question	1	2	3	4	5	Total
score						

MATH213 First Midterm Fall 2022

NAME: ______ Instructor: M. Zhang

Please answer all first *four* questions (question 5 is optional).

- You are allowed one double-sided cheat sheet.
- Show all work for full credit.
- Each is of equal worth (sub-problems within a problem are of equal worth).
- No calculators are permitted.

Good luck!

Answer:

- 1. (25 points)
 - (a) Suppose P and Q are predicates, and x and y are variables. Suppose all quantifiers we considered have the same nonempty domain. Prove or disprove that $\forall x(P(x) \rightarrow Q(x))$ and $\forall xP(x) \rightarrow \forall xQ(x)$ are logically equivalent.
 - (b) Prove or disprove that, for each real number x, x is rational if and only if x/2 is rational.

3

Blank space for Question 1.

- 2. (30 points)
 - (a) Consider sets A and B. Prove or disprove the following:
 - $\mathcal{P}(A \times B) = \mathcal{P}(B \times A).$
 - $-(A \oplus B) \oplus B = A$, where $A \oplus B$ denotes the set containing those elements in either A or B, but not both.
 - (b) Give an example of a function from \mathbf{N} to \mathbf{N} that is
 - one-to-one but not onto.
 - onto but not one-to-one.

 MATH213 First Midterm
 NAME:
 5

Blank space for Question 2.

3. (20 points) Let $f_1 : \mathbf{Z}^+ \to \mathbf{R}^+$, and $f_2 : \mathbf{Z}^+ \to \mathbf{R}^+$. Let $g : \mathbf{Z}^+ \to \mathbf{R}$, and suppose $f_1(x)$ and $f_2(x)$ are both $\Theta(g(x))$.

NAME: _____

- (a) Prove or disprove that $(f_1 f_2)(x)$ is $\Theta(g(x))$.
- (b) Prove or disprove that $(f_1f_2)(x)$ is $\Theta(g^2(x))$, where $g^2(x) = (g(x))^2$.

 MATH213 First Midterm
 NAME:
 7

Blank space for Question 3.

- 4. (25 points)
 - (a) Convert $(11110111)_2$ to an octal expansion.
 - (b) Convert $(101)_{10}$ to a binary expansion.
 - (c) Compute gcd(210, 1638) without calculator and explain your answer.

9

Blank space for Question 4.

- 5. (Bonus 25 points) Suppose that a is not divisible by the prime p.
 - (a) Show that no two of the integers $1 \cdot a, 2 \cdot a, ..., (p-1)a$ are congruent modulo p.
 - (b) Use the result in (a), show that

$$(p-1)! \equiv a^{(p-1)}(p-1)! \pmod{p}.$$

 MATH213 First Midterm
 NAME:
 11

Blank space for Question 5.