Lecture 9

Pseudorandom Number Generators

Linear congruential method We choose four numbers:

Xpi1 = (ax,, + C) mod m o the modulus m
o multiplier a
© increment ¢

o seed xp

We generate a sequence of numbers xi, X2, . . . with

0 < x; < m by using the congruence
Hash Functions h(k) = k mod m, Shift Ciphers
k) = p€Zx=1{0,1,..,25}
hyk) = f(p) = (p+ k) mod 26.
f~Y(p) = (p—k) mod 26.

S Xny o

kmod n
(k+1) mod n

I, (k)= (k+m) mod n
enhance security

f(p) = (ap + b) mod 26.
How about the decryption? Suppose ged(a, 26)
Suppose that ¢ = (ap + b) mod 26 with ged(a, 26) = 1. To decrypt, we
need to show how to express p in terms of c. That is, we solve the
congruence for p:

¢ = ap+ b (mod 26).

Subtract b from both sides, we have ap = c — b (mod 26). Since
ged(a,26) = 1, we know that there is an inverse 3 of a modulo 26:

p=a(c— b) (mod 26).

Private Key Cryptosystem
RAS Cryptosystem
@ RSA as Public Key System
> Only target recipient can decrypt the message:

=9

Insecure Channel >
(S

Alice Bob.

o
Gl Robs pusie bey

Pick two large primes p and g. Let n = pq. Encryption key (n, e) and
decryption key (n,d) are selected such that
o ged(e,(p—1)(g-1)) =1 RSA as a Public Key System
o ed=1(mod (p—1)(q—1)) o Public key: (n, e)
RSA encryption: C = M® mod n ~ © Private key: d

., st be kept !
RSA decryption: M = C? mod n ~ ° P 9 Must be kept secret

Encrypt the message “STOP" with key (n = 2537, e = 13). Note that
2537 = 43 - 59, where p = 43 and q = 59 are primes, and
ged(e,(p—1)(q-1)) =1.
Solution:

1 Translate into integers: 18191415

2 Divide this into blocks of 4 digits (because 2525 < 2537 < 252525):

1819 1415
3 Encrypt each block using the mapping

C = M"* mod 2537.
We have 1819'% mod 2537 = 2081 and 1415'> mod 2537 = 2182.
The encrypted message is 2081 2182.
For each block, transform the ciphertext into plaintext message:

M=C?mod n

Example: What is the decrypted message of 0981 0461 with e = 13,
p=43,q="59

Solution: Recall that ed = 1 (mod (p — 1)(q — 1)). Thus, d = 937 is an
inverse of 13 modulo 42 - 58 = 2436.

For each block, transform it into plaintext message:

M = C%" mod 2537.
Since 09817 mod 2537 = 0704 and 0461%%7 mod 2537 = 1115, the
plaintext message is 0704 1115, which is "HELP"
RSA decryption: M = C¢ mod n.  Why?
According to (1), the inverse d exists. According to (2), there exists an
integer k such that

de=1+k(p—1)(q—1).

It follows that C? = (M) = M = M ++(P-1)a=1)(mod n).
Assuming that ged(M, p) = ged(M, q) = 1, we have MP~1 =
and M1 = 1(mod q). (see Theorem 3 in Section 44)qf Z

According to (1), the inverse d exists. According to (2), there exists an
integer k such that

(mod p)
ul

de=1+k(p—1)(q—1).
It follows that C¢ = (M®)? = M = M +k(P-1)(3-1)(mod n).
Assuming that ged(M, p) = ged(M, g) = 1, we have MP~1 =1 (mod p)
and M9~! = 1(mod q).

Cd=M-(MPHYaD) =M. 1=M (mod p)

Cd=M- (MIHKP-D) = M.1=M (mod g).

Because ged(p, g) = 1, we have
C? =M (mod pg).

This basically implies that
M= Cd mod n vj_t ZJu-uive INS"I
RSA as Digital Signature
S=M9modn (RSA signature)
M=S5°mod n (RSA verification)
Alice’s RSA public key is (n, e) and her private key is d.

Alice can send her message to as many people as she wants and by signing
it in this wav, every recipient can be sure it came from Alice.
Diffie-Hellman Key Exchange Protocol

Before introducing the protocol:

Definition: A primitive root modulo a prime p is an integer r in Z, such

that every nonzero element of Z, is a power of r.

