

MATH213 First Midterm

Fall 2022

NAME:
 Instructor: M. Zhang

Please answer all first four questions (question 5 is optional).

- You are allowed one double-sided cheat sheet.
- Show all work for full credit.
- Each is of equal worth (sub-problems within a problem are of equal worth).
- No calculators are permitted.

Answer:

1. (25 points)
(a) Suppose P and Q are predicates, and x and y are variables. Suppose all quantifiers we considered have the same nonempty domain. Prove or disprove that $\forall x(P(x) \rightarrow$ $Q(x))$ and $\forall x P(x) \rightarrow \forall x Q(x)$ are logically equivalent.
(b) Prove or disprove that, for each real number x, x is rational if and only if $x / 2$ is rational.

Blank space for Question 1.
2. (30 points)
(a) Consider sets A and B. Prove or disprove the following:

- $\mathcal{P}(A \times B)=\mathcal{P}(B \times A)$.
- $(A \oplus B) \oplus B=A$, where $A \oplus B$ denotes the set containing those elements in either A or B, but not both.
(b) Give an example of a function from \mathbf{N} to \mathbf{N} that is
- one-to-one but not onto.
- onto but not one-to-one.

Blank space for Question 2.
3. (20 points) Let $f_{1}: \mathbf{Z}^{+} \rightarrow \mathbf{R}^{+}$, and $f_{2}: \mathbf{Z}^{+} \rightarrow \mathbf{R}^{+}$. Let $g: \mathbf{Z}^{+} \rightarrow \mathbf{R}$, and suppose $f_{1}(x)$ and $f_{2}(x)$ are both $\Theta(g(x))$.
(a) Prove or disprove that $\left(f_{1}-f_{2}\right)(x)$ is $\Theta(g(x))$.
(b) Prove or disprove that $\left(f_{1} f_{2}\right)(x)$ is $\Theta\left(g^{2}(x)\right)$, where $g^{2}(x)=(g(x))^{2}$.

Blank space for Question 3.
4. (25 points)
(a) Convert $(11110111)_{2}$ to an octal expansion.
(b) Convert $(101)_{10}$ to a binary expansion.
(c) Compute $\operatorname{gcd}(210,1638)$ without calculator and explain your answer.

Blank space for Question 4.
5. (Bonus 25 points) Suppose that a is not divisible by the prime p.
(a) Show that no two of the integers $1 \cdot a, 2 \cdot a, \ldots,(p-1) a$ are congruent modulo p.
(b) Use the result in (a), show that

$$
(p-1)!\equiv a^{(p-1)}(p-1)!(\bmod p)
$$

Blank space for Question 5.

