Midterm 1 - off campus

Date: November 5, 2021, 19:00-20:00

Name	Student ID

This exam contains eight exercises, each with 5 points. You have to select five of these eight exercises. 25 points are counted as 100%.

Exercise 1. Show that for arbitrary sets A, B, C we have $A-(B \cup C)=(A-B) \cap(A-C)$.
total points: 5

EXERCISE 2. Define a binary relation \preceq on $\mathbb{N} \times \mathbb{N}$ by $\left(i_{1}, j_{1}\right) \preceq\left(i_{2}, j_{2}\right)$ iff $\left(i_{1} \leq i_{2} \wedge j_{1} \leq j_{2}\right)$. Show the \preceq is a partial order, but not a total order.
total points: 5

Exercise 3. Look at the truth table at the right. Find a propositional formula for φ using propositional atoms p, q, r. Then use the Quine-McCluskey method to simplify the formula.

total points: 5

Exercise 4. Formalise the following statement by a formula in predicate logic:

There exists a chef of a restaurant with three stars who visits other restaurants with at least one star at least once per month.
total points: 5

ExErcise 5.
Prove by induction that $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$ holds for all $n \in \mathbb{N}$.
total points: 5

Exercise 6. Consider a set P of sequences of characters that is inductively defined as the smallest set satisfying the following properties:
(i) The empty sequence ε is an element of P;
(ii) Every sequence of length one with a character in the alphabet $A=\{a, e, h, i, k, m, n, o, p, r, t, u, w\}$ is an element of P;
(iii) Whenever a sequence $w \in P$ and a character $x \in A$ are given, then the composed sequence $x w x$ is an element of P.

Show by structural induction that every sequence of characters $w \in P$ is a palindrome, i.e. $w=w^{-1}$, where w^{-1} is the inverted sequence written backwards from the last character in w to the first.

total points: 5

EXERCISE 7. Find all solutions of the following system of linear congruences:

$$
x \equiv 4 \bmod 5 \quad x \equiv 2 \bmod 8 \quad x \equiv 2 \bmod 3
$$

total points: 5

Exercise 8.
Show $2^{n+1} \in O\left(2^{n}\right)$ and $2^{2 n} \notin O\left(2^{n}\right)$.
total points: 5

