Midterm 1 - off campus

Date: November 5, 2021, 19:00-20:00

Name	Student ID

This exam contains eight exercises, each with 5 points. You have to select five of these eight exercises. 25 points are counted as 100%.

EXERCISE 1. Show that for arbitrary sets A,B,C we have $A-(B\cup C)=(A-B)\cap (A-C)$.

EXERCISE 2. Define a binary relation \leq on $\mathbb{N} \times \mathbb{N}$ by $(i_1, j_1) \leq (i_2, j_2)$ iff $(i_1 \leq i_2 \wedge j_1 \leq j_2)$. Show the \leq is a partial order, but not a total order.

EXERCISE 3. Look at the truth table at the right. Find a propositional formula for φ using propositional atoms p,q,r. Then use the Quine-McCluskey method to simplify the formula.

p	q	r	φ
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	${f T}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}

EXERCISE 4. Formalise the following statement by a formula in predicate logic:

There exists a chef of a restaurant with three stars who visits other restaurants with at least one star at least once per month.

Exercise 5.

Prove by induction that
$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$
 holds for all $n \in \mathbb{N}$.

EXERCISE 6. Consider a set P of sequences of characters that is inductively defined as the smallest set satisfying the following properties:

- (i) The empty sequence ε is an element of P;
- (ii) Every sequence of length one with a character in the alphabet $A = \{a, e, h, i, k, m, n, o, p, r, t, u, w\}$ is an element of P;
- (iii) Whenever a sequence $w \in P$ and a character $x \in A$ are given, then the composed sequence xwx is an element of P.

Show by structural induction that every sequence of characters $w \in P$ is a palindrome, i.e. $w = w^{-1}$, where w^{-1} is the inverted sequence written backwards from the last character in w to the first.

EXERCISE 7. Find all solutions of the following system of linear congruences:

 $x \equiv 4 \mod 5$ $x \equiv 2 \mod 8$ $x \equiv 2 \mod 3$.

Exercise 8.

Show $2^{n+1} \in O(2^n)$ and $2^{2n} \notin O(2^n)$.