question	1	2	3	4	5	6	7	8	9
score									

MATH 213 Final Exam Sample Fall 2022

NAME: _				
	Instructor:	Μ.	Zhang	

Please answer all ten questions.

- Show all work for full credit.
- The number of points for each question is noted.
- You may have 6 single-sided pages of cheat sheets (or equivalent); no other informational aids are permitted.
- No calculators (or equivalent) are permitted.
- You may not consult or communicate with anyone except the proctors during the Exam.
- NOTE: failure to abide by the above requirements will result in an Exam score of zero.

Good luck!

Answer:

- 1. Logical statement
 - (a) Use logical equivalences to prove the following statements.
 - (i) $\neg (p \oplus q)$ and $p \leftrightarrow q$ are equivalent.
 - (ii) $\neg(p \to q) \to \neg q$ is a tautology.
 - (iii) $(p \to q) \to ((r \to p) \to (r \to q))$ is a tautology.
 - (b) Give the negation of the statement

$$\forall n \in \mathbb{N} \ (n^3 + 6n + 5 \text{ is odd} \Rightarrow n \text{ is even}).$$

- 2. (a) If A is an uncountable set and B is a countable set, must A B be uncountable?
 - (b) Give an example of two uncountable sets A and B such that the difference A B is
 - finite,
 - countably infinite,
 - uncountable.

- 3. Let $f_1: \mathbf{R} \to \mathbf{R}^+$ and $f_2: \mathbf{R} \to \mathbf{R}^+$. Let $g: \mathbf{R} \to \mathbf{R}$, and $f_1(x)$ and $f_2(x)$ are both $\Theta(g(x))$.
 - (a) Prove or disprove that $f_1(x)/f_2(x)$ is $\Theta(1)$.
 - (b) Prove or disprove that $f_1(f_2(x))$ is $\Theta(g(g(x)))$.

Solutions: (a) This statement is true. There exist positive real numbers C_1 , C_2 , C_3 , and C_4 , and real numbers x_1 and x_2 such that $C_1g(x) \leq f_1(x) \leq C_2g(x)$ for all $x \geq x_1$ and $C_3g(x) \leq f_2(x) \leq C_4g(x)$ for all $x \geq x_2$. We have that, for all $x \geq \max\{x_1, x_2\}$,

$$C_1/C_4 \le f_1(x)/f_2(x) \le C_2/C_3.$$
 (1)

Therefore, $f_1(x)/f_2(x)$ is $\Theta(1)$.

(a) This statement is true. There exist positive real numbers C_1 , C_2 , C_3 , and C_4 , and real numbers x_1 and x_2 such that $C_1g(x) \leq f_1(x) \leq C_2g(x)$ for all $x \geq x_1$ and $C_3g(x) \leq f_2(x) \leq C_4g(x)$ for all $x \geq x_2$. We have that, for all $x \geq \max\{x_1, x_2\}$,

$$C_1/C_4 \le f_1(x)/f_2(x) \le C_2/C_3.$$
 (2)

Therefore, $f_1(x)/f_2(x)$ is $\Theta(1)$.

(b) This statement is false. Consider a counterexample

$$f_1(x) = \exp(x)$$
 and $f_2(x) = 2\exp(x)$. (3)

We have $f_1(x)$ and $f_2(x)$ are both $\Theta(\exp(x))$. However, $f_1(f_2(x)) = \exp(2\exp(x))$ which is not $\Theta(\exp(\exp(x)))$.

4. Let $n \in \mathbb{N}$, n > 0. Show

$$\binom{2n}{n+1} + \binom{2n}{n} = \frac{1}{2} \cdot \binom{2n+2}{n+1}.$$

Solution: Using the Pascal's identity, we have

$$\binom{2n}{n+1} + \binom{2n}{n} = \binom{2n+1}{n+1} = \binom{2n+1}{n}.$$

Using the Pascal's identity again:

$$\binom{2n+1}{n} + \binom{2n+1}{n+1} = \binom{2n+2}{n+1}.$$

5. Let a, b, and c be integers. Suppose m is an integer greater than 1 and $ac \equiv bc \pmod{m}$. Prove $a \equiv b \pmod{m/\gcd(c, m)}$.

Solution: Let $m' = m/\gcd(c, m)$. Because all the common factors of m and c are divided out of m to obtain m', it follows that m' and c are relatively prime. Since $ac \equiv bc \pmod{m}$, we have m divides ac - bc = (a - b)c, which follows that m' divides (a - b)c. Since m' and c are relatively prime, we see that m' divides a - b, which leads to $a \equiv b \pmod{m'}$.

- 6. (a) Solve the recurrence equation $t_n = 2t_{n-1} + n + 2^n$ subject to the initial condition $t_0 = 0$.
 - (b) Determine the Θ -class of the function t(n) determined in (a).

Solutions: (a) Using the theorem on the solutions of linear recurrence equations the general form of the solution is

$$t_n = c_1 + c_2 \cdot n + c_3 \cdot 2^n + c_4 \cdot n \cdot 2^n. \tag{4}$$

Given the initial condition t_0 , from which we obtain $t_1 = 3$, $t_2 = 12$, and $t_3 = 35$ using the recurrence equation. We have $c_1 = -2$, $c_2 = -1$, $c_3 = 2$, and $c_4 = 1$. Therefore, we have

$$t_n = -2 - n + 2^{n+1} + n \cdot 2^n.$$

(b) $t(n) \le n \cdot 2^n + 2 \cdot 2^n$ and $t(n) \ge n \cdot 2^n$. Therefore, we have $\Theta(n \cdot 2^n)$.

