Propositional Logic
Proposition:

o Conventional letters used for propositional variables are p, q, r, s, ...

a declarative sentence that is either true or false (not both).

= Two sets A, B are equal if and only if
Vx (x€ A< x € B).

IFAC B, but A B, then we say Als a proper subset of B, i.e.,
Vx(xe A= xe B) Adx(xe BAKA), denoted by A C B.

o Truth value of a proposition: true, denoted by T; false, denoted by F.Prove that ) C S.

Compound propositions are build using logical connectives:

@ Negation = @ Exclusive or ©

R . . that is always true, no matter
o Conjunction A e Implication —

o Disjunction V o Biconditional « Variables that occur in it.

Conditional Statement (Implication) p— ¢
if p then g p implies g p is sufficient for g q is necessary for p g follows from p

q unless —p (Or equivalently, if you does not get an A, it cannot be the case
that you get 100 on the final.)

p only if g (Or equivalently, only if you get an A, you may get 100 on the final.)

(“IF" indicates sufficient condition; “only if" in dicates necessary condition)

Contradiction: A compound proposition that is always

Tautology: A compound proposition

truth values of the propositional

Proof:

By definition, we need to prove Wx(x € ) = x € S). Since the
what the empty set does not contain any element, x € () is always false. ¢
Then the implication is always true.

Prove that SC S.

Proof:
By definition, we need to prove ¥x(x € S — x € S). This is
obviously true.
Power Set Given a set S, the power set of S is the st of all subsets of
the set S, denoted by P(S).

false Example: What is the power set of the set {0,1,2}7

The compound propositions p and q are called logically|

equivalent, denoted by p = g, if p <+ g is a tautology.

(Ve vrEpv@Vn Assoxiative laws Predicate Logic and Quantified

(PAg)AT=pAGAD

Statements =

PV@AN= (V) AV | Distibutive laws

PAGVDE(PAQV (AT

» . specity .
~(pAg) De Mongan's laws | Propositional function P(x) P=<= *Proposition

~

~(pvg)=~pAng

PV rAd Absorption laws Existential quantifier 3xP(x)
PAGVa P a=Va Uselul Law

1 for alfsome x n domain
pvop=T Negation laws Propositional function P(x) ' ™/

pa

A predicate is a statement P(x1,x2,....x,) that contains n variables
X1, X2, ... Xp. |t becomes a proposition when specific values are
substituted for the variables x, xo, ... Xxp.
The domain (universe) D of the predicate variables xj, xa, ...
is the set of all values that may be substituted in place of the
variables.

Xn

The truth set of P(x1,X2,...,Xn) is the set of all values of the
predicate variables (x1,%,...,x,) such that the proposition

P(x1,%2 ..., Xn) IS true. . .  Cardinality of the Union

Argument: A sequence of propositions that end with a conclusion.Au B| = |A|+|B| - |AN B|

Validitylof:A tForm: To show that
alidity.of. Argument. Form: The generalization of this result to unions of an arbitrary number of sets is | s iective

The argument form with premises py, ps, ..., p and conclusion g is valid, if

(PLAp2A -+ A pn) =+ qis a tautology.

Predicate Logic: make statements with variables:
P(x)
Quantified Statements: Universal quantifier VxP(x);

Proposition S€t Operations

B, Is the set of all ordered pairs (a, b), where a€ Aand b€ B:
AxB={(a,b)|ac ANbe B}

A1 % Ag % % Ap = {(a1,32, v an) | 3 € A; for i = 1,2,

A" ={(a1,a2,....an) | @i € Afor i =1,2,...,n}

Uniol

AUB, is theset {x | x€ AVxe€
Intersection: The intersection of the
the set {x | x € AAx € B}.
Difference: Let A and B be sets. The difference of A and B, denoted by A —
B, is the set containing the elements of A that are not in B.
A—B={x|xcAAx¢B}=ANB.

B}
sets A and B, denoted by AN B, is

Complement: If Ais a set, then the complement of the set A (with
respect to U), denoted by Ais the set U — A, A={xe U |x ¢ A}
Two sets A and B are called disjoint if their intersection is empty, i.e., AN B= 0.

is one-to-one.
function,

F(xi) # F(x;) forany i # j. Thus, [F(A)| = [{f(x1),
Since |B| = nand f(A) C B, we have f(A)
If fis onto, then fis one-to-one (contradiction): Suppose that fis onto.
Suppose that fis not one-to-one. Thus, f(x;) = f(x;) for some i # j .
Then, [{f(x1). .... f(x,)}| < n— 1. Note that |f(A)| = |B| = n, which
leads to a contradiction.

Two Functions on Real Numbers

One-to-One and Onto

Prove that “for a function f: A — Bwith |A| = |B| = , fis one-to-one if
and only if fis onto.”

Proof: Since |A| = n, let {x1,x,....x,} be elements of A.