Example: Whether 2 is a primitive root modulo 117

When we compute the powers of 2 in Zy1, we obtain 2! =2, 22 =4,

23=824=529=10,20=927=7,28=32=620=1

Because every element of Z1; is a power of 2, 2 is a primitive root of 11.

Suppose that Alice and Bob want to share a common key. Consider Zp.
1) Alice and Bob agree to use a prime p and a primitive root  of p
2) Alice chooses a secret integer ki and sends a* mod p to Bob.

(
(
(3) Bob chooses a secret integer k; and sends a** mod p to Alice.
(4) Alice computes (a*%) mod p.

(

5) Bob computes (2*) mod p.
Alice and Bob have computed their shared key:
(a*)% mod p = (a*)** mod p.
o Public information: p, a, 8% mod p, and 2% mod p

o Secret: ku, kz, (22)% mod p = (a%)* mod p...

ZJU-UIUC INST|
Note that it is very hard to determine ki with a, p, and -

mod

Lecture 10
The statement P(n) is true for all n =0,1,2, ...

We prove this by
(i) Assume that a counterexample exists, i.e., There is some n > 0 for
which P(n) is false.
(i)) Let m > 0 be the smallest value for which P(n) is false
(iii) Then, use the fact that P(m') is true for all 0 < m’ < m to show that
P(m) is true, contradicting the choice of m.

0 1

2 3 4 5 m

P(m) true

P(m’) true; 0 < m/ < m)

The key step were

o P(0) is true such that the smallest counterexample exists

@ proving that
P(n—1) — P(n)

Recall that P(n) is the statement

(n+1)nl

0+1+2+3+...+n= 2

Let P(n) denote 2"*1 > n? + 2. We just showed that
(a) P(0) is true
(b) If n>0, then P(n—1) — P(n)

What did we do?

@ Suppose there is some n for which P(n) is false (*)

Let n be the smallest counterexample

From (a) n> 0, so P(n —1) is true

From (b), using direct inference, P(n) is true
This leads to contradiction.

Thus, P(n) is true for all n€ N.

Principle. (Weak Principle of Mathematical Induction)
(a) Basic Step: the statement P(b) is true

(b) Inductive Step: the statement P(n — 1) — P(n) is true for all n > b

Thus, P(n) is true for all integers n > b.

Example 1

Forall n >0, 21 > n2 2
Let P(n) denote 2" > n? + 2.
(i) Note that for n =0, 201 =2 > 2= 02 + 2, which is P(0)
(ii) Suppose that n > 0 and that 27 > (n —1)2 +2 *)
21 > n—12+4
(P 4+2)+(n* —4n+4)
n? 42+ (n—2)?
> 42

Hence, we have just proven that for n > 0, P(n — 1) — P(n).

By mathematical induction, Vn > 0,2"*1 >n42.
Principle (Strong Principle of Mathematical Induction):
(a) Basic Step: the statement P(b) is true

(b) Inductive Step: for all n > b, the statement

P(b)AP(b+1)A...AP(n—1) = P(n) is true.

Then, P(n) is true for all integers n > b.

Recursion
Towers of Hanoi

Al

Running Time: M(n) is number of disk moves needed for n disks.
o M(1)=1 _on
o if n> 1, then M(n) = 2M(n— 1) +1 M(n) =2" —1.
Recurrence
Theorem: If T(n) = rT(n—1)+a, T(0) = b, and r # 1, then

Formula of Recurrences
o Basis step: We verify that T(0) holds:
© Inductive step: We show that the conditional statement “if T(n — 1)
holds, then T(n) holds” for all n > 1:
Now assume that n > 0 and

1
T(n-1)=r"tb+a

Thus,
T(n) = rT(n—1)+a
_ 1
B r<r" 1b+al—r)+a
1-r
ar —ar"

= ppgp T
r 1=, +a

- r”b+ar—ar"+a—ar

1-r

n

1-
b
r +317

i

First-Order Linear Recurrences

A recurrence of the form T(n) = f(n) T(n — 1) + g(n) is called a
first-order linear recurrence.

