question	1	2	3	4	5	6	7	8	9
score									

MATH 213 Final Exam Sample
 Fall 2022

NAME:
Instructor: M. Zhang

Please answer all ten questions.

- Show all work for full credit.
- The number of points for each question is noted.
- You may have 6 single-sided pages of cheat sheets (or equivalent); no other informational aids are permitted.
- No calculators (or equivalent) are permitted.
- You may not consult or communicate with anyone except the proctors during the Exam.
- NOTE: failure to abide by the above requirements will result in an Exam score of zero.

Good luck!

Answer:

1. Logical statement
(a) Use logical equivalences to prove the following statements.
(i) $\neg(p \oplus q)$ and $p \leftrightarrow q$ are equivalent.
(ii) $\neg(p \rightarrow q) \rightarrow \neg q$ is a tautology.
(iii) $(p \rightarrow q) \rightarrow((r \rightarrow p) \rightarrow(r \rightarrow q))$ is a tautology.
(b) Give the negation of the statement

$$
\forall n \in \mathbb{N}\left(n^{3}+6 n+5 \text { is odd } \Rightarrow n \text { is even }\right)
$$

2. (a) If A is an uncountable set and B is a countable set, must $A-B$ be uncountable?
(b) Give an example of two uncountable sets A and B such that the difference $A-B$ is - finite,

- countably infinite,
- uncountable.

3. Let $f_{1}: \mathbf{R} \rightarrow \mathbf{R}^{+}$and $f_{2}: \mathbf{R} \rightarrow \mathbf{R}^{+}$. Let $g: \mathbf{R} \rightarrow \mathbf{R}$, and $f_{1}(x)$ and $f_{2}(x)$ are both $\Theta(g(x))$.
(a) Prove or disprove that $f_{1}(x) / f_{2}(x)$ is $\Theta(1)$.
(b) Prove or disprove that $f_{1}\left(f_{2}(x)\right)$ is $\Theta(g(g(x)))$.

Solutions: (a) This statement is true. There exist positive real numbers C_{1}, C_{2}, C_{3}, and C_{4}, and real numbers x_{1} and x_{2} such that $C_{1} g(x) \leq f_{1}(x) \leq C_{2} g(x)$ for all $x \geq x_{1}$ and $C_{3} g(x) \leq f_{2}(x) \leq C_{4} g(x)$ for all $x \geq x_{2}$. We have that, for all $x \geq \max \left\{x_{1}, x_{2}\right\}$,

$$
\begin{equation*}
C_{1} / C_{4} \leq f_{1}(x) / f_{2}(x) \leq C_{2} / C_{3} . \tag{1}
\end{equation*}
$$

Therefore, $f_{1}(x) / f_{2}(x)$ is $\Theta(1)$.
(a) This statement is true. There exist positive real numbers C_{1}, C_{2}, C_{3}, and C_{4}, and real numbers x_{1} and x_{2} such that $C_{1} g(x) \leq f_{1}(x) \leq C_{2} g(x)$ for all $x \geq x_{1}$ and $C_{3} g(x) \leq$ $f_{2}(x) \leq C_{4} g(x)$ for all $x \geq x_{2}$. We have that, for all $x \geq \max \left\{x_{1}, x_{2}\right\}$,

$$
\begin{equation*}
C_{1} / C_{4} \leq f_{1}(x) / f_{2}(x) \leq C_{2} / C_{3} . \tag{2}
\end{equation*}
$$

Therefore, $f_{1}(x) / f_{2}(x)$ is $\Theta(1)$.
(b) This statement is false. Consider a counterexample

$$
\begin{equation*}
f_{1}(x)=\exp (x) \text { and } f_{2}(x)=2 \exp (x) . \tag{3}
\end{equation*}
$$

We have $f_{1}(x)$ and $f_{2}(x)$ are both $\Theta(\exp (x))$. However, $f_{1}\left(f_{2}(x)\right)=\exp (2 \exp (x))$ which is not $\Theta(\exp (\exp (x)))$.
4. Let $n \in \mathbb{N}, n>0$. Show

$$
\binom{2 n}{n+1}+\binom{2 n}{n}=\frac{1}{2} \cdot\binom{2 n+2}{n+1}
$$

Solution: Using the Pascal's identity, we have

$$
\binom{2 n}{n+1}+\binom{2 n}{n}=\binom{2 n+1}{n+1}=\binom{2 n+1}{n}
$$

Using the Pascal's identity again:

$$
\binom{2 n+1}{n}+\binom{2 n+1}{n+1}=\binom{2 n+2}{n+1}
$$

5. Let a, b, and c be integers. Suppose m is an integer greater than 1 and $a c \equiv b c(\bmod m)$. Prove $a \equiv b(\bmod m / \operatorname{gcd}(c, m))$.

