Propositional Logic	ance that is either true or fal	a (not both)	• Two sets A, B are <i>equal</i> if and only if $\forall x \ (x \in A \leftrightarrow x \in B)$.	One-to-0	One and Onto	(Countable Sets: Example 4	
Conventional letters used f	or propositional variables are	p, q, r, s,	If $A \subseteq B$, but $A \neq B$, then we say A is a proper subset of B , i.e., $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land kA)$, denoted by $A \subseteq B$.	Prove that	: "for a function $f: A \rightarrow B$ with $ A = f$ is onto "	B = n, f is one-to-one if	Theorem: The set of finite strings S over a finite alphabet A is countably infinite (Asymptotic formula).	
• Truth value of a propositi	on: true, denoted by T; false	denoted by F	Prove that $\emptyset \subseteq S$.	and only n	ris onto.		infinite. (Assume an alphabetical ordering of symbols in A) For example, let $A = \{$ 'a', 'b', 'c' $\}$. Then, set	
Compound propositions are bu	ild using logical connectives:		Proof : By definition, we need to prove $\forall x (x \in \emptyset \rightarrow x \in S)$. Since the	Proof: S	ince $ A = n$, let $\{x_1, x_2,, x_n\}$ be one-to-one, then f is onto (di	elements of A.	S = {'', 'a', 'b', 'c', 'ab', 'aaaaa',}	
 Conjunction ∧ Implication Implication 	→ truth values of the proper	roposition itter what the	empty set does not contain any element, $x \in \emptyset$ is always false. Then the implication is always true.	f is on	e-to-one. According to the defi	nition of one-to-one	Solution: We show that the strings can be listed in a sequence. First list	
● Disjunction ∨ ● Bicondition	$al \leftrightarrow$ variables that occur in it.		Prove that $S \subseteq S$.	$f(x_i) \neq$ Since B	$f(x_j)$ for any $i \neq j$. Thus, $ f(A) = B = n$ and $f(A) \subseteq B$, we have $f(A) \subseteq B$	$ \{f(x_1),, f(x_n)\} = n.$ B = B.	(i) all the strings of length 0 in alphabetical order.	
Conditional Statement (Imp	plication) $p \rightarrow q$	_	Proof:	If f is ont	to, then fis one-to-one (contradict that f is not one-to-one. Thus, f (:	tion): Suppose that f is onto. $x_i = f(x_i)$ for some $i \neq j$.	(iii) and so on.	
q unless $\neg p$ (Or equivalently, if you do	es not get an A, it cannot be the case	p	By definition, we need to prove $\forall x (x \in S \rightarrow x \in S)$. This obviously true.	IS Then, { leads to	hen, $ \{f(x_1),, f(x_n)\} \le n - 1$. Note that $ f(A) = B = n$, which ads to a contradiction.		This implies a bijection from Z^+ to S.	
that you get 100 on the final.) <i>p</i> only if <i>q</i> (Or equivalently, only if you	get an A, you may get 100 on the fir	al.)	Power Set Given a set S, the power set of S is the set of all subsets the set S, denoted by $\mathcal{P}(S)$.	of Two	Functions on Real Nu	mbers	The set of all Java programs is countable.	