o First Order: because it only depends upon going back one step, i.c.,

T(n—1)
o If it depends upon T(n — 2), then it would be a second-order
recurrence, e.g., T(n) = T(n—1)+2T(n—2).
© Linear: because T(n — 1) only appears to the first power.
© Something like T(n) = (T(n—1))?+ 3 would be a non-linear
first-order recurrence relation.  T(n) = f(n)T(n~1) + g(n)
T(n) = rT(n—1)+g(n)
= r(T(n-2)+g(n—1)+8(n) (s { T(n-1) +g(n), if n>0
= PT(n-2)+rg(n—1)+g(n) 2 ifn=0
= PT(n—3)+r’g(n—2)+rg(n—1) +g(n)

= T+ rgln i)

=3

Contradiction!

n-1 T(n)=r"a+ Z r"_ig(i)

Solve T(n) = 4T(n — 1) +2 with T(0) = 6.
n Theorem. For any real number x # 1,
6'4"*’24"7"2' .

= ;X" = (n+ x4 x
R er —
647447y 420 i
=1
o Divide and conquer algorithms
6.4y AHZ(%)r q 4

=1 Iterating recurrences
1
= 64" (1— =) 4"
+(1-50)

T(n) =

Three different behaviors

— 7.4n 00,
Growth Rates of Solutions to Recurrences
_{ T, ifn=1 T 1 ifn=1,
T(")’{ 2T(n/2) +n, ifn>2. ( T(n/2)+1, ifn>2.
T F1 = (T(E)+1)+1
T =2T(g)+n =2@T(H)+4)+n £2 = (T($)+1)+
AT (§)+2n =4(2T(§)+§)+2n )43
e T($)+i
End when | = log, n
=¥ @R T (s + logon = 1+ log n
1 ifn=1,
+ (log, n)n s
o ) { T(n/2) +n, ifn>2.

nT(1) +nlogy n
T(n)=T(3)+n

O(n)
Theorem: Suppose that we have a recurrence of the form

T(n) = aT(n/2) + n,

where a s a positive integer and T(1) is nonnegative. Then we have the
following big © bounds on the solution:
o If 2 <2, then T(n) = O(n).
o If =2, then T(n) = O(nlog, n).
o If 2> 2, then T(n) = ©(n"&2?).
Assume that n = 2'.

We will now prove the case with a > 2.

i—1 i—2

T(n) = 2T (8) + (3= + 3=

T(n) = a&"T(1)

Work at
“bottom”

Iterated
Work

Since a > 2, the geometric series is © of the largest term.

logyn—1 /a\i 1-(a/2)s2" /9\log, n—
Ny (3) = T = n0((a/2) ")

n times the largest term in the geometric series is

logon—1 _ 5 oo 1 2 logg n 2
2)8"70 _ 2 pael _ 2 patel _ 2 jlogyn
n(3) i i

Notice that

Slogan — (2logza)|°gz"’ = (Z\ng n)'ogzﬂ — plogoa

Theorem: Suppose that we have a recurrence of the form
T(n) = aT(n/b) + cn®,

where a is a positive integer, b > 1, ¢, d are real numbers with ¢ positive
and d ive, and T(1) is ive. Then we have the following
big © bounds on the solution:

o If a < b? then T(n) = ©(n9).

o If a=b? then T(n) =©(n log, n).

o If 2> b7, then T(n) = ©(n'o8:2).

Lecture 11 Pigeonhole Principle Counting

The Pigeonhole Principle: If k is a positive integer and k + 1 or more
objects are placed into k boxes, then there is at least one box containing
two or more of the objects.

Proof by Contradiction: Suppose that none of the k boxes contains
more than one object. Then the total number of objects would be at most
k. This is a contradiction, because there are at least k + 1 objects.

There are 5 bins and 12 objects. Then there must be a bin with at least 3
objects. Why?

If N objects are placed into k bins, then there is at least one bin
containing at least [/V/k] objects.

Proof: Suppose that none of the boxes contains more than [N/k]
objects. Then, the total number of objects is at most

(%

This is a contradiction because there are a total of N objects.