Solution: Let $m^{\prime}=m / \operatorname{gcd}(c, m)$. Because all the common factors of m and c are divided out of m to obtain m^{\prime}, it follows that m^{\prime} and c are relatively prime. Since $a c \equiv b c(\bmod m)$, we have m divides $a c-b c=(a-b) c$, which follows that m^{\prime} divides $(a-b) c$. Since m^{\prime} and c are relatively prime, we see that m^{\prime} divides $a-b$, which leads to $a \equiv b\left(\bmod m^{\prime}\right)$.
6. (a) Solve the recurrence equation $t_{n}=2 t_{n-1}+n+2^{n}$ subject to the initial condition $t_{0}=0$.
(b) Determine the Θ-class of the function $t(n)$ determined in (a).

Solutions: (a) Using the theorem on the solutions of linear recurrence equations the general form of the solution is

$$
\begin{equation*}
t_{n}=c_{1}+c_{2} \cdot n+c_{3} \cdot 2^{n}+c_{4} \cdot n \cdot 2^{n} \tag{4}
\end{equation*}
$$

Given the initial condition t_{0}, from which we obtain $t_{1}=3, t_{2}=12$, and $t_{3}=35$ using the recurrence equation. We have $c_{1}=-2, c_{2}=-1, c_{3}=2$, and $c_{4}=1$. Therefore. we have

$$
t_{n}=-2-n+2^{n+1}+n \cdot 2^{n}
$$

(b) $t(n) \leq n \cdot 2^{n}+2 \cdot 2^{n}$ and $t(n) \geq n \cdot 2^{n}$. Therefore, we have $\Theta\left(n \cdot 2^{n}\right)$.
7. Let E_{1} and E_{2} be equivalence relations on some set A.
(a) Is $E_{1} \cup E_{2}$ an equivalence relation on A ?
(b) Is $E_{1} \cap E_{2}$ an equivalence relation on A ?
8. Consider relation R represented by the following graph.

(a) Indicate whether relation R satisfies the properties or not, respectively

- Reflexive
- Symmetric
- Antisymmetric
- Transitive
(b) Draw the reflexive closure of relation R.

Solutions:

(a) No. No. Yes. No.
(b)

9. Consider a relation R defined on the set of functions from \mathbf{Z}^{+}to \mathbf{Z}^{+}. Consider any of these functions $f: \mathbf{Z}^{+}$to \mathbf{Z}^{+}and $g: \mathbf{Z}^{+}$to $\mathbf{Z}^{+},(f, g) \in R$ if and only if $f(n)$ is $O(g(n))$.
(a) Is R reflexive? Explain your answer.
(b) Is R transitive? Explain your answer.
(c) Prove or disprove R is an equivalence relation.
(d) Prove or disprove R is a partial ordering.

Solution:
(a) Yes. Since $f(n) \leq 1 f(n)$ for all $n \geq 0$, for any function $f(n)$. Therefore, $f(n)$ is $O(f(n))$ for all function $f(n)$, which implies that R is reflexive.
(b) Yes. Let $f(n)$ be $O(g(n))$ and $g(n)$ be $O(h(n))$. It is easy to show that $f(n)$ is also $O(h(n))$. Therefore, R is transitive.
(c) No, because R is not symmetric. To disprove R is symmetric, consider an counterexample with $f(n)=n$ and $g(n)=n^{2}$. It is easy to see that $(f, g) \in R$ but $(g, f) \notin R$. Therefore, R is not symmetric and hence R is not an equivalence relation.
(d) No, because R is not antisymmetric, neither. To disprove R is symmetric, consider an counterexample with $f(n)=n$ and $g(n)=2 n$. We see that $(f, g) \in R$ and $(g, f) \in R$, which implies that R is not antisymmetric. Therefore, R is not a partial ordering.
10. Consider the following graph:

(a) Does the graph contain a Hamilton cycle?
(b) Does the graph contain an Euler cycle?
(c) Show that the graph is not bipartite.
(d) Show that if a single vertex is removed, then the graph becomes bipartite and admits a perfect matching.