("If" indicates sufficient condition; "only	if" in dicates ne cessary condition)		Francisco Millardo in alta a successiva anti della anti (0, 1, 0)3	l et f	and for he functions from A to	P Then $f_{+} = f_{-}$ and $f_{-} f_{-}$ are	Solution:	
Contradiction: A compour	id proposition that is alw	ays false.	Example: what is the power set of the set $\{0, 1, 2\}$? $\mathcal{D}(\{0, 1, 2\}) = \{0, \{0, 1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$	also fi	unctions from A to R defined t	for all $x \in A$ by	which may appear in a Java program. Use the ordering from the	
I he compound propositions equivalent, denoted by $p \equiv c$	p and q are called logically i, if $p \leftrightarrow q$ is a tautology.	Operator Precedence	۲ ((م, 4, 2)) — (م, (م), (2), (2), (2), (م, 2), (م, 2), (4, 2), (0, 4, 2))	Exam	$x = x - 1$ and $f_2 = x^3 + 1$	$(f_1 + f_2)(x) = f_1(x) + f_2(x)$	- feed the string into a Java compiler	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ Associative laws	Predicate Logic and Quantified	∧ 2 ∨ 3	Cartesian Product	Th	en	$(i_1i_2)(x) = i_1(x)i_2(x)$	 if the complier says YES, this is a syntactically correct Java program, we add this program to the list 	
$(p \land q) \land r \equiv p \land (q \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ Distributive laws $p \land (p \land r) \equiv (p \lor q) \land (p \lor r)$	Predicate Logic: make statements with	++ 5 ariables:	Let A and B be sets. The Cartesian product of A and B, denoted by A B, is the set of all ordered pairs (a, b) , where $a \in A$ and $b \in B$:	AX	$(f_1 + f_2)(x) =$ $(f_1 f_2)(x) = x^4 -$	$x^3 + x$ $x^3 + x - 1$	- we move on to the next string	
$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $\neg (p \land q) \equiv \neg p \lor \neg q$ De Morgan's laws $\neg (p \lor q) \equiv \neg p \land \neg q$	P(x). Propositional function P(x) ^{specify ×} Propo	ition	$A \times B = \{(a, b) \mid a \in A \land b \in B\}$	Invers	se Functions		In this way, we construct a bijection from Z ⁺ to the set of Java programs.	
$p \lor (p \land q) = p \land \neg q$ $p \lor (p \land q) = p$ Absorption laws $p \land (p \lor q) = p$	Quantified Statements: Universal quanti Existential quantifier $\exists x P(x)$	er ∀ <i>xP</i> (x);	$A^{n}_{1} \wedge A^{n}_{2} \wedge \dots \wedge A^{n}_{n} - \{(a_{1}^{n}, a_{2}, \dots, a_{n}) \mid a_{i} \in A \text{ for } i = 1, 2, \dots, A^{n}_{n} = \{(a_{1}, a_{2}, \dots, a_{n}) \mid a_{i} \in A \text{ for } i = 1, 2, \dots, A^{n}_{n} \in A^{n}_{n} \}$	n} Let f	be a one-to-one correspondence (bi ne inverse function of f is the function	jection) from the set A to the se on that assigns	t Theorem: Any subset of a countable set is countable.	
$p \lor \neg p \equiv T$ $p \land \neg p \equiv F$ Negation laws	Propositional function $P(x) \xrightarrow{\text{for all/some } x \text{ in de}}$	Proposition Set	Operations	$\frac{10 \text{ and}}{f(a)} =$	= b.	-1	 Proof: Consider a countable set A and its subset B ⊆ A. A is a finite set: B ≤ A < ∞. Thus, B is a finite set and hence 	
A predicate is a statement $P(x_1$	$(x_2,, x_n)$ that contains n variates	A∪ bles Intersectio	B, is the set $\{x \mid x \in A \lor x \in B\}$. on: The intersection of the sets A and B, denoted by $A \cap B$, is	where function of f is denoted by f $f^{-1}(b) = a$ when $f(a) = b$.		countable.	
x ₁ , x ₂ , x _n . It becomes a prop substituted for the variables x ₁ ,	position when specific values ar $x_2, \dots x_n$.	the set {x Difference:	$ x \in A \land x \in B$. : Let A and B be sets. The difference of A and B, denoted by A -		A EA →B B	A f ⁻¹ : B→A B	A is not a time set: Since A is contable, the elements of A can be listed in a sequence. By removing the elements in the list that are not	
The domain (universe) D of the	predicate variables x1, x2,	$K_n = B$, is the set $A - B = \{x\}$	containing the elements of A that are not in B. $ x \in A \land x \notin B \} = A \cap \overline{B}.$		(· <u>;</u>];;)(·	· <u></u> ;)	in <i>B</i> , we can obtain a list for <i>B</i> . I hus, <i>B</i> is countable	
is the set of all values that may variables.	be substituted in place of the	Complem	ent: If A is a set, then the complement of the set A (wi	ith	f is bijective	Inverse of f A	Theorem: If A and B are countable sets, then $A \cup B$ is also countable. set that is not countable is called uncountable. $r_1 = 0.d_{11}d_{12}d_{13}d_{14}$	
The truth set of $P(x_1, x_2,, x_n)$	is the set of all values of the	respect to Two sets A	U), denoted by A is the set $U - A$, $A = \{x \in U \mid x \notin A $ and B are called disjoint if their intersection is empty, i.e., $A \cap B$	A} A bijee ≔ Ø.	ction is called invertible.		$r_2 = 0.d_{21}d_{22}d_{23}d_{24}$	
$P(x_1, x_2,, x_n)$ is true.		Cardina	lity of the Union	1	Prove function f is a bijection	on: injective, surjective	Theorem: The set of real numbers \mathbf{R} is uncountable. where all $d_{ij} \in \{0, 1, 2,, 9\}$.	