Theorem: Every sequence of n? + 1 distinct real numbers contains a
subsequence of length n + 1 that is either strictly increasing or strictly
decreasing,

Suppose that a;, a3, . . . , an is a sequence of real numbers:
o A subsequence of this sequence is a sequence of the form
8jyy Apyy ey Ay Where 1< iy < ip < o < i < N
@ A sequence is called strictly increasing if each term is larger than the
one that precedes it.
Proof: Let a1, a5, , ap241 be a sequence of n? + 1 distinct real
numbers. Associate (ix, d) to the term a;:
@ ji: the length of the longest increasing subsequence starting at ay
o dy: the length of the longest decreasing subsequence starting at ax.
Suppose that there are no increasing or decreasing subsequences of length
n+1. le,ix<nanddc<nfork=12 ... n+1.
By the product rule there are n? possible ordered pairs for (i, di). By the
pigeonhole principle, two of these n? + 1 ordered pairs are equal. ds = dp.
That is, there exist terms a5 and a, with s < t such that is = i and
Proof:There exist terms a5 and a, with s < t such that is = i and
ds = dr. We will show that this is impossible

The terms of the sequence are distinct, either as < a; or as > a;:

@ as < ap: Since is = i, an increasing subsequence of length ir + 1 can
be built, i.e., a;, at, ... (followed by an increasing subsequence of
length i, beginning at a;)

© a, > a, Since d; = d;, an decreasing sequence of length d; + 1 can
be built, i.e., as, a, -

Permutations P(n,r) = n(n —1)(n —2)---(n — r + 1)

n!

P(n,r) = R

Inclusion-Exclusion Principle &R/ /&EE
Let E1, Ea, . . . , Ep be finite sets:
[BUBU--UEl= Y |E- Y IENE

150 1<ii<n
+ Y IENENE| -+ (-D)™MENEN.NE|

1i5%kn
"
UL El =30 Y B NE NN
k=1 1<h<h < <ic<n
S n
Combinations C(n, r) (7) =
n P(n,r) n! N
():C(n,r): |’ = - . x
r rl ri(n—r)! = N
=]
P(n,r) = C(n,r)P(r,r) + 3
e
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@ (1)) + ()

Other Identities Involving Binomial Coefficients
Let n and r be nonnegative integers with r < n.

S0-20) (5)-20)

k=r+1 r

Labelling and Trinomial Coefficients

How many different ways to label n distinct objects?
o There are (;) ways to choose the red items
o There are then (", *) ways to choose the blue items from the
remaining n — ky.
n\(n—k\ _ nt (n— ky)!
k/\ k — k(= k) (k)!(n — k1 — k)t
nl nl
kalkol(n — ko — k)l kalkalks!

This is called a trinomial coefficient and denote it as

n o
ki ke ks) " kilkolks!”
where ki + ko + k3 = n.
What is the coefficient of x*y%2¥ in (x +y +2)"2v" 1L

Lecture 13 Solving Linear Recurrence Relations
o Linear Homogeneous Recurrence Relations
o Linear Nonhomogeneous Recurrence Relations

Definition: A linear homogeneous relation of degree k with constant
coefficients is a recurrence relation of the form

ap = Cap-1+ Cap-2+ ...+ Ckan—k,

where ¢1, ¢, . . ., ¢ are real numbers, and ¢, # 0.
o linear: it is a linear combination of previous terms
@ homogeneous: all terms are multiples of a;'s
© degree k: aj is expressed by the previous k terms
@ constant coefficients: coefficients are constants
Example:
® P,=1.11-P,_; linear homogeneous recurrence relation of degree 1
o f,=f,_1 + f,_5 linear homogeneous recurrence relation of degree 2
© 3, =ap_1+a2_ NOT linear
© H,=2H,_1+1 NOT homogeneous
@ B, = nB,_; coefficients are not constants
Degree Two
Theorem: Let ¢; and ¢, be real numbers. Suppose that r> — cir — ¢ = 0

has two distinct roots r; and ra.

Then the sequence {a,} is a solution of the recurrence relation
an = C13p-1 + C2an—2 if and only if
ap=ourf +aarf forn=0,1,2,...,
where a; and a; are constants.
Proof: To show that both {a,} and {a1r{' +azr§} are the solutions of the
recurrence relation a, = ¢1a,_1 + €23,—» and satisfy the initial conditions.
o {a1r{ + aarf} is a solution of the recurrence relation.
@ For every recurrence relation a, = ¢13,-1 + C2an—2, there exist a
and a; that satisfy the initial conditions.
Solve Linear Recurrence Relations:
o Solve r; and r with r2 — cir — ¢, = 0.
© Solve a; and a3 with the initial conditions.

