
Midterm 1 – Solutions

Exercise 1. Show that for arbitrary sets A,B,C we have A− (B ∪C) = (A−B)∩ (A−C).

Solution. Let x ∈ A− (B ∪ C) be arbitrary. Then by definition of the difference of sets we
have x ∈ A and x /∈ B ∪C, hence also x /∈ B and x /∈ C by the definition of the union of sets.
This implies x ∈ A−B and x ∈ A− C and further x ∈ (A−B) ∩ (A− C).

Conversely, for an arbitrary x ∈ (A − B) ∩ (A − C) we must have x ∈ A, x /∈ B and x /∈ C,
hence also x /∈ B ∪ C. This implies x ∈ A− (B ∪ C).

Exercise 2. Define a binary relation � on N× N by (i1, j1) � (i2, j2) iff (i1 ≤ i2 ∧ j1 ≤ j2).
Show the � is a partial order, but not a total order.

Solution. We show that the relation � is reflexive, antisymmetric and transitive.

Reflexivity. For arbitrary (i, j) ∈ N × N we obviously have i ≤ i and j ≤ j, hence (i, j) �
(i, j).

Antisymmetry. Assume (i1, j1) � (i2, j2) and (i2, j2) � (i1, j1). Then by definition we have
i1 ≤ i2, j1 ≤ j2, i2 ≤ i1, and j2 ≤ j1. The first and the third statement together
imply i1 = i2, and the second and fourth statements imply j1 = j2, hence together
(i1, j1) = (i2, j2).

Transitivity. Assume (i1, j1) � (i2, j2) and (i2, j2) � (i3, j3). Then by definition we have
i1 ≤ i2, j1 ≤ j2, i2 ≤ i3, and j2 ≤ j3. The first and the third statement together
imply i1 ≤ i3, and the second and fourth statements imply j1 ≤ j3, which together give
(i1, j1) � (i3, j3).

This shows that � is a partial order. As we have (2, 3) 6� (3, 2) and (3, 2) 6� (2, 3), it is not a
total order.

Exercise 3. Look at the truth table at the right. Find a propositional
formula for ϕ using propositional atoms p, q, r. Then use the
Quine-McCluskey method to simplify the formula.

p q r ϕ

T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T T
F F F T
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Solution. By taking the rows in the truth table with an entry T for ϕ we know that we can
write

ϕ = (p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ r) ∨ (¬p ∧ q ∧ r) ∨ (¬p ∧ ¬q ∧ r) ∨ (¬p ∧ ¬q ∧ ¬r).

Thus, we start with the minterms

µ1 = p ∧ q ∧ r µ2 = p ∧ ¬q ∧ r µ3 = ¬p ∧ q ∧ r
µ4 = ¬p ∧ ¬q ∧ r µ5 = ¬p ∧ ¬q ∧ ¬r

We can combine µ1 with µ2 and µ3, µ2 with µ4, µ3 with µ4, and µ4 with µ5, which gives

µ1,2 = p ∧ r µ1,3 = q ∧ r µ2,4 = ¬q ∧ r µ3,4 = ¬p ∧ r µ4,5 = ¬p ∧ ¬q

Then combine µ1,2 with µ3,4, µ1,3 with µ2,4, which gives µ1,2,3,4 = r. Then no more combina-
tions are possible, which means that the algorithm results in

ϕ = r ∨ (¬p ∧ ¬q).

Exercise 4. Formalise the following statement by a formula in predicate logic:

There exists a chef of a restaurant with three stars who visits other restaurants with
at least one star at least once per month.

Solution. We use predicate symbols chef of arity 2 (chef (c, r) means that c is a chef of
restaurant r), restaurant of arity 2 (restaurant(r, s) means that r is a restaurant r awarded
with s stars), is month of arity 1, visits of arity 3 (visits(c, r, d) means that c visits the
restaurant r on the date d), and month of arity 2 (month(d,m) means that the month of date
d is m). Furthermore we use = and ≤ and natural numbers as constants.

That is, the signature is Υ = (P,F) with F = N and

P = {chef , restaurant , is month, visits, month, =,≤} .