If £ is one-to-one, then f is onto (direct proof): Suppose that
According to the definition of one-to-one

FOa)}

Let fi and f, be functions from Ato R. Then f; + fand fif, are
also functions from A to R defined for all x € Aby

(AR)(x) =x* = x>+ x -1

Inverse Functions

A A8 B
X e\

Inverse of

A bijection is called invertible.

Proof for Inverse Function
1 Prove function f is a bijection: injective, surjective

Show that if £(x)

F(y) for all x,y € A, then

called the principle of inclusion-exclusion

Provethat ANB=AUB

To show that /]
is not injective

Find specific elements x,y € A such that x # y
and £(x) = F(y)

To show that
s surjective

Consider an arbitrary element y & B and find an
element x € A such that (x)

Proof 1: Usimg-membership tables. Consider an arbitrary element x: 1, x
isin A; 0, x is not in A.

Proof 2: by showingthat AN BC AUBand AUBCANB

[To show that f
fis not surjective

Find a specific element y & B such that £(x) # y|
forall xe A

ANBCAUB:

> Suppose that x € AN B. By the definition of complement, x ¢ AN B.

Raleof Inerence_Name Addition Rule of Inference Name
VaPw)
YaPer) Universal instantiation
b pAg Simplifiation .. P(e)
Mo el »
P(c) for an arbitrary ¢
2 Universal generalization
P Conjunction - VrP(x) L
Topoteica gogim
pra 2P Existentialinstantiation
. P(0) for some clement ¢
PVg  Resolution
Ve —pvr P for some clement ¢
P10 forsome clement ¢ Exister ralization
gvr 3P

Using the definition of intersection, ~((x € A) A (x € B)) is true.
> By applying De Morgan's law, ~(x € A) V ~(x € B)). Thus, x ¢ A or

Every student in this class has studied algebra.

Logic Expression 3:

o A(x): “x has studied algebra” . Logic Expression 2:
o Clx): s in this class” © M(x): " has visited Mesico".
o S(x): “xis a student” o C(x): “xis a student in this class.
Bormain: a1l seonl o Domain: all people
° main:
omain: all people o 3x(C(x) A M(x))
o ¥x(S(x) A C(x) = A(x))

Piotetthetds of Proving Theorems

A proof is a valid argument that establishes the truth of a mathematical
statement.
Direct proof Ef#ilElf]
p — qis proved by showing that if pis true then g follows
o u o Question 1: Is YxP(x) a proposition?
Proof by contrapositivelJZiil: ik ]
show the contrapositive g — —p
Proof by contradictionl 1" il  False if there is an x in the domain such that P
X (counterexample)
show that (p A —q) contradicts the assumptions
Proof by cases!/ 2B IEN]

give proofs for all possible cases

Yes. lIts truth value?
True if P(x) is true for all x in the domain

The converse of p — q is g — p.
The contrapositive of p — q is =g —
Proof of equivalence’FMEIEN] The inverse of p — g is =p — ~q.

p ¢ qis replaced with (p — q) A (g < p)

Proof Exercise 1

2 is irrational. (Rational numbers are those of the form 2,
where m and\f are integers.)

Proof: Suppose that v/2 is rational. Then, there exist integers a and b
with /2 = a/b, where b # 0 and a and b have no common factors (so
that the fraction a/b is in lowest terms.) !

Since v/2 = a/b, it follows that 2b> = a%. By the definition of an even
integer, it follows that a is even, so a is even (see Exercise 16).

x ¢ B. Using the definition of the complement of a set, x € A or

- . .~ x€B. o _
Some student in this class has visited Mexico. . By the definition of union, we see that x € AU B.Thus, AN B C AU B

AUBCANB

Proof 3: Using set builder and logical equivalences
vy {xlx¢ ANB)
(x| =(x € (AN B))
= |=(x€AnxeB)
=[x |=(x € A)V(x € B
=(|x¢AVx¢B)
=(r|xeAvreB)
={x|xeAUB)
=AUB by meaning of set builder notation
Let f be a function from A to B.
A is the domain of f; B is the codomain of f

by definition of complement

by definition of does not belong symbol

by definition of intersection

by the first De Morgan law for logical equivalences
by definition of does not belong symbol

by definition of complement

by definition of union

If f(a) = b, bis called the image of a and a is a preimage of b.

The range of f is the set of all images of elements of A, denoted by

(x) is false.

also say f maps A to B.

We
Example:
»  A={1,2,3}, B={a, b, c}
— ¢ is the image of 1 a
— 2 is a preimage of a 2 .b
— the domain of f is {1,2,3}
3, c

— the codomain of f is {a, b, c}
— the range of f is {a, c}

Let A and B be two sets. A function from A to B, denoted by f : A — B,

s an assignment of exactly one element of B to each element of A.

One-to-one (injective) function:
> A function f is called one-to-one or injective if and only if f(x) = f(y

implies x = y for all x,y in the domain of f.