Theorem: If the r2 — cir — ¢, = 0 has only 1 root 1o, then
an = (a1 + a2n)rf,
for all n > 0 and two constants o and as.
Degree k
o [mo1
n=y (Z (.,Jn') "

=1 \j=0

ap = (@10+ ety o™

(@20 + @ an + oo ag o™y

+ o (o F e an o el

for all n >0 and constants a.



Linear Nonhomogeneous Recurrence Relations

Definition: A linear nonhomogeneous relation with constant coefficients
may contain some terms F(n) that depend only on n

an = Clap-1 + ©an-2 + ... + Ckan—k + F(n).

The recurrence relation a, = c1a,-1 + €352 + ... + Ckap_ is called the
associated homogeneous recurrence relation.

Theorem: If {a } is any particular solution to the linear
nonhomogeneous relation with constant coefficients,

ap = C1ap-1+ Cap-2 + ... + Ckan—k + F(n),
Then all its solutions are of the form

an=alf) +all),

where {a{/"} is any solution to the associated homogeneous recurrence

relation a, = c1a,—1+ C2ap—2 + ... + Ckan_k.

To compute a(h) L
The characteristic equation is Il
w
2 —3r=0. 3‘?’
L
The roots are r, = 3 and r, = 0. By So, assume that +
N
3
as‘h) = a3". B
To compute 2P Try a'?) = cn+ d. Thus,
cn+d =3(c(n—1)+d)+2n.
We get ¢ = —1 and d = —3/2. Thus, AP =—n— 3/2.

Initial condition:

ap=a) +af) = a3" — n—3/2.
Base on the initial condition a1 = 3. We have 3 = —1 — 3/2 + 3a, which
implies o= 11/6. Thus, ap = —n — 3/2 + (11/6)3".
For previous two examples, we made a guess that there are solutions of a

particular form. This was not an accident.
Suppose that {a} satisfies the lincar nonhomogencous recurrence relation

Ay = €1y + 22+ g+ ),

where ). 2. ..., ¢ are real numbers, and
Fny= (b’ +bymyn'™" 4 -+ bin + by)s”,
where by by, ..., by and s are real numbers. When s is nota root of the characteristic cquation

of th
form

ar recurrence relati

. there is a particular solution of the

(pen' + picin’ o 4 pin+ po)s”

When s is a root of this characteristic equation and its multiplicity is 1, there is a particular
solution of the form

-1

A" (pin' + pian'™ o+ pra+ po)s”

Generating Function
G(x) =

ag + ax + oo+ apx 4 ..

©
=3 aw
=

For |x| < 1, function G(x) = 1/(1 — x) is the generating function of
the sequence 1, 1,1, 1,. ..,

1(1—x)=1+x+x*+...
For |ax| < 1, function G(x) = l/(l — ax) is the generating function
of the sequence 1, a, a2, &%, . . .
1/(1—ax)=1+ax+a°x*+...
For |x| < 1, G(x) = 1/(1 — x)? is the generating function of the
sequence 1, 2,3, 4,5, . ..

1/(1-x)?=1+2x+3 +...
Operations of Generating Functions
Theorem: Let f(x) = Y37 axx¥, and g(x) =

ok
F()g() = (3 abu-)x*
k=0 j=0

Example 1: To obtain the corresponding sequence of G(x) = 1/(1 — x)%
Consider f(x) = 1/(1 —x) and g(x) = 1/(1 — x). Since the sequence of
£(x) and g(x) corresponds to 1, 1, 1, ...., we have

G(x) = f(x)g(x) =

20 0 bixk. Then,

f(x) +g(x) = Y (ak + bi)x*
k=0

Z(k+1

Example 2: To obtaln the corrspondlng sequence of G(x) =1 /(1 —ax)?
for |ax| < 1:

G(x) = F()g(x) = Z(k + 1)akek

Consider f(x) = 1/(1— ax) and g(x)
£(x) and g(x) corresponds to 1, a,

Example 1

an = 63,1 — 93,2 + F(n) with F(n) = 122" and F(n) = (n? +1)3".

1/(1 — ax). Since the sequence of
we have

To compute a{”: a") = (ay + an)3".

