitz £4RA
7, TTRESEIEE—R,

TIELAER : NSRS NIRRT SR SRS muxvtmzw%xﬁcp JEEMIR B EIRTRET , i

SEIRES (RERS WIS HTRIET, BEEERERE, 8 " 3BT Lipschitz &4, Bg==rh

SREHIEE— MBI AT, BaTALREmaE
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EIFREERE: BRIz =R e — I RGI T, BESERIIES N S AR, =
SRIERI Y = /|y WIEE—R, LURSEEIME |y, |y| SR HIIEE—R,

REHIIFHTE: EREAPREMETVE, RIFIFEMIIRIREMSHERGIRIBINE, EEEEREHIARE
—ERIEI, MRRDARHE, FEERGIEEE— M EANRET, RPIZIEZME " ERS

o

Theorems

1. Lipschitz Condition

M

The lecture notes define the Lipschitz condition in two ways:

Lipschitz condition with respect to y:

This condition applies to amap f: D — R", where D C R x R™. We say that f = f(¢, y) satisfies
a Lipschitz condition with respect to y if we can find a constant L (called the Lipschitz constant,
L > 0) so that for any two points (¢,y1) and (¢, y2) within the domain D, the following inequality
holds:

|f(t,y1) — f(t,y2)| < Lly1 — y2

In simpler terms: For a fixed time t, the change in the function value f(¢,y) is "controlled" or
limited by the change in y. The constant L quantifies this control. If you move from y; to y2, the
function value doesn't "jump"” too wildly, the rate of change is bounded.

Locally Lipschitz condition with respect to y:

This is a weaker, more flexible condition. A function f satisfies a locally Lipschitz condition with
respect to y if, around every point (t,y) € D, you can find a small "neighborhood" D' C D where
the Lipschitz condition is satisfied (though the Lipschitz constant L might change from
neighborhood to neighborhood).

In simpler terms: Around every point in the domain, there's a region where the function behaves
"nicely” with respect to changes in y, meaning the Lipschitz condition (as described above) holds in
that local region, even if it doesn't hold over the entire domain D.

The Proposition on Lipschitz Condition:

The lecture notes state a very important proposition:

Suppose D C R x R™ is an open set and f: D — R™ has continuous (as (n+1)-variable
functions!) partial derivatives with respect to the variables y = (y1,...,ys). Then f satisfies
locally a Lipschitz condition with respect to y.

In simpler terms: If the function f(t,y) is "smooth enough” in terms of its derivatives with respect to
the y variables (partial derivatives exist and are continuous), then it automatically satisfies the locally
Lipschitz condition. This is a very useful and practical result because it provides a readily checkable
condition (continuous partial derivatives) to ensure local Lipschitz continuity.

2. Uniqueness Theorem (Ordinary Differential Equations)
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The Uniqueness Theorem stated in the notes is:

Suppose D C R x R™is open and that f : D — R" is continuous and satisfies locally a Lipschitz
condition with respect to y. If ¢, : I — R"™ are solutions of an IVP

y' = f(t,y) Ay(to) = yo, (to,¥0) € D,
then ¢(t) = ¥(t) forall t € I.

In simpler terms: If you have a first-order ODE system y’ = f(t,y) where f is "nice" (continuous and
locally Lipschitz with respect to y), then for a given initial condition y(¢9) = y, there is at most one
solution curve that passes through the point (%o, yo). This means if you find one solution, that's the

only one.
3. Picard-Lindel6f Theorem (Existence and Uniqueness Theorem)

The Picard-Lindel6f Theorem stated in the notes is:

Suppose D C R x R™isopen and f: D — R", (t,y) — f(t,y) is a continuous function which
satisfies on D locally a Lipschitz condition with respect to y. Then for every (to,y0) € D there
exists an interval I containing tg as an inner point and a solution ¢ : I — R"™ of the IVP

y' = f(t,y) ANy(to) = yo.

In simpler terms: Under the same "niceness" conditions on f (continuity and locally Lipschitz w.r.t y),
for any starting point (tg,yg) in the domain D, there is at least one solution to the initial value
problem. The interval of existence I around t; is guaranteed, though it might not be the entire real

line.

B N
BR—T, (REEE—FRMZ, XEHEARRE—IEN (Mo7558) &=,

Lipschitz &4 siEa0BAN—=, RIHMAEHE “FE" . BiRE, MUAREKX "5, FeER/NaIuE
T, FE BN BKIREIIRIZEREN., BEbLipschitzEHH&iR, EEA—I S, XMIREE “F
8" B, BMEREIER, MNATREREEHRER.

E—EEE: 5T "“FE" RN, MERERFRE, BANMRMIEETHEER (MnfY) | REZHE
EH—SRELE, BiFtin, SRR, BRFEBIMN, BEME—H#ET, F2HIDX.