Validity of Argument Form:	ositions that end with a conci	$ SION A \cup B = $ The genera	$ A + B - A \cap B $ lization of this result to unions of an arbitrary number of si	ets is	To show that f is injective Show that if $f(x) = f(y)x = y$	y) for all $x, y \in A$, then fi	Proof by Contradiction : Suppose \mathbf{R} is countable. Then, the interval rom 0 to 1 is countable. This implies that the elements of this set can be	
The argument form with premises p	$1, p_2,, p_n$ and conclusion q is vali	l, if called the p	principle of inclusion-exclusion.		o show that f Find specific elements a	$k, y \in A$ such that $x \neq y$	sted as r1, r2, r3,, where	
$(p_1 \land p_2 \land \cdots \land p_n)$ Rule of Inference Name	$\rightarrow q$ is a tautology.	Prove that	$A \cap B = \bar{A} \cup \bar{B}$	15	not injective and $f(x) = f(y)$ To show that Consider an arbitrary ele	ment u.C.R. and End an	A set that is not countable is called uncountable.	
p Moles poiens $p = \frac{p}{p \vee q}$ Addition $p \to q$ $p \to q$	Kule of Inference Name VarP(x) Universal insta	Proof 1:	U sing m embership tables. Consider an arbitrary element <i>x</i> :	1, x	f is surjective element $x \in A$ such that	f(x) = y	Theorem: The set of real numbers \mathbf{R} is uncountable.	
$\neg q$ Modus tollens $\therefore p$ $p \rightarrow q$ $p \rightarrow q$ $p \rightarrow q$ p Conjunct	P(c) for an arbitrary c Universal gene	is in A; 0, dization Proof 2: b	x is not in A. by showing that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$	To	show that f Find a specific element y not surjective for all $x \in A$	$f \in B$ such that $f(x) \neq y$	Proof by Contradiction:	
$\gamma \rightarrow p$ p Conjunct $p \rightarrow q$ Hypothetical syllogion $\frac{q}{\gamma \rightarrow q}$	Image: State of the state o	A∩B ntiation	$\stackrel{\frown}{\subseteq} \overline{A} \cup \overline{B}$:	× # 4 0 P	2 If f is a bijection, the	en it is invertible	We want to show that not all real numbers in the interval between 0 and 1 are in this list. Form a new number called $r = 0.d_1d_2d_3d_4$, where $d_i = 2$ if	
$r \lor q$ $p \lor q$ Disjunctive syllogism $r \lor q \lor r$ Resolution	P(c) for some element $cP(c)$ for some element $cExistential area$		Using the definition of intersection, $\neg((x \in A) \land (x \in B))$ is	s true.	3 Determine the invers	e function	$d_{ii} \neq 2$, and $d_i = 3$ if $d_{ii} = 2$.	
