Midterm 1 - Solutions

Exercise 1. Show that for arbitrary sets A, B, C we have $A-(B \cup C)=(A-B) \cap(A-C)$.

Solution. Let $x \in A-(B \cup C)$ be arbitrary. Then by definition of the difference of sets we have $x \in A$ and $x \notin B \cup C$, hence also $x \notin B$ and $x \notin C$ by the definition of the union of sets. This implies $x \in A-B$ and $x \in A-C$ and further $x \in(A-B) \cap(A-C)$.

Conversely, for an arbitrary $x \in(A-B) \cap(A-C)$ we must have $x \in A, x \notin B$ and $x \notin C$, hence also $x \notin B \cup C$. This implies $x \in A-(B \cup C)$.

ExERCISE 2 . Define a binary relation \preceq on $\mathbb{N} \times \mathbb{N}$ by $\left(i_{1}, j_{1}\right) \preceq\left(i_{2}, j_{2}\right)$ iff $\left(i_{1} \leq i_{2} \wedge j_{1} \leq j_{2}\right)$.
Show the \preceq is a partial order, but not a total order.
Solution. We show that the relation \preceq is reflexive, antisymmetric and transitive.

Reflexivity. For arbitrary $(i, j) \in \mathbb{N} \times \mathbb{N}$ we obviously have $i \leq i$ and $j \leq j$, hence $(i, j) \preceq$ (i, j).
Antisymmetry. Assume $\left(i_{1}, j_{1}\right) \preceq\left(i_{2}, j_{2}\right)$ and $\left(i_{2}, j_{2}\right) \preceq\left(i_{1}, j_{1}\right)$. Then by definition we have $i_{1} \leq i_{2}, j_{1} \leq j_{2}, i_{2} \leq i_{1}$, and $j_{2} \leq j_{1}$. The first and the third statement together imply $i_{1}=i_{2}$, and the second and fourth statements imply $j_{1}=j_{2}$, hence together $\left(i_{1}, j_{1}\right)=\left(i_{2}, j_{2}\right)$.
Transitivity. Assume $\left(i_{1}, j_{1}\right) \preceq\left(i_{2}, j_{2}\right)$ and $\left(i_{2}, j_{2}\right) \preceq\left(i_{3}, j_{3}\right)$. Then by definition we have $i_{1} \leq i_{2}, j_{1} \leq j_{2}, i_{2} \leq i_{3}$, and $j_{2} \leq j_{3}$. The first and the third statement together imply $i_{1} \leq i_{3}$, and the second and fourth statements imply $j_{1} \leq j_{3}$, which together give $\left(i_{1}, j_{1}\right) \preceq\left(i_{3}, j_{3}\right)$.

This shows that \preceq is a partial order. As we have $(2,3) \npreceq(3,2)$ and $(3,2) \npreceq(2,3)$, it is not a total order.

Exercise 3. Look at the truth table at the right. Find a propositional formula for φ using propositional atoms p, q, r. Then use the Quine-McCluskey method to simplify the formula.

p	q	r	φ
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}

Solution. By taking the rows in the truth table with an entry \mathbf{T} for φ we know that we can write

$$
\varphi=(p \wedge q \wedge r) \vee(p \wedge \neg q \wedge r) \vee(\neg p \wedge q \wedge r) \vee(\neg p \wedge \neg q \wedge r) \vee(\neg p \wedge \neg q \wedge \neg r)
$$

Thus, we start with the minterms

$$
\begin{gathered}
\mu_{1}=p \wedge q \wedge r \quad \mu_{2}=p \wedge \neg q \wedge r \quad \mu_{3}=\neg p \wedge q \wedge r \\
\mu_{4}=\neg p \wedge \neg q \wedge r \quad \mu_{5}=\neg p \wedge \neg q \wedge \neg r
\end{gathered}
$$

We can combine μ_{1} with μ_{2} and μ_{3}, μ_{2} with μ_{4}, μ_{3} with μ_{4}, and μ_{4} with μ_{5}, which gives

$$
\mu_{1,2}=p \wedge r \quad \mu_{1,3}=q \wedge r \quad \mu_{2,4}=\neg q \wedge r \quad \mu_{3,4}=\neg p \wedge r \quad \mu_{4,5}=\neg p \wedge \neg q
$$

Then combine $\mu_{1,2}$ with $\mu_{3,4}, \mu_{1,3}$ with $\mu_{2,4}$, which gives $\mu_{1,2,3,4}=r$. Then no more combinations are possible, which means that the algorithm results in

$$
\varphi=r \vee(\neg p \wedge \neg q)
$$

Exercise 4. Formalise the following statement by a formula in predicate logic:

There exists a chef of a restaurant with three stars who visits other restaurants with at least one star at least once per month.

Solution. We use predicate symbols chef of arity 2 (chef (c, r) means that c is a chef of restaurant r), restaurant of arity 2 (restaurant (r, s) means that r is a restaurant r awarded with s stars), is_month of arity 1, visits of arity 3 (visits (c, r, d) means that c visits the restaurant r on the date d), and month of arity 2 (month (d, m) means that the month of date d is m). Furthermore we use $=$ and \leq and natural numbers as constants.