FEEERE (Picard-Lindelof FEHE): RFER 8" AIRN, RETHURFEETEE—NER, EVEEEL—
S, MERR, RENNTEE, NMEEtRER, EREEKREI—FSIERIRE.

BERXHIE:
BRIFERF—EXER:

MmHEE = EXEMN: MVNSFrE—LNEE (B .
Lipschitz 5% = RN RIERNASKNEREL, ARSI,



iasE = HERREE: RIWEBEFIRE.
SRR

FIEIEEE (Picard-Lindelof): REMNBEFE ( Lipschitz £4) | X8 —ERETE EDEERMIL.
IE—EEE: MRMNERETFE (Lipschitz &) , NE—MEREAR, REEE—RIE fEERE.

SA4 Lipschitz RAHREE?
EAMNRANARBEER (RNEE LlpSChItZ £4) | FIHEKSHIRSSANE, SREHMERO, S35

ERBEEUE (BAFD): NEMEREER, TRERAHAZIFSANAERE.
REFEAUE (BAE—): NE—NMEREER, FIREBARLE—RBEFSHRN,

S, Lipschitz RERMVERENAHENFELTY—IE "B2M” | BETBRNEFEMIE—E.

How to solve the problem

Let's break down the explanation for Question 1: Which of the following ODE's has distinct solutions

y1,72 : R — R satisfying 1 (0) = y2(0) = 1?", where the correct answer was identified as y' = y%/.

Explanation from the Provided Text:

The text focuses on Option 1: 3/ = y*/3

Non-Lipschitz Continuous Function: The function f(y) = %% in this ODE is highlighted as not
satisfying the Lipschitz condition. The derivative f'(y) = 2y~ '/® becomes unbounded as y
approaches 0. This failure of the Lipschitz condition is the root cause of the non-uniqueness.

Comparison to Example in Lecture Notes: The text points out that ¥’ = 9?3 "behaves like

y' = +/|y|, which we have discussed in the lecture". As we saw from page 28 of the(Z, v = /|y

(example 7) indeed demonstrates non-unique solutions, providing an analogical basis to expect non-
2/3

uniqueness fory' = y

Explicit Non-Unique Solutions Provided: The solution goes further and gives explicit examples of
distinct solutions that satisfy the same initial conditions y(0) = 3/(0) = 1 (although in the question,
it's only asking for y(0) = 1, the provided text uses slightly different initial condition to demonstrate
non-uniqueness in broader sense which is sufficient for understanding the core idea):

Solution 1: y(t) = 2—17t3. It is confirmed that y}(0) = 0. However, this seems to contradict the
problem statement which specifies y1(0) = y2(0) = 1. It seems there's slight mismatch in the
problem setting vs example details but the core idea is still illustrated correctly in the explanation
regarding non-uniqueness and lack of Lipschitz condition for y2/3. We should likely consider
y1(0) = 1 part of the question incorrect for this particular example based on explanation.

L@t)? ift>0

Solution 2: yy(t) = {27 . This piecewise-defined function is also presented as a

0 ift <0
solution. It is stated both y;(t) and ys(t) satisfy initial condition, and hence demonstrates non-
uniqueness of the IVP. The crucial detail is both of them have same y(3) = y1(3) = y2(3) to
indirectly link them for same initial condition point. Again the exact point of matching initial
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condition seems slightly off but idea of non-uniqueness is clearly illustrated.
Why Existence and Uniqueness Theorem (EUT) Doesn't Apply: The explanation explicitly mentions,
"The EUT doesn't apply, since the derivative of y — y2/3 is unbounded near y = 0." This is the direct
link back to the core theory from the lecture notes.

Explanation for Other Options (why they are not chosen):

The explanation states for "The other 4 ODE's either satisfy the assumptions of the EUT globally (
y' =tany and ¢y = yln|y|)," or have "no solutions with y(0) = 1 (ty’ = y), or have non-uniqueness
only at points that a solution with the given initial condition cannot reach (y' = v/y% + 1/y)." Let's
clarify these:

y' = tany and ¥’ = yln|y| (Stated as EUT applying globally, which is likely incorrect or typo): In
the quick analysis we had marked 3 =tany and 3y’ = yln|y| as potential candidates for non-
uniqueness (with "medium suspicion”). The provided explanation here stating that they satisfy EUT
globally seems to be incorrect or a typo. We identified yIn |y| as non-Lipschitz around y=0. For
tany, although it can be Lipschitz locally (away from asymptotes), its periodic nature and the nature
of tangent function's growth may not globally meet the exact condition globally to guarantee global
uniqueness without further investigation, though /ocally they may. This part of the provided answer
explanation seems inaccurate or requires more nuance to be precise and possibly contradictory to the
previous heuristic reasoning about non-uniqueness candidates. In typical introductory ODE contexts
though, if an option can exhibit non-uniqueness in certain circumstances they are often considered
"less unique" in general selection. Therefore while not perfectly Lipschitz continuous globally in y-
space, their deviation from the most suspect non-Lipschitz term (y2/3) makes them less likely choices

given other more prominent non-uniqueness candidate ODE like y/ = y%/3.