Every student in this class has student	ied algebra.		sy applying De Morgan's law, $\neg(x \in A) \lor \neg(x \in B)$. Thus $e \in B$. Using the definition of the complement of a set, $x \in B$.	s, x ∉ Alon ∃Āor	composition of the functions f and (x) = f(g(x)).	g , denoted by $f \circ g$, is defined by (f	Example: suppose $r1 = 0.75243$ $d1 = 2$ r2 = 0.524310 $d2 = 3$	
Logic Expression 3:	Some student in this class has visi	ed Mexico. 🕨 B	$\overline{A} \in B$. By the definition of union, we see that $x \in \overline{A} \cup \overline{B}$. Thus, $\overline{A \cap A}$.	$\overline{B} \subseteq \overline{A} \cup \overline{B}$	B. The floor function assigns a real nu denoted by x , E.g., 3.5 = 3.	$\underline{umber x} \text{ the largest integer that is } \leq \frac{1}{2}$	$r_5 = 0.13122$) $d_5 = 2$ r $4 = 0.9363633$ $d_4 = 2$	
 A(x): "x has studied algebra" 	Logic Expression 2:	$\bar{A} \cup \bar{B}$	$i \subseteq \overline{A \cap B}$		The ceiling function assigns a real a	number x the smallest integer that is	rt = 0.23222222 dt = 3	
 C(x): "x is in this class" S(x): "x is a student" 	 C(x): "x has visited mexico C(x): "x is a student in this 	class." $\overline{A \cap B} =$	$\{x \mid x \notin A \cap B\}$ by definition of complement		denoted by $ x $. E.g., $ 3.5 = 4$.	$(f \circ g)(a)$	r and r_i differ in the <i>i</i> -th decimal place for all <i>i</i> . This leads to a contradiction.	
Domain: all people	• Domain: all people • $\exists x (C(x) \land M(x))$	=	$\{x \mid \neg(x \in (A \cap B))\}$ by definition of does not belong symb $\{x \mid \neg(x \in (A \cap B))\}$ by definition of does not belong symb	ool	g(a)	/(g(a))	Uncountable Sets: Example 2	
• $\forall x(S(x) \land C(x) \rightarrow A(x))$		=	$ \{x \mid \neg(x \in A \land x \in B)\} $ by definition of intersection $ \{x \mid \neg(x \in A) \lor \neg(x \in B)\} $ by the first De Morgan law for logical	l equivalence		g(a) $f(g(a))$	Theorem : The set $\mathcal{P}(\mathbf{N})$ is uncountable.	
Provertine ds of Proving Theore	ms	=	$\{x \mid x \notin A \lor x \notin B\}$ by definition of does not belong symb $\{x \mid x \in \overline{A} \lor x \in \overline{B}\}$ by definition of complement	ool			Proof by contradiction:	
A proof is a valid argument that e	stablishes the truth of a mathem	atical =	$\{x \mid x \in \overline{A} \cup \overline{B}\}$ by definition of union			108	Assume that $\mathcal{P}(\mathbb{M})$ is countable. This implies that the elements of this set can be listed as S_0, S_1, S_2, \ldots , where $S_i \subseteq \mathbb{N}$, and each $S_i \in \mathbb{N}$ is correspondent uniquely by the bit trian.	
statement. Direct proof 直接证明		= Let	$A \cup B$ by meaning of set builder notation t f be a function from A to B.		Suppose that f is a biject f o f ⁻¹ = I _B and f ⁻¹ o f	tion from A to B. Then $I = I_A$, Since	b ₁₀ b ₁₁ b ₁₂ , where b _{iji} = 1 if $j \in S_i$ and b _{iji} = 0 if $j \notin S_i$	
$p \rightarrow q$ is proved by showing that if p	is true then <i>q</i> follows	A	is the domain of f; B is the codomain of f f(a) = b, b is called the image of a and a is a preima	re of h	$(f^{-1} \circ f)(a) = f$	$f^{-1}(f(a)) = f^{-1}(b) = a$	$- 3_0 = b_{00}b_{01}b_{02}b_{03}\cdots$ $- S_1 = b_{10}b_{11}b_{12}b_{13}\cdots$	
Proof by contrapositive 反证法证	明 Yes. Its truth value?	Th	The range of f is the set of all images of elements of A ,	, denoted	by where I_A , I_B denote the <i>i</i>	$(r^{-1}(b)) = r(a) = b$, identity functions on the sets	$\begin{array}{c} -S_2 = b_{20}b_{21}b_{22}b_{23}\cdots \\ A \\ \vdots \end{array}$	