Then the desired formula is

∃c.∃r.chef (c, r) ∧ restaurant(r, 3)∧
∀m.is month(m)→ ∃r′.∃s.restaurant(r′, s) ∧ ¬(r′ = r) ∧ 1 ≤ s∧

∃d.(visits(c, r′, d) ∧month(d,m))

Exercise 5.

Prove by induction that

n∑
i=1

1

i(i+ 1)
=

n

n+ 1
holds for all n ∈ N.
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Solution. For n = 0 the both sides of the equation are 0, which constitutes the induction
base.

For arbitrary n assume
n∑

i=1

1

i(i+ 1)
=

n

n+ 1
(induction hypothesis). Then we get

n+1∑
i=1

1

i(i+ 1)
=

n∑
i=1

1

i(i+ 1)
+

1

(n+ 1)(n+ 2)

(i.h.)
=

n

n+ 1
+

1

(n+ 1)(n+ 2)

=
n(n+ 2)

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)
=

n2 + 2n+ 1

(n+ 1)(n+ 2)
=

(n+ 1)2

(n+ 1)(n+ 2)
=
n+ 1

n+ 2
,

which completes the induction step.

Exercise 6. Consider a set P of sequences of characters that is inductively defined as the
smallest set satisfying the following properties:

(i) The empty sequence ε is an element of P ;

(ii) Every sequence of length one with a character in the alphabetA = {a, e, h, i, k,m, n, o, p, r, t, u, w}
is an element of P ;

(iii) Whenever a sequence w ∈ P and a character x ∈ A are given, then the composed
sequence xwx is an element of P .

Show by structural induction that every sequence of characters w ∈ P is a palindrome, i.e.
w = w−1, where w−1 is the inverted sequence written backwards from the last character in
w to the first.

Solution. For the empty sequence we have ε−1 = ε, and for a sequence consisting of a single
character x ∈ A we also have x−1 = x, which gives us the base for the structural induction.

Next take an arbitrary w ∈ P , and arbitrary x ∈ A and assume w−1 = w (induction hypothe-
sis). Then xwx ∈ P and we have (xwx)−1 = xw−1x. Applying the induction hypothesis gives
(xwx)−1 = xw−1x = xwx, which completes the induction step.

Exercise 7. Find all solutions of the following system of linear congruences:

x ≡ 4 mod 5 x ≡ 2 mod 8 x ≡ 2 mod 3 .

Solution. Write the three congruences as xi ≡ ai mod ni for 1 ≤ i ≤ 3. Then we have
n1 = 5, n2 = 8 and n3 = 3, and a1 = 4, a2 = 2, and a3 = 2. As the ni are pairwise relatively
prime, we proceed as in the proof of the Chinese remainder theorem using m = n1n2n3 = 120
and m1 = n2n3 = 24, m2 = n1n3 = 15, and m3 = n1n2 = 40.

Then mi is relatively prime to ni and hence has an inverse in Zni . As m1 ≡ −1 mod n1, the
inverse m̄1 is −1. As m2 ≡ −1 mod n2, the inverse m̄2 is −1. As m3 ≡ 1 mod n3, the inverse
m̄3 is 1.
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Then x =
3∑

i=1

mim̄iai is a solution of the system of congruences, i.e.

x = −24 · 4− 15 · 2 + 40 · 2 = −46 ≡ 74 mod m .

According to the Chinese remainder theorem solutions to such systems of congruences are
unique modulo m = 120, so the set of all solutions is {74 + 120x | x ∈ Z}.

Exercise 8.

Show 2n+1 ∈ O(2n) and 22n /∈ O(2n).

Solution. As 2n+1 = c · 2n with c = 2 we have 2n+1 ∈ O(2n).

If there exists a constant c > 0 and n0 ∈ N with 22n ≤ c2n for all n > n0, we obtain 2n ≤ c,

equivalently n · log 2 ≤ log c or n ≤ log c

log 2
. This cannot be the case, as the right-hand side of

this inequality is a constant. Hence 22n /∈ O(2n).

Alternatively, we have lim
n→∞

2n

22n
= lim

n→∞

1

2n
= 0, which implies O(2n) ( O(22n) and hence

22n /∈ O(2n).
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