ty" = y (No solution with y(0)=1): For the linear ODE ty' = y, rearranging to ¢y = %y, we see that at
t = 0, the coefficient % is undefined. This means the Existence and Uniqueness theorem may not
directly apply at ¢ = 0. Further if we assume y(t) = x to be constant solution in equation ty' =y,
then we need 0 = x for any constant x, i.e. z = 0, hence only y(t) = 0 could be a constant solution
which doesn't satisfy initial condition y(0) = 1. This explains why for ty’ =y it says it has "no
solutions with y(0) = 1". In fact, consider the equation as linear form 3’ — %y = 0. Integrating factor
method leads to pu(t) = e/ ~#dt = ¢~ Inltl — ﬁ ft>0, u(t)=1 L(1y)=0 hence Ty=C,
y(t) = Ct, and y(0) = 0. For ¢ < 0, same idea leads to y(t) = C't, again y(0) = 0. For y(0) =1
condition it won't have solution based on these form of solutions around t=0 and therefore justifies
reason it's not the intended non-uniqueness case for the initial condition question type, which should
have solutions but non-unique ones.



y' = \/y% + 1/y (Non-uniqueness away from given condition point): For ' = /y% + 1/y, the
explanation mentions non-uniqueness might "only be at points that a solution with the given initial
condition cannot reach”. The term y in the denominator 1/y? 4+ 1/y hints at issues as y — 0. For
initial condition y(0) = 1 # 0, solutions start at y # 0 and stay away, making the local issue around
y = 0 not directly relevant to question.

Orthogonal Trajectories

Methodology for Orthogonal Trajectories Problems:
To find the orthogonal trajectories of a given family of curves, follow these steps:

Find the Differential Equation (ODE) of the Given Family:

Start with the equation describing the given family of curves, usually involving a parameter (like
C).

Differentiate the equation implicitly with respect to x , treating y as a function of x.

Eliminate the parameter C from the differentiated equation and the original family equation to
obtain a first-order ODE of the form f(z,y,y’) = 0 or ideally in explicit form y' = F(z,y). This
ODE describes the slope of the tangent line to any curve in the given family at a point (x, y).

Determine the ODE for Orthogonal Trajectories:
The slopes of orthogonal trajectories are negative reciprocals of the slopes of the original family.

If the ODE of the original family is ¥’ = F(z,y), replace y' with —1/y' to get the ODE for the
orthogonal trajectories: —1/y’ = F(x, y) which is often rewritten as y' = —1/F(z, y).

Alternatively, if the ODE of the original family is in differential form M (z,y)dz + N(z,y)dy =0
(derived from F(z,y) =C), the ODE for orthogonal trajectories is given by
—N(z,y)dz + M(x,y)dy = 0. This comes from swapping the coefficients and negating one,
corresponding to switching (M, N) to (—N, M) or (N,—M) vectors orthogonal to original
gradient vectors.

Solve the ODE for Orthogonal Trajectories:

Solve the new ODE obtained in step 2 using appropriate techniques (e.g., separable equations,
exact equations, integrating factors, etc.).

The solution will represent the family of orthogonal trajectories.
Present the Result:

Express the solution as a family of curves, ideally in implicit form G(z,y) = C or explicit form
y = H(x,C) where Cis a parameter.

Example
Example 1: Orthogonal Trajectories of Circles Through (1, 0) and (-1, 0)

Family of Circles Equation (Implicit): 2 + (y — C)2 = C%? + 1 or z? + y? = 2CY.
Deriving ODE (Step 1 from notes):
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. 2 2_1
Rewrite F'(z,y) = % =C.
Compute partial derivatives for differential form f,dz + f,dy = 0:
fa: —
2 271
fy= L

. 2 .2
ODEis fodz + fydy = Ldz + ud 222 Ldy = 0.
ODE for Orthogonal Trajectories (Step 2 from notes):

Replace fydx + f,dy = 0 with —f,dz + f,dy = O:
2 2
—fydz + fody = — (455 L)dz + Tdy = 0.
Simplifying and Solving ODE (Step 3 from notes):

Clear denominators: (z2 — y? — 1)dz + 2zydy = 0.
This ODE needs to be solved (using methods from prior lectures, but in example just shown to be

the orthogonal ODE without solving it explicitly).