Since a is even, a = 2k for some integer k. Thus, b> = 2k. This implies Onto (surjective) function:

that b is even, so b is even.

» A function fis called onto or surjective if and only if for every be B

As a result, a and b have a common factor 2, which contradicts our
assumption.

there is an element a € A such that f(a) = b.

One-t

Proof Exercise 2

Show that there exist irrational numbers x and y such that x¥ is rational.

Proof: We know that /2 is irrational. Consider the number \/T/i

Case 1: If /22 is rational, then we have two irrational numbers x = v
and y = V2 with x¥ = \/Tﬁ rational.

Case 2: 1f v2"2 s irrational, then we let x = v2"7 and y = V2. We
have x¥ = (ﬁﬁ)ﬁ = 2 is rational.

Applying Rules of Inference for Quantified Statements
Premises: 3x(C(x) A ~B(x)), ¥x(C(x)
Conclusion: 3x(P(x) A ~B(x))

o C(x): x s in this class.
o B(x): x has read the book.

P(x))

@ P(x): x passed the first exam. Step Reason
o Domain of x: all students )+ 2(C() 2 =0 Premise
2. C(a) A—B(a) instantiation from (1)
3. Cla) Simplification from (2)
4 VX(CW) > Pl Premise
5. Cla) > Pla) Unisersal instaniiation from (4)
6 P Modus ponens from (3) and (5)
7. ~B(a) Simplification from (2)
8. P(a) A ~B(a) Conjunction from (6) and (7)
9. A(P(¥) A ~B(x) Existental gencralization from (8)

Note that although we do not know which case works, we know that one
of the two cases has the desired property.

Sets A set is an unordered collection of objects. {x |- has. property. P or_property
Proof of Subset:

o Showing A C B: if x belongs to A, then x also belongs to B.

o Showing A€ B: find a single x € A such that x ¢ B.

Prove A= B?

Cardinality Power Set, Tuples, and Cartesian Product

Cardinality: If there are exactly n distinct elements in S, where n is a nonnegative
integer, we say that S is a finite set and n is the cardinality of S, denoted by [S|

Power Set: Given a set S, the power set of S is the set of all subsets of the set
S, denoted by 7(S)

Tuples: The ordered n-tuple (a1.a.....a,) is the ordered collection thathas a; as its
first element and a, as its second element and so on.

Cartesian Product: Let Aand Bbe sets. The Cartesian product of Aand B , denoted by A x
B, is the set of all ordered pairs (a, b), where a € Aand b B
AxB={(ab)|acANbeB}

> One-to-one and onto

Proof for One-to-One and Onto
Suppose that f: A — B.

To show that
f is injective

Show that if f(x) = f(y) for all x,y € A, then
xX=y

To show that f
is not injective

Find specific elements x, y € A such that x # y
and f(x) = f(y)

To show that
f is surjective

Consider an arbitrary element y € B and find an
element x € A such that f(x) =y

ITo show that f
is not surjectivel

Find a specific element y € B such that f(x) # y
forallx € A

A

f:A>B

A f:A>B
P}
Injective function
One-to-one, (b) Onto, (¢)  One-to-one, (d) Neither one-to-one
notonto not one-to-one andonto nor oo
. ae L oae o
>< o T
o2 he be o2 be o
.2 be
3 ce ce 3 ce / o3
o / ce
ot de do o de o

2 If f is a bijection, then it is invertible

3 Determine the inverse function

Let fbe a function from Bto Cand let g be a function from Ato B. The
composition of the functions fand g , denoted by =  , s defined by (o g )

(x)=f(g(x)).

The floor function assigns a real number x the largest integer that is < x, r

denoted by . E.g., [35] = 3.

The ceiling function assigns a real number x the smallest integer that is

denoted by [x]. E.g., [35] =4.

fistan)

= Suppose that f is a bijection from A to B. Then
fofl=Igand f1of=Is Since

(Flof)(a)=f

Hfa)=f(b)=a
(Fof 1) (b)=F(f (b)) = f(a) = b

Countable Sets: Example 4

Theorem: The set of finite strings S over a finite alphabet A is countably
infinite. (Assume an alphabetical ordering of symbols in A)
', ‘b, ‘c'}. Then, set

,‘aaaaa’, ..}

For example, let A
S={"a, ", ¢, ‘ab’

Solution:
We show that the strings can be listed in a sequence. First list
(i) all the strings of length 0 in alphabetical order.
(ii) then all the strings of length 1 in lexicographic order
(iif) and so on.
This implies a bijection from Z* to S.

The set of all Java programs is countable.

Solution:

Let S be the set of strings constructed from the characters
which may appear in a Java program. Use the ordering from the
previous example. Take each string in turn

— feed the string into a Java compiler

— if the complier says YES, this is a syntactically correct Java
program, we add this program to the list

— we move on to the next string

Operator | Precedence P({0,1,2)) = {0, {0}, {1}, {2}, {0,1},{0,2}, {1,2},{0.1,2}}  Example: (h + B)0) = A +
i+ R)(x) = A(x) + fx
: . Ai=x-Tandh=x+1 (100 = 00600
3 Cartesian Product Then
M Let Aand Bbe sets. The Cartesian product of Aand B, denoted by A x (fl + fz)(X) =x34+x

In this way, we construct a bijection from Z* to the set of
Java programs.