Solution:
(a) The cycle $a-d-g-h-i-f-c-b-k-l-n-q-p-o-m-e-j-a$ is a Hamilton cycle, as it contains every vertex exactly once.
(b) The vertices a, b, c all have degree 3 , so by Euler's criterium there cannot be an Euler cycle.
(c) There are edges between any two of the three vertices e, j, m. For an arbitrary partition $V=V_{1} \cup V_{2}$, one of the sets V_{i} must contain at least two of these three vertices. This violates the requirement that in a bipartite graph there cannot exist edges $\{v, w\}$ with $v, w \in V_{i}$. Hence the graph is not bipartite.
(d) If we omit the vertex e, then we obtain a bipartition $V=V_{1} \cup V_{2}$ with $V_{1}=$ $\{a, c, g, i, k, m, n, p\}$ and $V_{2}=\{b, d, f, h, j, l, o, q\}$.
Take the subset
$M=\{\{a, j\},\{b, k\},\{c, l\},\{d, m\},\{f, n\},\{g, o\},\{h, p\},\{i, q\}\} \subset E$
of the set of edges. All edges in M have one endpoint in V_{1} and another one in V_{2}, and no two edges in M have a common endpoint. Hence M is a matching. For each $v \in V_{1}$ there is exactly one edge in M that is incident to v, so M is complete for V_{1}. For each $w \in V_{2}$ there is also exactly one edge in M that is incident to w, so M is also complete for V_{2}. Hence M is a perfect matching.
11. (Bonus) Show that $\log _{2} 3$ is an irrational number. Recall that an irrational number is a real number x that cannot be written as the ratio of two integers.
Solution: Suppose that $\log _{2} 3=p / q$ for some integers p and q. Then, we have $3^{q}=2^{p}$, which is impossible since 3^{q} is odd and 2^{p} is even. Hence $\log _{2} 3$ must be irrational.
12. (Bonus) Prove that $f_{k} f_{n}+f_{k+1} f_{n+1}=f_{n+k+1}$ for all nonnegative integers n and k, where f_{i} denotes the i th Fibonacci number.
Let $P(n)$ be the statement that

$$
f_{k} f_{n}+f_{k+1} f_{n+1}=f_{n+k+1}
$$

holds for all nonnegative integer k. We use the strong principle of induction in the following:

- Case $n=0: f_{n}=0$ and $f_{n+1}=1$. We have that, for all nonnegative integer k, it follows that

$$
f_{k} f_{n}+f_{k+1} f_{n+1}=f_{k+1}=f_{n+k+1} .
$$

Therefore, $P(0)$ is true.

- Case $n=1: f_{n}=1$ and $f_{n+1}=1$. We have that, for all nonnegative integer k, it follows that

$$
f_{k} f_{n}+f_{k+1} f_{n+1}=f_{k}+f_{k+1}=f_{k+2}=f_{n+k+1}
$$

Therefore, $P(1)$ is true.

- Inductive step: Suppose that the statements $P(n)$ and $P(n-1)$ are true. Therefore, for all nonnegative integer k,

$$
\begin{aligned}
& f_{k} f_{n}+f_{k+1} f_{n+1}=f_{n+k+1}, \\
& f_{k} f_{n-1}+f_{k+1} f_{n}=f_{n+k} .
\end{aligned}
$$

Since $f_{n}+f_{n-1}=f_{n+1}$ and $f_{n}+f_{n+1}=f_{n+2}$ and $f_{n+k+1}+f_{n+k}=f_{n+k+2}$ for all k. We have that, for all k,

$$
f_{k} f_{n+1}+f_{k+1} f_{n+2}=f_{n+k+2} .
$$

That is, $P(n+1)$ is also true.
Note that, we need to prove that each statement for each step is true for all k.