To compute a{? of F(n) = n?2

Since s = 2 is not a root of the characteristic equation, we have
&P = (pan® + prn+ po)2".
Substituting af?’ into a, = 63,1 — 9a,_2 + F(n) to derive ps, p1, and po:
(p2n + p1n + po)2" = 6(p2(n —1)° + pa(n — 1) + po)2"*
—9(pa(n —2)2 + pr(n — 2) + po)2" 2 + n?2".
(n? +1)3™:

Since s = 3 is a root of the characteristic equation
with multiplicity m = 2, we have

To compute alf) of F(n) =

3P = ?(pan® + pun+ po)3".

(P)

Substituting a,” into a, = 6a,_1 — 9a,_2 + F(n) to derive p,, py, and po:

=) +af) = (@1 + a2n)3" + n®(pan® + pyn + po)3”.
Example 2: The Term n™
ap = 5ap_1— 6ap—2+2"
Solution:
A =137 4020
° a("p) should be in the form of npy2".
o Try o) = po - 2m:
po- 2" =5pg 2"t —6py- 272+ 2"
Since s =2 is a root of the characteristic equation,
Po- 2" = Bpg - 271 — Gy - 272

always holds. Thus, we obtain 0 = 4.

(1+x)" =35 Cln, k)x*

(1+ax)" = YF o C(n, k)akx*
(LX) =304 Cn, K)x™
——Ek Ox =l+x+x>+-
=Y Ox =14x+x24+
ﬁzzkzoax =l+4ax+a’x?+---
=S x K =14 X X

L+ X"

=S olk+ xR =1+2x+3x%+ -+

= C(n+k—1,k)x*
= Zk o (nqL k —1,k)(—1)kx*

=30 Cln+ k—1,k)a*xk

— 00 XA7 X/) X1
=il =ldx gt
1tk _—

.
In(1+x)72k0 k =x-5 454

Generating Function Example 1

Solve the recurrence relation ax = 3ax—1 for k=1,2,3,...
condition ag = 2.

and initial

Let G(x) be the generating function for the sequence {ai}, that is,
G(x) = Y22 akx¥. We aim to first derive the formulation of G(x).

o '\.
G =3G) =Y apx* =33 ap gt 2

R G(x) =
=ao+ Y (= dax st (1-3x)

an=8ap_1 + 10", Examp|e 2

a=09. Solution: We extend this sequence by setting ag = 1. We have

=2,

a1 =8a0+10°=8+1=0. Let G(x) = 302 anx".
o0 o0
Gx)—1= Zanx” = Z(San,lx" +10" '™
n=1 n=1

o0 0
= SZH”,M" + Z 107~ 1xn
n=1 n=1

o0 o0
= 8x Zan,lx"’l +x Z 1071t

n_l

= 8x Z“n/‘ +.IZIO" n

n=0
=8xG(x)+x/(1 — IOx).

1,
1-8x —10x

(8" 4 10™)x".

G(x)= =G(x)=

1
2
3
oLl

1-9x
(1—8x)(1—10x)

G(\*)——(ZS"”+210” ")

n=0

I\H

Cartesian Product
Let A= {a1,a,...,am} and B = {by, by, ..,
Ax B'is the set of pairs

{(a1, b1), (22, b2), -- (am, bn)}.

Cartesian product defines a set of all ordered arrangements of elements in
the two sets.

by}, the Cartesian product

(a1, bn), -y

A subset R of the Cartesian product A x B is called a relation from the set
A to the set B.

Definition: Let A and B be two sets. A binary relation from A to B is a
subset of a Cartesian product A x B.

Let R C A x B denote R is a set of ordered pairs of the form (a, b) where
acAandbeB

We use the notation aRb to denote (a, b) € R, and a Rb to denote
(a,b) ¢ R.
Example: Let A= {a,b,c} and B = {1,2,3}

o Is R={(a,1), (b,2),(c,2)} a relation from A to B?

o Is Q={(1,a),(2,b)} a relation from A to B?

o Is P ={(a,a),(b,c),(b,a)} a relation from A to A?
Example: Let A= {0,1,2} and B = {u, v}, and
R={(0,u),(0,v),(1,v),(2,u)}. (RCAxB)
Raiv = {(1,1),(1,2), (1, 3) (1,4),(2,2),(2,4),(3,3), (4,4)}
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Number of Binary Relations
Theorem: The number of binary relations on a set A, where |A| = n, is
27

Proof: If |A| = n, then the cardinality of the Cartesian product
|Ax Al = n?.