M} Let £ be a one-to-one correspondence (bijection) from the set A to the set Theorem: Any subset of a countable set is countable.
B. The inverse function of f is the function that assigns

to an element b belonging to B the unique element a in A such that

fa)=b.

Let A and B be sets. The union of the sets A and B, denoted by The inverse function of £ is denoted by 1.

Hence, £~1(b) = a when £(a) = b

Proof: Consider a countable set A and its subset B C A.
o Ais a finite set: |B| < |A| < cc. Thus, |B| is a finite set and hence
countable.
@ Ais not a finite set: Since A is countable, the elements of A can be
listed in a sequence. By removing the elements in the list that are not
in B, we can obtain a list for B. Thus, B is countable

Theorem: If A and B are countable sets, then AU B is also countable.
n = 0.di1dh2d13dis

r = 0.da1dhadh3chs
Th The set of real numbers R bl 75 = 0.ddiadsdiy
eorem: set S 3 1C It .
e st of real numbers Risuncouriable, o (0.1 2 o).
Proof by Contradiction: Suppose R is countable. Then, the interval

from 0 to 1 is countable. This implies that the elements of this set can be
listed as 1, 72, 3, ..., where

Uncountable Sets: Example 1

A set that is not countable is called uncountable.

A set that is not countable is called uncountable.
Theorem: The set of real numbers R is uncountable.

Proof by Contradiction:

We want to show that not all real numbers in the interval between 0 and 1
are in this list. Form a new number called r = 0.d1d>d3ds, where d; = 2 if
d;i #2, and d; = 3 if dj = 2.

Example: suppose 1

r and r; differ in the i-th decimal place for
This leads to a contradiction.
Uncountable Sets: Example 2

all i.

Theorem: The set P(N) is uncountable.

Proof by contradiction:

Assume that P(N) is countable. This implies that the
elements of this set can be listed as So, S1, S, ..., where 5; C N,
and each S; can be represented uniquely by the bit string
biobibya ..., where by = 1if j€ S; and b; =0 if j &€ S;

= So = buobo1bo2bos

= S1 = bububiabs---

= S2 = byobabxnbos -+

where Iy, I denote the identity functions on the sets A
and B, respectively.

Note: Identity function is sometimes denoted by 14(-):

all by € {0,1}.

Form a new set called R = boby babs..., where b; = 0 if b; = 1, and b;
if bj = 0. R is different from each set in the list. Each bit string is unique,
and R and S; differ in the i-th bit for all /.

Schroder-Bernstein Theorem

Theorem: If A and B are sets with |A| < [B| and |B| < |A], then

[Al=18].

In other words, if there are one-to-one functions f from A to B and g from

B to A, then there is a one-to-one correspondence between A and B, and
hence |A| = |B].

1a(x) = x

(la) [x] =nifandonlyifn <x <n+1
(Ib) [x]=nifandonlyifn —1 <x <n
(le) |x] =nifandonlyifx —1 <n <x
(1d) [x]=nifandonlyifx <n <x+1
2 x—l<|x]sx=[x]<x+1
Ba) |—x]=—[x]

@3b) [—x]=—[x]

(4a) |x+n]=|x]+n

@b) [x+nl=[x]+n

Example: Show that |(0,1) = |(0,1]|

f(x) = x, g(x) = x/2

Prove that if x is a real number, then [2x| = [x| + [x + 1]

Proof: Let x = n+ ¢, where n is an integer and 0 < ¢ < 1

Cantor’s theorem: If S is a set, then |S| < |P(S)|.
Countable Sets

8 0 < c< L In this case, 2x = 2n + 2¢. Since 0 < 2¢ < 1, we have

[2x) = 2n. Similarly, x + §

0<2—1<1, wehave |2x| =2n+1

Infinite geometric series can be computed in the closed form for [x| <

1 Y wdt=
Tt O

nn+1D)2n+1)
6

o+ 1)?
4

A set that is either finite or has the same cardinality as the set of
positive integers Z* is called countable. A set that is not countable is

called uncountable Why are these called countable?The elements of thbet £ and g be functions from the set of integers or the
set can be enumerated and listed

Countable Sets: Example 1

The set of odd positive integers: A = {1,3,5.7.

B proor: Using the der

the set of positive integers Z* to this set A7

onsider the function

(€) Nota function

Fn)=2n—1

One-to-one: Suppose f(n) = f(m). Then, 2n

leads to n — m.
Onto: For any arbitrary element in ¢ € A, we

n=(t+1)/2 €2 such that f(n) = t.

Theorem: The set of positive rational numbers is countable.