- 7. Let E_1 and E_2 be equivalence relations on some set A.
 - (a) Is $E_1 \cup E_2$ an equivalence relation on A?
 - (b) Is $E_1 \cap E_2$ an equivalence relation on A?

8. Consider relation R represented by the following graph.

- (a) Indicate whether relation R satisfies the properties or not, respectively
 - Reflexive
 - Symmetric
 - Antisymmetric
 - Transitive
- (b) Draw the reflexive closure of relation R.

Solutions:

- (a) No. No. Yes. No.
- (b)

- 9. Consider a relation R defined on the set of functions from \mathbf{Z}^+ to \mathbf{Z}^+ . Consider any of these functions $f: \mathbf{Z}^+$ to \mathbf{Z}^+ and $g: \mathbf{Z}^+$ to \mathbf{Z}^+ , $(f,g) \in R$ if and only if f(n) is O(g(n)).
 - (a) Is R reflexive? Explain your answer.
 - (b) Is R transitive? Explain your answer.
 - (c) Prove or disprove R is an equivalence relation.
 - (d) Prove or disprove R is a partial ordering.

Solution:

- (a) Yes. Since $f(n) \leq 1f(n)$ for all $n \geq 0$, for any function f(n). Therefore, f(n) is O(f(n)) for all function f(n), which implies that R is reflexive.
- (b) Yes. Let f(n) be O(g(n)) and g(n) be O(h(n)). It is easy to show that f(n) is also O(h(n)). Therefore, R is transitive.
- (c) No, because R is not symmetric. To disprove R is symmetric, consider an counterexample with f(n) = n and $g(n) = n^2$. It is easy to see that $(f, g) \in R$ but $(g, f) \notin R$. Therefore, R is not symmetric and hence R is not an equivalence relation.
- (d) No, because R is not antisymmetric, neither. To disprove R is symmetric, consider an counterexample with f(n) = n and g(n) = 2n. We see that $(f,g) \in R$ and $(g,f) \in R$, which implies that R is not antisymmetric. Therefore, R is not a partial ordering.

11

10. Consider the following graph:

- (a) Does the graph contain a Hamilton cycle?
- (b) Does the graph contain an Euler cycle?
- (c) Show that the graph is not bipartite.
- (d) Show that if a single vertex is removed, then the graph becomes bipartite and admits a perfect matching.

Solution:

- (a) The cycle a-d-g-h-i-f-c-b-k-l-n-q-p-o-m-e-j-a is a Hamilton cycle, as it contains every vertex exactly once.
- (b) The vertices a, b, c all have degree 3, so by Euler's criterium there cannot be an Euler cycle.
- (c) There are edges between any two of the three vertices e, j, m. For an arbitrary partition $V = V_1 \cup V_2$, one of the sets V_i must contain at least two of these three vertices. This violates the requirement that in a bipartite graph there cannot exist edges $\{v, w\}$ with $v, w \in V_i$. Hence the graph is not bipartite.
- (d) If we omit the vertex e, then we obtain a bipartition $V=V_1\cup V_2$ with $V_1=\{a,c,g,i,k,m,n,p\}$ and $V_2=\{b,d,f,h,j,l,o,q\}$.

Take the subset

$$M = \{\{a,j\},\{b,k\},\{c,l\},\{d,m\},\{f,n\},\{g,o\},\{h,p\},\{i,q\}\} \subset E$$

of the set of edges. All edges in M have one endpoint in V_1 and another one in V_2 , and no two edges in M have a common endpoint. Hence M is a matching. For each $v \in V_1$ there is exactly one edge in M that is incident to v, so M is complete for V_1 . For each $w \in V_2$ there is also exactly one edge in M that is incident to w, so M is also complete for V_2 . Hence M is a perfect matching.

11. (Bonus) Show that $\log_2 3$ is an irrational number. Recall that an irrational number is a real number x that cannot be written as the ratio of two integers.

Solution: Suppose that $\log_2 3 = p/q$ for some integers p and q. Then, we have $3^q = 2^p$, which is impossible since 3^q is odd and 2^p is even. Hence $\log_2 3$ must be irrational.

12. (Bonus) Prove that $f_k f_n + f_{k+1} f_{n+1} = f_{n+k+1}$ for all nonnegative integers n and k, where f_i denotes the ith Fibonacci number.

Let P(n) be the statement that

$$f_k f_n + f_{k+1} f_{n+1} = f_{n+k+1}$$

holds for all nonnegative integer k. We use the strong principle of induction in the following:

• Case n = 0: $f_n = 0$ and $f_{n+1} = 1$. We have that, for all nonnegative integer k, it follows that

$$f_k f_n + f_{k+1} f_{n+1} = f_{k+1} = f_{n+k+1}.$$

Therefore, P(0) is true.

• Case n = 1: $f_n = 1$ and $f_{n+1} = 1$. We have that, for all nonnegative integer k, it follows that

$$f_k f_n + f_{k+1} f_{n+1} = f_k + f_{k+1} = f_{k+2} = f_{n+k+1}.$$

Therefore, P(1) is true.

• Inductive step: Suppose that the statements P(n) and P(n-1) are true. Therefore, for all nonnegative integer k,

$$f_k f_n + f_{k+1} f_{n+1} = f_{n+k+1},$$

 $f_k f_{n-1} + f_{k+1} f_n = f_{n+k}.$

Since $f_n + f_{n-1} = f_{n+1}$ and $f_n + f_{n+1} = f_{n+2}$ and $f_{n+k+1} + f_{n+k} = f_{n+k+2}$ for all k. We have that, for all k,

$$f_k f_{n+1} + f_{k+1} f_{n+2} = f_{n+k+2}.$$

That is, P(n+1) is also true.

Note that, we need to prove that each statement for each step is true for all k.