

MATH213 First Midterm Solutions Fall 2022

\qquad
NAME:
Instructor: M. Zhang

Please answer all first four questions (question 5 is optional).

- You are allowed one double-sided cheat sheet.
- Show all work for full credit.
- Each is of equal worth (sub-problems within a problem are of equal worth).
- No calculators are permitted.

Answer:

1. (25 points)
(a) Suppose P and Q are predicates, and x and y are variables. Suppose all quantifiers we considered have the same nonempty domain. Prove or disprove that $\forall x(P(x) \rightarrow$ $Q(x))$ and $\forall x P(x) \rightarrow \forall x Q(x)$ are logically equivalent.
(b) Prove or disprove that, for each real number x, x is rational if and only if $x / 2$ is rational.

Solutions: (a) They are NOT equivalent. For example, let $P(x)$ be a propositional
function such that $P(x)$ is true for some x in the domain and false for the rest. Let $Q(x)$ be a propositional function that is always false for all x in the domain. Then, there exists an x_{0} in the domain such that $P\left(x_{0}\right)$ is true and $Q\left(x_{0}\right)$ is false, i.e., $P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$ is false. Thus, $\forall x(P(x) \rightarrow Q(x))$ is false. On the other hand, there exists an x_{1} in the domain such that $P\left(x_{1}\right)$ is false. Thus, $\forall x P(x)$ is false, so $\forall x P(x) \rightarrow \forall x Q(x)$ is true.
(b)

- If x is rational, then there exist integers m_{1} and n_{1} such that $x=m_{1} / n_{1}$. We have $\frac{x}{2}=\frac{m_{1}}{2 n_{1}}$, which is also rational.
- If $x / 2=m_{2} / n_{2}$, then we have $x=\frac{2 m_{2}}{n_{1}}$, which is also rational.

2. (30 points)
(a) Consider sets A and B. Prove or disprove the following:
$-\mathcal{P}(A \times B)=\mathcal{P}(B \times A)$.

- $(A \oplus B) \oplus B=A$, where $A \oplus B$ denotes the set containing those elements in either A or B, but not both.
(b) Give an example of a function from \mathbf{N} to \mathbf{N} that is
- one-to-one but not onto.
- onto but not one-to-one.

Solution:

(a) - This is false. Consider the following counterexample with set $A=\{1\}$ and set $B=\{2\}$. We have $A \times B=\{(1,2)\}$ and $B \times A=\{(2,1)\}$. We have

$$
\mathcal{P}(B \times A)=\{\{(1,2)\}, \emptyset\} \neq \mathcal{P}(A \times B)=\{\{(2,1)\}, \emptyset\} .
$$

- This is true. Let p be $x \in A$ and q be $x \in B$. Consider the following truth table:

p	q	$p \oplus q$	$(p \oplus q) \oplus q$
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

It implies that $p=(p \oplus q) \oplus q$.
Note that $A=\{x \mid x \in A\}$ and $(A \oplus B) \oplus B=\{x \mid x \in(A \oplus B) \oplus B\}$. We see that $A=(A \oplus B) \oplus B$.
(b) - An example: $f(x)=2 x$

- An example: $f(x)=\left\{\begin{array}{l}1, \text { if } x=0 \\ x-1, \quad \text { otherwise }\end{array}\right.$.

3. (20 points) Let $f_{1}: \mathbf{Z}^{+} \rightarrow \mathbf{R}^{+}$, and $f_{2}: \mathbf{Z}^{+} \rightarrow \mathbf{R}^{+}$. Let $g: \mathbf{Z}^{+} \rightarrow \mathbf{R}$, and suppose $f_{1}(x)$ and $f_{2}(x)$ are both $\Theta(g(x))$.
(a) Prove or disprove that $\left(f_{1}-f_{2}\right)(x)$ is $\Theta(g(x))$.
(b) Prove or disprove that $\left(f_{1} f_{2}\right)(x)$ is $\Theta\left(g^{2}(x)\right)$, where $g^{2}(x)=(g(x))^{2}$.

Solution:

(a) This is false. Consider a counterexample. Let $f_{1}(x)=x^{2}+2, f_{2}(x)=x^{2}+1$, and $g(x)=x^{2}$. Thus, $f_{1}(x)$ and $f_{2}(x)$ are both $\Theta(g(x))$. Note that $\left(f_{1}-f_{2}\right)(x)=1$, which is not $\Theta(g(x))$.
(b) It is true that $\left(f_{1} f_{2}\right)(x)$ is $\Theta\left(g^{2}(x)\right)$. By the definition of Θ, since $f_{1}(x)$ and $f_{2}(x)$ are both $\Theta(g(x))$, there exist real numbers $C_{1}, C_{1}^{\prime}, C_{2}$, and C_{2}^{\prime} and positive real numbers k_{1} and k_{2} such that

$$
\begin{aligned}
& C_{1}|g(x)| \leq\left|f_{1}(x)\right| \leq C_{1}^{\prime}|g(x)|, \quad x>k_{1}, \\
& C_{2}|g(x)| \leq\left|f_{2}(x)\right| \leq C_{2}^{\prime}|g(x)|, x>k_{2} .
\end{aligned}
$$

Thus, let $k=\max \left\{k_{1}, k_{2}\right\}, C=C_{1} C_{2}$, and $C^{\prime}=C_{1}^{\prime} C_{2}^{\prime}$. Then, since $f_{1}(x)>0$ and $f_{2}(x)>0$, we have

$$
C(|g(x)|)^{2} \leq\left|\left(f_{1} f_{2}\right)(x)\right| \leq C^{\prime}(|g(x)|)^{2}, x>k .
$$

That is, $C\left|(g(x))^{2}\right| \leq\left|\left(f_{1} f_{2}\right)(x)\right| \leq\left|C^{\prime}(g(x))^{2}\right|, x>k$. Thus, $\left(f_{1} f_{2}\right)(x)$ is $\Theta\left(g^{2}(x)\right)$.
4. (25 points)
(a) Convert $(11110111)_{2}$ to an octal expansion.
(b) Convert $(101)_{10}$ to a binary expansion.
(c) Compute $\operatorname{gcd}(210,1638)$ without calculator and explain your answer.

Solution:

(a) $(367)_{8}$
(b) $(1100101)_{2}$
(c) Since

$$
\begin{aligned}
1638 & =210 \times 7+168 \\
210 & =168 \times 1+42 \\
168 & =42 \times 4+0
\end{aligned}
$$

Therefore, we have $\operatorname{gcd}(210,1638)=\operatorname{gcd}(168,210)=42$.
5. (Bonus 25 points) Suppose that a is not divisible by the prime p.
(a) Show that no two of the integers $1 \cdot a, 2 \cdot a, \ldots,(p-1) a$ are congruent modulo p.
(b) Use the result in (a), show that

$$
(p-1)!\equiv a^{(p-1)}(p-1)!(\bmod p)
$$

Solution: The proofs in this question are part of the proof of Fermat's Little Theorem. Please check the following link for more details:
https://primes.utm.edu/notes/proofs/FermatsLittleTheorem.html