Hint
can belisted in a sequence
Solution:

Constructing the ist: first
list p/q with p+q = 2, next
list p/q with p+q =3, and so
on

1,1/2,2,3,1/3,1/4,2/3,

n+ite Since0<ite<l e
have |x + 3] = n. Thus, [2x] = 2n, and [x] + [x + 3] = 2n.
< 1: In this case, 2x = 2n + 2¢ = (2n+ 1) + (2¢ - 1). Since

ition: If there is a one-to-one correspondence from

prove by showing that the set of positive rational numbers
specifying the initial term and rule

Theorem: An infinite set is countable if and only if it is possible to list
the elements of the set in a sequence (indexed by the positive integers):
Cardinality of Sets

Prove or disprove that [x +y] = [x] + [y] for all real numbers x and y.

Proof: This statement is false. Consider a counterexample x = % and }
We can find that [x +y] = 1, but [x] + [y] =2

A set that is either finite or has the same cardinality as the set of positive
1 integers Z7 is called countable.
1

If there is a one-to-one function from A to B, the cardinality of A is less
than or equal to the cardinality of B, denoted by |A| < |B].

Theorem: If there is a one-to-one correspondence between elements in A
and B, then the sets A and B have the same cardinality.

Theorem: If A and B are sets with |A| < |B| and |B| < |A], then
|A] = |B].

Big-O Notation

set of real numbers to the set of real numbers.We say that f
(x) is O(g(x)) if thereare constants C and k such that

}. Is it countable? 7691 < Clg ()l

whenever x > k. [This is read as “f(x) is big-oh of
&(x)"]
— 2m— 1, which

have an c-8(x)




Big-O Notation: Example Theorem: Let m be a positive integer. If a= b (mod m) and

Show that £(x) = x2 + 2x + L is O(x?). ¢ =d (mod m), then

Proof: We can readily estimate the size of £(x) when x > 1 =
log n! — O(nlog ) ly (x) a+c=b+d (mod m) d:
0<x+2x+1<x2+ 23 +x2 =42
log, n = O(n) for an integer a > 2 ac = bd (mod m)
This is because when x > 1, x < x? and 1 < x2. Thus, let C =4, k =1
n? = O(n®) for integers a < b < C|x?| PP .
(%) & - ()] < €l whenever x > k Corollary: Let m be a positive integer and let a and b be integers. Then,

n® = 0(2") for an integer a Hence, f(x) = O(x?)

Note that there are multiple ways for proving this. Alternatively, we can
estimate the size of £(x) when x > 2:

(a+ b) mod m = ((a mod m) + (b mod m)) mod m

[ PO SR S ab mod m = ((a mod m)(b mod m)) mod m N

Let Z,, be the set of nonnegative integers less than m: {0,1,...,m —1}. I'E
It follows that € =3, k =2
+matmb=(atb)modm. . 5. b=abmodm

Big-Omega Notation Arithmetic Modulo m

The operations -+ and -, satisfy many of the same properties of ordinary

Algorithm: Computing div and mod
Compute g = a div d and r = a mod

procedure division algorithm (a: integer, d: positive integer)

if a<0Oandr>othen

Algorithm: Binary Modular Exponentiation
Compute b” mod m: Let n = (ax_1...a1d0)2-

b = p-12 e 2ta _ pa1 2 pa2 | pa

Successively finds b mod m, b mod m, b* mod m, . . ., 5" mod m,

and multiplies together the terms b?, where a; = 1.

dure modular

brinteger, n = (a0 5-a,a,), , m: positive

integers)

r-d
q+1

if a1 then x:= (x-power) mod m
d-r power = (power-power) mod m

~(q+1) return x (x equals b mod m }

return (g, 1) lq = a div d is the quotient, r = a mod d is the

remainder } Recall that

0(qlog a) bit operations. But there exist more efficient al gorithms with ab = ((a mod m)(b mod m))(mod m).
complextiy O(n?), where n = max(log a, log d)
Algorithm: Binary Modular Exponentiation Primes

Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers.We say that f(x) is Q(g(x)) if there
are positive constants C and k such that

addition and multiplication of integers:
Closure: If a and b belong to Z,, then a+p, b and a-p, b belong to Zj,.

Associativity: If a, b, and ¢ belong to Z,, then
[FC) = Cle ()] (@+mb)+mc=a+m(b+mc)and (a:mb) mc=a-m(bmc).

whenever x > k. [This is read as “f(x) is big-Omega of g(x)."] Identity elements: a+,0=aanda-n1=a.

Additive inverses: If a # 0 and a € Z,,, then m — a is an additive inverse
of a modulo m. That is, a4, (m—a)=0and 0+, 0=0.

Commutativity: If a,b € Z,,, then a+p, b= b+ a.

Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers.We say that f(x) is ©(g(x)) if

e f(x)is O(g(x)) and

o f(x) is Q(g(x))-
When f(x) is ©(g(x)), we say that f(x) is big-Theta of g(x), that f(x) is
of order g(x), and that f(x) and g(x) are of the same order.