R is a binary relation on Aif R C A x A (R is subset).
The number of subsets of a set with k elements is 2%.

Reflexive Relation
Reflexive Relation: A relation R on a set A is called reflexive if

(a,a) € R for every element a € A.

ey

MR, = 0 1 0 1

0o 0 1 0

Irreflexive Relation D001

Irreflexive Relation: A relation R on a set A is called irreflexive if
(a,a) ¢ R for every element a € A. 0 1 1

1 I 0 1
Symmetric Relation o= :
1 1 0

Symmetric Relation: A relation R on a set A is called symmetric if
(b,a) € R whenever (a,b) € R for all a,b € A.

1
1
0
1

Antisymmetric Relation

Antisymmetric Relation: A relation R on a set A is called antisymmetric
if (b,3) € R and (a,b) € R implies a = b for all a,b € A.
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Transitive Relation o0 0
Transitive Relation: A relation R on a set A is called transitive if
(a,b) € Rand (b,c) € R implies (a,c) € R for all a,b,c € A.
Combining Relations
Example: Ry = {(x,y)|x <y} and Ry = {(x,y)|x > y}. What are
RiURy, RiNRy, Ri — Ry, R2 — Ry, and R1@ Ry?

Composite of Relations RiU Ry = {(x,y)lx # y}

0 1 1 RINR=0
M= 5 Ri—R =R
1 Ro—Ri=R,

Mp ®M; = 0 Ri® Ro = {(xy)lx # v}

Example: Let A= {1,2,3}, B=1{0,1,2}, and C = {a, b}:

° R={(1,0),(1,2),(31),(3,2)} 1 0
o 5={(0,b),(1,a),(2, b)} Ms = 0 0
o SoR={(1,b),(3,3), (3, b)} 1 1

B
(ac)eSoR
b

Power of a Relation
Definition: Let R be a relation on A. The powers R”, for n =1,2,3,..., is
defined inductively by

R'=Rand R"™' =R"oR
Example: Let A={1,2,3,4}, and R = {(1,2),(2,3),(2,4),(3,3)}
o Rl=
e R2=RoR=1{(1,3),(1,4),(2,3),(3,3)}
o R¥=R2oR ={(1,3),(2,3),(3,3)}
o R*=R30R={(1,3),(2,3),(3,3)}
o Rk=7for k>3

Theorem: The relation R on a set A is transitive if and only if R” C R for
n=123,.

Theorem: The number of binary relations on a set A, where [4] = n, is
o

Number of Reflexive Relations

Theorem: The number of reflexive relations on a set A with |A| = n is

on(n-1)_

Proof: A reflexive relation R on A must contain all pairs (a, a) for every

acA

All other pairs in R are of the form (a, b) with a # b, s.t. a,b € A.

How many of these pairs are there?

How many subsets on n(n — 1) elements are there?

Reflexive Relation: A relation R on a set A'is called reflexive if
(a,a) € R for every element a € A.

Irreflexive Relation: A relation R on a set A is called irreflexive if
(a,a) ¢ R for every element a € A.

Symmetric Relation: A relation R on a set A is called symmetric if
(b,a) € R whenever (a,b) € R for all a,b € A.

Antisymmetric Relation: A relation R on a set A is called
antisymmetric if (b,a) € R and (a, b) € R implies a = b for all
a,beA Is Ry transitive? No. (1,2),(2,1) € Ry but (1,1) ¢ Ry.
Transitive Relation: A relation R on a set A is called transitive if
(a,b) € R and (b,c) € R implies (a,c) € R for all a,b,c € A.

Lecture 15

n-ary Relations

n: An n-ary relation R on sets Ay, ...,
«; A, is a subset R C Ay X -+ x A,

A, written as

o The sets Ay, ...,
® The degree of R is n.

A, are called the domains of R.

@ R is functional in domain A; if it contains at most one n-tuple
(-++ ,aj,---) for any value a; within domain A;.
Relational Databases
A relational database is essentially an n-ary relation R.
A domain A; is a primary key for the database if the relation R is
functional in A;.  Student name, student ID.

