

MATH213 Second Midterm

Fall 2022

NAME:
 Instructor: M. Zhang

Please answer all first four questions (question 5 is optional).

- You are allowed one double-sided cheat sheet.
- Show all work for full credit.
- Each is of equal worth (sub-problems within a problem are of equal worth).
- No calculators are permitted.

Answer:

1. Consider the statement: $C(n, k) \leq 2^{n}$ holds for all $n \in \mathbb{N}, n \geq 1$ and all k with $0 \leq k \leq n$. (25 points)
(a) Prove the statement based on the Pascal's identity;
(b) Prove the statement based on the Binomial theorem.

Solutions:

(a) The Pascal's identity is

$$
\binom{n}{k+1}+\binom{n}{k}=\binom{n+1}{k+1},
$$

- Basic step: $C(1,0)=C(1,1)=1=2^{0}$, which implies that the Pascal's identity is satisfied in this case.
- Induction step: Assume that $C(n, k) \leq 2^{n}$ for all first n times. We see that $\binom{n+1}{k+1}=\binom{n}{k+1}+\binom{n}{k} \leq 2 \cdot 2^{n}=2^{n+1}$.
(b) From the Binomial theorem, we have $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$, which implies that

$$
2^{n}=(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} \geq\binom{ n}{k}
$$

- (20 points)
- The Lucas numbers satisfy the recurrence relation:

$$
L_{n}=L_{n-1}+L_{n-2},
$$

and the initial conditions $L_{0}=2$ and $L_{1}=1$.
(a) Show that

$$
L_{n}=f_{n-1}+f_{n+1}
$$

for $n=2,3, \ldots$, where f_{n} is the nth Fibonacci number $\left(f_{n}=f_{n-1}+f_{n-2}\right.$ for $n=2,3, \ldots$, with the initial conditions $f_{0}=0$ and $f_{1}=1$).
(b) Find an explicit formula for the Lucas numbers.

Solutions:

The characteristic function is $r^{2}-r-1=0$, with roots $r_{1}=\frac{1-\sqrt{5}}{2}$ and $r_{2}=\frac{1+\sqrt{5}}{2}$. So we must have

$$
L_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}
$$

and have $\alpha_{1}=1$ and $\alpha_{2}=2$.

$$
L_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

- (30 points)
(a) How many ordered pairs of integers (a, b) are needed to guarantee that there are two ordered pairs $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ such that $a_{1} \bmod 5=a_{2} \bmod 5$ and $b_{1} \bmod 5=b_{2} \bmod 5 ?$
(b) How many numbers must be selected from the set $\{1,2,3,4,5,6\}$ to guarantee that at least one pair of these numbers add up to 7 ?

Solution:

(a) 26 .

For each pair (a, b), there are five possible values of $a \bmod 5$ and five possible values of $b \bmod 5$ in total. Therefore, there are 25 possible distinct pairs. By the pigeonhole principle, we need 26 pairs.
(b) 4 .

There are 3 pairs that add up to 7 , i.e., $\{(1,6),(5,2),(4,3)\}$. So the question is equivalent to how numbers must be selected from the set of 6 elements into 3 holes such that there exists a hole with 2 elements. By the pigeonhole principle, we need 4 numbers.

- (25 points) How many relations are there on a set with n elements that satisfies the following properties? Write down your answer and explain the reason.
(a) Symmetric
(b) Reflexive and symmetric

Solution: Consider a set A with n elements and a relation R on set A. Recall that $R \subseteq A \times A$.
(a) When relation R is symmetric, it contains two types of elements (or pair of elements) from $A \times A$:

* (a, a) with $a \in A: n$ such tuples in $A \times A$
* both (a, b) and (b, a), with $a, b \in A$ and $a \neq b: C(n, 2)$ such tuples in $A \times A$ Each of these elements (or pair of elements) can be either be in R or not. Thus, there are $2^{n(n-1) / 2+n}=2^{n(n+1) / 2}$ symmetric relations.
(b) When relation R is reflexive, (a, a) with $a \in A$ must be in relation R. Since R is symmetric, (b, a) is in R whenever (a, b) is in R with $a, b \in A$ and $a \neq b$. Thus, we can consider (a, b) and (b, a) as a whole. There are $C(n, 2)$ such pairs of tuples (a, b) and (b, a), and pair can be either in R or not in R. Thus, there are $2^{n(n-1) / 2}$ such relations.
- (Bonus 25 points)
(a) Use generating functions to prove Pascal's identity:

$$
C(n, r)=C(n-1, r)+C(n-1, r-1)
$$

when n and r are positive integers with $r<n$. [Hint: Look at the coefficient of x^{r} in both sides of $(1+x)^{n}=(1+x)^{n-1}+x(1+x)^{n-1}$.]
(b) Use generating functions to prove Vandermonde's identity:

$$
C(m+n, r)=\sum_{k=0}^{r} C(m, r-k) C(n, k),
$$

whenever m, n, and r are nonnegative integers with r not exceeding either m or n. [Hint: Look at the coefficient of x^{r} in both sides of $(1+x)^{m+n}=$ $(1+x)^{m}(1+x)^{n}$.]

Solution: Consider a set A with n elements and a relation R on set A. Recall that $R \subseteq A \times A$.
(a) Construct the following generating functions:

$$
\begin{aligned}
A(x)=(1+x)^{n} & =\sum_{r=0}^{n} C(n, r) x^{r}, \\
B(x)=(1+x)^{n-1} & =\sum_{r=0}^{n-1} C(n-1, r) x^{r}, \\
x B(x)=x(1+x)^{n-1} & =\sum_{r=0}^{n-1} C(n-1, r) x^{r+1}=\sum_{r=1}^{n} C(n-1, r-1) x^{r},
\end{aligned}
$$

Note that

$$
A(x)=B(x)(1+x) .
$$

Therefore, we must have $C(n, r)=C(n-1, r)+C(n-1, r-1)$ for all r, n.
(b) Construct the following generating functions:

$$
\begin{aligned}
A(x)=(1+x)^{m+n} & =\sum_{r=0}^{m+n} a_{r} x^{r}=\sum_{r=0}^{m+n} C(m+n, r) x^{r}, \\
B(x)=(1+x)^{n} & =\sum_{r=0}^{n} b_{r} x^{r}=\sum_{r=0}^{n} C(n, r) x^{r} \\
C(x)=(1+x)^{m} & =\sum_{r=0}^{m} c_{r} x^{r}=\sum_{r=0}^{m} C(m, r) x^{r} .
\end{aligned}
$$

Note that

$$
A(x)=B(x) C(x)=\sum_{r=0}^{m+n}\left(\sum_{k=0}^{r} b_{k} c_{r-k}\right) x^{r}=\sum_{r=0}^{m+n} \sum_{k=0}^{r} C(m, r-k) C(n, k) x^{r} .
$$

Therefore, we must have $C(m+n, r)=\sum_{k=0}^{r} C(m, r-k) C(n, k)$ for all $r=$ $0,1, \ldots, m+n$.