Distributivity: If a,b,c € Z,,, then
am(b+mc)=(a-mb)+m(a-mc)
(a+mb) mc=(amc)+m(b-mc)

If fi(x) is O(gi(x)) and f(x) is O(g2(x)), then Base-b Expansions

(A + £)(x) = O(max(|g1(x)|, [g2(x)1))-

If A(x) is O(gi1(x)) and f(x) is O(g2(x))

procedure base b expansion(n, b: positive integers with b > 1)

q:=n

then (£i5)(x) = O(g1(x)g2(x))- ko
NP-Complete while(g0)
P: Problems that are solvable using an algorithm with polynomial k divbh
worst-case complexity Z,: i1

NP: Problems for which a solution can be checked in polynomial time. remm(ah v Oy ao){(a“ “1“0)1: is basebexpansion ofn]

NP-Hard: Problems at least as hard as the hardest problems in NP.

NP-Complete: If any of these problems can be solved by a polynomial

worst-case time algorithm, then all problems in the class NP can be solved BI nary Addltlon Of Integers

by polynomial worst-case time algorithms. a=(ap-1an—2...a130), b = (bp—1bn—2...b1 bg)

i

NP-Hard

NP-Hard procedure add(a, b: positive integers)

{the binary expansions of a and b are (a1, o) and (b, b, bo),, respectively)

¥ wp-Complete

P=NP
= NP-Complete

Sy

P = NP

return(;

5,){the binary exp: f the SUM is (5,5, 150).)

Functions of the Same Type Algorithm: Binary Multiplication of Integers

2= (an-13p-2.-2120)2, b = (bn-1bn-2...b1b)2

" . _ab=a(bp2® + by2" + + b,_12") = a(bp2°) + a(b12') + + a(bp12"?)
Definition: Two positive functions f(n) and g(n) are of the same type if " "
procedure multiply(a, b: positive integers)

{the binary expansions of a and bare (a,.,d,.5.-,ag); and (b.1,by.,..,bo),, respectively}

Example: Find an inverse of 101 modulo 4620. That is, find 3 such that
5101 =1 (mod 4620)

ag(n™)™ < f(n) < cog(n’)™

if b= 1then ¢;= a shifted j places
elsec;:= 0

{Co €y Cosare the partial products}
0

for all large n, where ay, by, c1, a2, bo, ¢ are some positive constants.

Example:
All polynomials are of the same type

X . . return p {p is the value of ab}
Polynomials and exponentials are of different types.

Number Theory

ALGORITHM 1 The Euclidean Algorithm

procedure ged(a, b: positive integers)

Computing the greatest common divisor of two integers directly from the
prime factorizations can be time consuming since we need to find all
factors of the two integers

Step 1: 287 =913+ 14
Step 2: 91=14-6+7
Step3: 14=7-2+0

£0d(287,91) = ged(91, 14) = ged(14,7) = 7

Linear Congruences

A congruence of the form ax
a and b are integers, and x is a variable, is called a linear congruence.

The solutions to a linear congruence ax = b (mod m) are all integers x
that satisfy the congruence.

c Solve the congruence ax = b (mod m) by multiplying both sides by 3.

How to find inverses?

Using extended Euclidean algorithm:

Thus, 1601 is an inverse of 101 modulo 4620.
Suppose that a and b are positive integers with a > b. Let
rn=aand n =b.

ged(a, b) = ged(ro. ) =

Use the algorithm to find 3% mod 645

A integer p that is greater than 1 is called a prime if the only positive

el o oo 0 factors of » are 1 nd p.
povr-xbmodm o If n is composite, then n has a prime divisor less than or equal to y/7.

for iz-0t0k~1
ifa- 1 then x:- (x-power) mod m
power= (power-power) mod m
return x x equals 5* mod m |

Let a and b be integers, not both 0. The largest integer d such that d|a
and d|b is called the greatest common divisor of a and b, denoted by

ged(a. b). Let a= pip3...p3 and b = pp2._.pbr. Then,

The algorithm initially sets x = 1 and power = 3 mod 645 = 3. The
binary expansion of 644 is (1010000100)2. Here are the steps used:

d(a, b) = i bu) pmin(ez ) _ pmin(an br)

g
The least common multiple of a and b is the smallest positive integer that
is divisible by both a and b, denoted by lem(a, b).Let a = p{! pZ*...p3" and
b= pPp...pkr. Then,

lem(a, b) = pmaH(an bu) pmas(an bn) _ pmas(an bn)

e 1 = 471 and power = 512 mod 645 = 6561 mad 645 = 111

GCD as Linear Combinations

Euclidean Algorithm

Bezout’S Theorem: If a and b are positive integers, then there exist
integers s and t such that

ged(a, b) = sa+ th.