Example 2: Orthogonal Trajectories of y = Ce™®

—x

Given Family Equation (Explicit): y = Ce
Deriving ODE (Step 1 from notes):
Rewrite as ye® = C.
Differentiate implicitly: d(ye”) = (y'e* + ye®)de =0 — y'e* +ye* =0 = ¢ +y=0.
ODE for Orthogonal Trajectories (Step 2 from notes):
For ODE ' + y = 0, corresponding to —e ?ydx + e *dy = 0.
Orthogonal trajectories ODE: —e *dz + (—e ®y)dy = 0 — dz + ydy = 0.
Solving Orthogonal ODE (Step 3 from notes):

Solve dx + ydy = 0, which is exact and separable.
Integrate directly to get x + %yz =C = 2+’ =C = 2z +y>=C.

(b) Simplified Solution & Key Steps lllustrated:

Example 9 is straightforward and applies the standard method directly.

From explicit family form y = Ce %, find ODE ¢/ = —y
Replace 3y’ with —1/y’ to get orthogonal trajectory ODE, solve using direct integration for

separable/exact ODE.

Define a contraction

Definition of a Contraction Mapping:
To determine if a function T(x) is a contraction on a given interval (e.g., [1, 2]), you need to verify two

key conditions:
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Self-Mapping (Interval Preservation):

Test Endpoints: Check the function's value at the interval's endpoints. For [a, b, evaluate T'(a) and

T(b).

Check Range: For all & within the interval [a,b], verify that T'(x) also falls within or on the
boundary of [a, b]. If the function is monotonic (increasing or decreasing) on the interval, checking
the endpoints might be enough. For more complex functions like quadratics, consider the function's
vertex or other critical points within interval and examine if the range remains within interval.

Elimination Criterion: If a function FAILS to map the interval into itself (i.e., there exists at least one
z € [a,b] where T'(z) ¢ [a, b]), it is not a contraction, and you can eliminate this option.

Distance Contraction (Using the Derivative & Mean Value Theorem):
Find the Derivative: Calculate the derivative T"(x) of the function.

Bound the Derivative's Absolute Value: Find the maximum absolute value of the derivative |T"(z)|
on the interval [a, b]. Let's call this maximum value C. For quadratic function check the endpoints
and vertex for maximum absolute derivative.

Contraction Constant Check: If the maximum absolute value C is strictly less than 1 (C' < 1), then
the function is a contraction mapping on the interval [a, b], with C as the contraction constant. If
C > 1 or you cannot guarantee C' < 1 uniformly on the interval, the function is not a contraction
on the entire interval (even though it might still reduce distance locally, but not uniformly with a
constant less than 1).

Example

Let's apply this method to option (D) z + T'(x) = (z? + 5)/6 for interval [1, 2], which is the correct
answer according to the provided text.
Self-Mapping Check:
T(1) = (12 +5)/6 = 1 (Lower endpoint maps to lower endpoint)
T(2) = (22 +5)/6 = 9/6 = 3/2 (Upper endpoint maps inside interval [1, 2])
The derivative T'(z) = z/3 is positive on [1, 2] indicating T'(x) is increasing function on [1, 2].

Since T'(x) is increasing and maps endpoints to values within [1, 2] and is continuous, by
Intermediate Value Theorem (or direct observation of function), all values T'(x) for z € [1, 2] will be
between T'(1) =1 and T'(2) = 3/2, thus ensuring that T'(z) € [1,2] for all z € [1,2]. Self-
mapping condition is satisfied.

Distance Contraction Check:
Derivative T (z) = /3.
Maximum absolute value of T (x) on [1,2] occurs at x = 2, giving |T"(2)| = |2/3| = 2/3.

Since C' = 2/3 < 1, the distance contraction condition is satisfied.

Conclusion for Option (D): Option (D) passes both conditions, confirming it is a contraction mapping
on[1, 2].

Why Other Options Fail (from the provided text):



Options (A) and (B): Derivative T"'(z) for option (B) is T'(x) = —3 + 2z. Atz = 2, T'(2) = 1. The
magnitude of derivative can be too close to 1 or exceed 1 on interval, and it is not possible to find
uniform C' < 1 bound for derivative magnitude over the whole interval, violating the contraction
distance condition. Although for option (A) no specific derivative analysis is performed but same
principle of derivative test likely also leads to failing contraction condition.

Options (C) and (E): For Option (E), the solution directly checks T'(1) =1/(2-1) = 1/2 which is
outside of the interval [1,2]. This violates the self-mapping condition. The option C is grouped with
E failing on self-mapping for similar reasons at endpoint or within the interval, even though no explicit
computation for C is done.
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