That is, the signature is $\Upsilon=(\mathcal{P}, \mathcal{F})$ with $\mathcal{F}=\mathbb{N}$ and

$$
\mathcal{P}=\{\text { chef, restaurant, is_month, visits, month },=, \leq\}
$$

Then the desired formula is

$$
\begin{aligned}
& \exists c . \exists r . c h e f(c, r) \wedge \operatorname{restaurant}(r, 3) \wedge \\
& \forall \text { m.is_month }(m) \rightarrow \exists r^{\prime} . \exists s . \operatorname{restaurant}\left(r^{\prime}, s\right) \wedge \neg\left(r^{\prime}=r\right) \wedge 1 \leq s \wedge \\
& \exists d .\left(\operatorname{visits}\left(c, r^{\prime}, d\right) \wedge \operatorname{month}(d, m)\right)
\end{aligned}
$$

ExERcISE 5.

Prove by induction that $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$ holds for all $n \in \mathbb{N}$.

Solution. For $n=0$ the both sides of the equation are 0 , which constitutes the induction base.
For arbitrary n assume $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$ (induction hypothesis). Then we get

$$
\begin{aligned}
& \sum_{i=1}^{n+1} \frac{1}{i(i+1)}=\sum_{i=1}^{n} \frac{1}{i(i+1)}+\frac{1}{(n+1)(n+2)} \stackrel{(i . h .)}{=} \frac{n}{n+1}+\frac{1}{(n+1)(n+2)} \\
= & \frac{n(n+2)}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)}=\frac{n^{2}+2 n+1}{(n+1)(n+2)}=\frac{(n+1)^{2}}{(n+1)(n+2)}=\frac{n+1}{n+2},
\end{aligned}
$$

which completes the induction step.

ExERCISE 6. Consider a set P of sequences of characters that is inductively defined as the smallest set satisfying the following properties:
(i) The empty sequence ε is an element of P;
(ii) Every sequence of length one with a character in the alphabet $A=\{a, e, h, i, k, m, n, o, p, r, t, u, w\}$ is an element of P;
(iii) Whenever a sequence $w \in P$ and a character $x \in A$ are given, then the composed sequence $x w x$ is an element of P.

Show by structural induction that every sequence of characters $w \in P$ is a palindrome, i.e. $w=w^{-1}$, where w^{-1} is the inverted sequence written backwards from the last character in w to the first.

Solution. For the empty sequence we have $\varepsilon^{-1}=\varepsilon$, and for a sequence consisting of a single character $x \in A$ we also have $x^{-1}=x$, which gives us the base for the structural induction.

Next take an arbitrary $w \in P$, and arbitrary $x \in A$ and assume $w^{-1}=w$ (induction hypothesis). Then $x w x \in P$ and we have $(x w x)^{-1}=x w^{-1} x$. Applying the induction hypothesis gives $(x w x)^{-1}=x w^{-1} x=x w x$, which completes the induction step.

ExErcise 7. Find all solutions of the following system of linear congruences:

$$
x \equiv 4 \bmod 5 \quad x \equiv 2 \bmod 8 \quad x \equiv 2 \bmod 3
$$

Solution. Write the three congruences as $x_{i} \equiv a_{i} \bmod n_{i}$ for $1 \leq i \leq 3$. Then we have $n_{1}=5, n_{2}=8$ and $n_{3}=3$, and $a_{1}=4, a_{2}=2$, and $a_{3}=2$. As the n_{i} are pairwise relatively prime, we proceed as in the proof of the Chinese remainder theorem using $m=n_{1} n_{2} n_{3}=120$ and $m_{1}=n_{2} n_{3}=24, m_{2}=n_{1} n_{3}=15$, and $m_{3}=n_{1} n_{2}=40$.
Then m_{i} is relatively prime to n_{i} and hence has an inverse in $\mathbb{Z}_{n_{i}}$. As $m_{1} \equiv-1 \bmod n_{1}$, the inverse \bar{m}_{1} is -1 . As $m_{2} \equiv-1 \bmod n_{2}$, the inverse \bar{m}_{2} is -1 . As $m_{3} \equiv 1 \bmod n_{3}$, the inverse \bar{m}_{3} is 1 .

Then $x=\sum_{i=1}^{3} m_{i} \bar{m}_{i} a_{i}$ is a solution of the system of congruences, i.e.

$$
x=-24 \cdot 4-15 \cdot 2+40 \cdot 2=-46 \equiv 74 \bmod m .
$$

According to the Chinese remainder theorem solutions to such systems of congruences are unique modulo $m=120$, so the set of all solutions is $\{74+120 x \mid x \in \mathbb{Z}\}$.

Exercise 8.

Show $2^{n+1} \in O\left(2^{n}\right)$ and $2^{2 n} \notin O\left(2^{n}\right)$.
Solution. As $2^{n+1}=c \cdot 2^{n}$ with $c=2$ we have $2^{n+1} \in O\left(2^{n}\right)$.
If there exists a constant $c>0$ and $n_{0} \in \mathbb{N}$ with $2^{2 n} \leq c 2^{n}$ for all $n>n_{0}$, we obtain $2^{n} \leq c$, equivalently $n \cdot \log 2 \leq \log c$ or $n \leq \frac{\log c}{\log 2}$. This cannot be the case, as the right-hand side of this inequality is a constant. Hence $2^{2 n} \notin O\left(2^{n}\right)$.
Alternatively, we have $\lim _{n \rightarrow \infty} \frac{2^{n}}{2^{2 n}}=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$, which implies $O\left(2^{n}\right) \subsetneq O\left(2^{2 n}\right)$ and hence $2^{2 n} \notin O\left(2^{n}\right)$.