Student_name | ID_number Major GPA
Ackermann 231455 Computer Science 3.88
Adams 888323 Physics 345
Chou 102147 Computer Science 349
Goodfriend 453876 Mathematics

Rao 678543 Mathematics 3.90
Stevens 786576 Psychology 2.99

the domain of major fields of study and the domain of GPAs

a composite key for the n-ary relation, assuming that no n-tuples are ever
Selection Operator

Let A be any n-ary domain A= A; X -+ X Ap, and let C: A— {T,F} be
any condition (predicate) on elements (n-tuples) of A.

The selection operator sc is the operator that maps any (n-ary) relation R
on A to the n-ary relation of all n-tuples from R that satisfy C.

VR C A,sc(R) = RN {a€ Alsc(a) = T} = {a € Rlsc(a) = T}

O .
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symmetric antisymmetric

irreflexive

*47. How many relations are there on a set with n elements
that are
a) symmetric?
¢) asymmetric?
e) reflexive and symmetric?
f) neither reflexive nor irreflexive?
2) 211 +D/2 ) gn3n(a=1)/2
) 3n(n=1)/2 d) 27=1 ) on(n=1)/2 02712 _ 2. nn=1)

b) antisymmetric?
d) irreflexive?

a) Symmetric Relations: For a symmetric relation on a set with n elements, each
element can be related to itself and every pair (a, b) where a # b, can be included in
the relation. Since (a, b) and (b, a) are considered the same in a symmetric relation,
we only need to consider each pair once. Therefore, there are n(n. — 1) /2 unique
pairs where a # b, plus the n possible pairs where a = b, giving us a total of n(n +
1)/2 pairs. Each pair can either be in the relation or not, which gives us two choices
(yes or no) for each pair. Thus, the total number of symmetric relations is 2"("*1)/2

b) Relations: A relation

iffor every (a, b) in R, (b, a)
isnotin R unless a = b. For each of the n(n — 1)/2 pairs where a # b, you can
choose to include either (a, b), (b, @), or neither, resulting in 3"("~1)/2 possibilities.

) Arelation is iffor every (a, b) in R, (b, a) is not
in R. This is a stricter form of antisymmetry because it applies even when a = b. The
number of asymmetric relations is the same as the number of antisymmetric relations
minus the number of diagonal elements, which is 3"("~1)/2

d)Irreflexive Relations: A relation is irreflexive if no element is related to itself, meaning
(a,a)isnotin R for all elements a. For each of the n pairs (a, ), there is only one
option: not to include it. For the remaining n(n. — 1) pairs, each can either be included
or not, resulting in 2"(" 1) possibilities.

©) Reflexive and Symmetric Relations: A relation s both reflexive and symmetric if
every element s related to itself, and for every (a, b) in R, (b, @) is alsoin R. Since all
n reflexive pairs (a, a) must be included, there are 2"("~1)/2 ways to include the
remaining pairs.

1. 2" represents the of relati setwithn

any
restrictions. Since a relation on a set can be represented as a matrix with . X 1

y can either be O or 1 presence of
arelation), there are n? entries, and each entry has 2 options. Hence, 2"

2. 2"("1) represents the number of irreflexive relations on a set with n elements. An

is isrelated to tself,

the relation matrix (which has n entries) must be all zeros. The remaining n(n — 1)
entries (off-diagonal) can be either 0 or 1, leading to 2"(" 1) irreflexive relations.
220"V is subtracted number of the
completely relations.
relations, where each element is related to itself, would also count as 2"(" ) since we

only consider the off-diagonal elements (which can be either 0 or 1). We multiply by 2
because we need to exclude both the completely reflexive and completely irreflexive
sets of relations from our total.

m+n

A@) = (1+z)™" = =Y Clm+n,r)a,

o

B(@)=(1+a)" Zb, z"jC(n,r)ar )
r=0
Cla)=(1+a)™ = wa =Y C(m,r)a".
r=0

r=0

min (r
Alz) = B@)C(@) = ) (Zbkc,,k)
=\s

= S5 Cm,r — K)C(n, k) for all r =

mfz C(m,r— K)C(n,k)a".
==

Therefore, we must have C(m + n,r)
0,1,...,m+n.

Polynomial Multiplication
A(x) = 1+x+2x"

B(x)=2+x-x"
Clx) = A(x)B(x) =

(1+x+2:)Q2+x-x)=2+3x+4x% + x> - 2x*

C(x) = A(x)B(x)

)

Convolution
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