For two integers 287 and 91, we want to find gcd(287,91)

This equation is called Bezout's identity.
We can use extended Euclidean algorithm to find Bezout's identity.

Lemma: If a, b, ¢ are positive integers such that ged(a, b) = 1 and albc,
then a|c

Lemma: If p is prime and p|a;as...a,, then p|a; for some i.

Modular Inverse

b (mod m), where m is a positive integer,

Modular Inverse: An integer a such that da = 1 (mod m) is said to be
an inverse of a modulo m.

Modular Inverse: An integer  such that 32 = 1 (mod m) is said to be
an inverse of a modulo m.

When does inverse exist?
Theorem: If a and m are relatively prime integers and m > 1, then an
inverse of a modulo m exists. The inverse is unique modulo m. That is,

b (mod m).

o there is a unique positive integer 4 less than m that is an inverse of a
modulo m and

o every other inverse of a modulo m is congruent to  modulo m.

With extended Euclidean algorithm, we obtain ged(a, b) = sa + tb, i.e.,
1 = —35-4620 + 1601 - 101. It tells us that —35 and 1601 are Bezout
coefficients of 4620 and 101. We have

If we obtain an arbitrary inverse of a modulo m, how to obtain the inverse
1 mod 4620 = 1601 - 101 mod 4620. that is less than m?

GCD as Linear Combinations

We can use extended Euclidean algorithm to find Bezout's identity.

Boergtn  0Sn<n, Example: Express ged(252,198) = 18 as a linear combination of 252 and
no=nger 0<r<n, 198.
Solution: To show that ged(252,198) = 18, the Euclidean algorithm uses
these divisions:
a2 =Tafuatfa 0SH<ruy,
Tat =Talln- 252=1-198 + 54

198 54436
54=1-36+18
36=2-18.

= ged(rn-1,1m) = ged(rn,0) = 1

If a and b are integers with a # 0, Ve
@ we say that a divides b if there is an integer ¢ such that b = ac, or vy #0 |
rmxmody
equivalently b/a is an integer. xi=y Corollaries of Bezout's Theorem

=

In this case, we say that a is a factor or divisor of b, and b is a multiple of

a. (We use the notations a|b, atb) |24 415

Divisibility

All integers divisible by d > 0 can be enumerated as: ..., —kd, ..., —2d,—d,0,d,2d, ..., kd, ...

Question: Let n and d be two positive integers. How many positive integers not exceeding
n are divisible by d?

return x(ged(a, b) is x)

then alc.

Answer: Count the number of integers such that 0 < kd < n. Therefore, there are |n/d | such
positive integers.

Divisibility: Properties

Let a, b, ¢ be integers. Then the following hold:

Proof: Suppose that a|b and alc. Then, from the definition of divisi
it follows that there are integers s and t with b = as and ¢ = at. Hence,

(i) if a|b and a|c, then a|(b + c)
(i) if a|b then a|bc for all integers ¢
(iii) if a|b and b|c, then a|c

b+c=as+at=a(s+t)
Therefore, a divides b + c.
Corollary If a, b, ¢ are integers, where a # 0, such that a|b and a|c, then
al(mb + nc) whenever m and n are iNtegers. proof:. By part (i) and part (i) of Properties

The Division Algorithm
If ais an integer and d a positive integer, then there are unique integers g and
r,with 0 < r< d, such that

a=dq+r
In this case, d is called the divisor, a is called the dividend, g is called the
quotient, and r is called the remainder.

In this case, we use the notations ¢ = a div d and r = a mod d.

Theorem (The Chinese Remainder Theorem): Let my, ms,

pairwise relatively prime positive integers greater than 1 and ay, a2,

Congruence Relation a, arbitrary integers. Then, the system
x =2 (mod my)
If aand b are integers and mis a positive integer, then a is congruent to bmodulo m if m divides a — b, denoter

= b(mod m). Thisis called congruence and ms its modulus. 15 = 3 (mod 12) —1 =11 (mod 6)

x = a (mod m2)

Congruence Relation X = ay (mod m,)

has a unique solution modulo m = myms...mp
Let m be a positive integer. The integers a and b are congruent modulo
mif and only if there is an integer k such that congruent modulo m to this solution.)
How to prove the uniqueness of the solution modulo m?
a=b+km

) . . Proof: Suppose that x and x’ are both solutions to all the congruences.
o If part: If there is an integer k such that a = b+ km, then As x and x' give the same remainder, when divided by my, their difference

km = a— b. Hence, m divides a — b, so that a= b (mOd m)- x — X" is a multiple of each my for all k=1,2,...,n.

o Only if part: If a= b (mod m), by the definition of congruence, we Asmy, m, ..., m, be pairwise relatively prime positive integers, their
know that m|(a — b). This means that there is an integer k such thatproduct m divides x — x', and thus x and x' are congruent modulo m, i.e.,
a—b=km, sothat a= b+ km. x=x (mod m).

This implies that given a solution x with 0 < x < m, all other solutions are
congruent modulo m to this solution.

@ Compute a solution x:

@ The solutions are all integers x that satisfy x = 23 (mod 105)

Lemma: If 2, b, c are positive integers such that ged(a, b) = 1 and albc,

Proof: Since ged(a, b) = 1, by Bezout's Theorem there exist s and ¢ such
that 1= sa+ tb. This yields ¢ = sac + thc.

Since albe, we have altbc. Then, since afsac, we have al(sac + the), i.e.,
ale.

Lemma: If p is prime and p|a;a;...a,, then pla; for some i
(This will be proven in later chapters. Mathematical induction.)
Inverse of a modulo m

Theorem: If a and m are relatively prime integers and m > 1, then an
inverse of a modulo m exists. The inverse is unique modulo m.

Proof: Since ged(a, m) = 1, there are integers s and ¢ such that

Hence sa+ tm =1 (mod m). Since tm = 0 (mod m), it follows that
sa=1 (mod m). This means that s is an inverse of 2 modulo m

How to prove the uniqueness of the inverse?

Suppose that b and ¢ are both inverses of a modulo m. Then
ba=1 (mod m) and ca=1 (mod m). Hence, ba = ca (mod m).
Because ged(a, m) = 1 it follows that b = ¢ (mod m).

From ax = b (mod m), it follows that 3ax = 3b (mod m).
Note that dax mod m = ((da mod m)(x mod m)) mod m = x mod m.

Thus, x mod m = 3ax mod m = 3b mod m, which implies that

(That is, there is a solution x with 0 < x < m, and all other solutions are M,

© Let m=3.5.-7=105 M, = m/3 =35, My = m/5=21, and

@ Compute the inverse of M, modulo my

Substituting the above expressions:
18=54—1-36=54—1-(198—3-54) =454 —1-198.
18=4-(252—-1-198) —1-198 =4-252 —5-198.

Uniqueness of Prime Factorization
Theorem: A prime factorization of a positive integer, where the primes
are in nondecreasing order, is unique.

Proof (by contradiction): Suppose that the positive integer n can be
written as a product of primes in two distinct ways:

n=pip...ps and n = q1G2...q¢

Remove all common primes from the factorizations to get

PiyPiy---Piu = GGG,
sattm=1. Thus, p;,|qj,qj,---qj,- It then follows that p;, divides gj, for some k,
ontradicting the assumption that p;. and g;, are distinct primes.
Theorem*: Let ged(a, m) = d. Let m' = m/d and 4’ = a/d. The
congruence ax = b (mod m) has solutions if and only if d | b.
o If d | b, then there are exactly d solutions, where by “solution” we
mean a congruence class mod m
@ If xg is a solution, then the other solutions are given by
xo+m xo+2m, ... x + (d — 1)m'.
Proof:
“only if": Let xo be a solution, then axp —
Since d | axo — km, we must have d | b.

b= km. Thus, axo— km = b

“if": Suppose that d | b. Let b = kd. Since ged(a, m) = d, there exist
integers s and t such that d = as + mt. Multiplying both sides by k.
ab (mod m). Then, b= ask + mtk. Let xo = sk. Then axo = b (mod m).
m. be Proof: To show such a solution exists: Let My = m/m for k =1.2,....n

"7 and m= mum...ma. Thus, M = my...mi1 My .

x:

m,
" " Since ged(m. My) = 1, there is an integer ;. an inverse of M; modulo
my, such that Myyy = 1 (mod my). Let
x = a1Miy1 + 3 Mays + .. + 3, Moy

It is checked that x is a solution to the n congruences:

scmod m = (a1 + 22Mays + ..+ 3,Myy,) mod my
Since My = m/my, we have x mod my = a,Myy, mod my. Since
kv = 1 (mod my), we have a;Myy, mod my = a; mod my. Thus,
x = ax (mod my). i
+ (mod my) Back Substitution
We may also solve systems of linear congruences with pairwise relatively
prime moduli my. my, ...m,, by back substitution

x =2 (mod 3)

x =3 (mod 5)
x =2 (mod 7) Example:

(1) x =1 (mod 5)
(2) x=2 (mod 6)
(3) x=3 (mod 7)
Ms = m/7 =15. According to (1), x = 5t 1 1, where t is an integer.
Substituting this expression into (2), we have 5t +1=2 (mod 6), which
»35.2=1(mod3) y =2 means that t = 5 (mod 6). Thus, ¢ = 6u + 5, where u is an integer.
> 21=1(mod5)y, =1

Substituting x = 5t + 1 and £ = 6u+ 5 into (3), we have
> 15=1(mod7) ys =1

30 +26 = 3 (mod 7), which implies that u = 6 (mod 7). Thus,
u=Tv+6, where v is an integer.

Thus, we must have x = 210v + 206. Translating this back into a
congruence,

x=12:35-2+3-21-1+2-15-1= 233 = 23 (mod 105)

x =206 (mod 210)