show the contrapositive $\neg q \rightarrow \neg p$ Proof by contradiction 矛盾证明	True if $P(x)$ is true for all x in the doma False if there is an x in the domain such	n. $f(x)$ that $P(x)$ is false.	A).		and B, respectively.		$all \; b_{ij} \in \{0,1\}.$	
show that $(p \land \neg q)$ contradicts the	(counterexample) assumptions	Ev.	ample:		Note: Identity function is so	metimes denoted by $\iota_A(\cdot)$:	Form a new set called $R = b_0 b_1 b_2 b_3 \dots$, where $b_i = 0$ if $b_{ii} = 1$, and $b_i = 1$ if $b_{ii} = 0$. R is different from each set in the list. Each bit string is unique,	
Proof by cases 分尖讨论证明 give proofs for all possible cases	The converse of $p \rightarrow q$ is $q \rightarrow p$. The converse of $p \rightarrow q$ is $q \rightarrow p$.		$A = \{1, 2, 2\}, R = \{2, 5, c\}$		(1a) $ x = n$ if an	$\iota_A(x) = x$	and <i>R</i> and <i>S_i</i> differ in the <i>i</i> -th bit for all <i>i</i> . Schroder-Bernstein Theorem	
Proof of equivalence 等价性证明	The inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg$	$q \rightarrow \neg p$. q.	$A = \{1, 2, 3\}, D = \{a, b, c\}$	ьâ	(1a) [x] = n if an $ (1b) [x] = n if an$	Id only if $n \le x < n + 1$ id only if $n - 1 < x \le n$		
$p \leftrightarrow q$ is replaced with $(p \rightarrow q) \land (q)$	$(q \rightarrow p)$	-	-c is the image of 1		(1c) $\lfloor x \rfloor = n$ if an (1d) $\lfloor x \rfloor = n$ if an	id only if $x - 1 < n \le x$		
2 is irrational. (Rational	I numbers are those of the form	<u> </u>	- the domain of f is $\{1,2,3\}$		(1d) x = n if an	Id only if $x \le n < x + 1$	Theorem: If A and B are sets with $ A \le B $ and $ B \le A $, then $ A = B $.	
where <i>m</i> and <i>n</i> are integers.)		-	- the codomain of f is $\{a, b, c\}$ 3 -	à c	$(2) x - 1 < \lfloor x \rfloor$	$\leq x \leq x < x + 1$	In other words, if there are one-to-one functions f from A to B and g from B to A , then there is a one-to-one correspondence between A and B , and	
Proof: Suppose that $\sqrt{2}$ is rational. with $\sqrt{2} = a/b$ where $b \neq 0$ and a	Then, there exist integers <i>a</i> and	b - Let A and	- the range of f is $\{a, c\}$ B be two sets. A function from A to B, denoted by	$f: A \rightarrow$	$\begin{array}{c} (3a) \lfloor -x \rfloor = - \lfloor x \\ B, \end{array} $ $\begin{array}{c} (3b) \lceil -x \rceil = - \lfloor x \\ \end{array}$.]	hence $ A = B $.	
that the fraction a/b is in lowest ter	ms.)	, is an assig	nment of exactly one element of B to each element	of A.	(4a) $\lfloor x + n \rfloor = \lfloor x \rfloor$	$x \rfloor + n$	Example: Show that $ (0,1) = (0,1] $	
Since $\sqrt{2} = a/b$, it follows that $2b^2$ integer, it follows that a^2 is even, so	= a ² . By the definition of an even a is even (see Exercise 16).	 A funct 	ion f is called one-to-one or injective if and only if $f = u$ for all u u in the domain of f	f(x) = i	$f(y (4b) \lceil x+n \rceil = \lceil x \end{vmatrix}$	$x \rceil + n$	f(x) = x, g(x) = x/2	
Since a is even, $a = 2k$ for some interval	eger k. Thus, $b^2 = 2k^2$. This imp	lies Onto (si	urjective) function:		Prove that if x is a real number,	then $\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$.	Contor's theorem: If S is a set, then $ S < P(S) $. Countable Sets	
that b ² is even, so b is even. As a result, a and b have a common	factor 2, which contradicts our	A funct	tion f is called onto or surjective if and only if for even	ery b∈B	• $0 \le \epsilon < \frac{1}{2}$: In this case, $2x$ $ 2x = 2n$. Similarly, $x + \frac{1}{2}$	$= 2n + 2\epsilon. \text{ Since } 0 \le 2\epsilon < 1.$ $= n + \frac{1}{2} + \epsilon. \text{ Since } 0 \le \frac{1}{2} + \epsilon < 1.$	have	
assumption.	factor 2, which contradicts our	One-to-one	(bijective) correspondence		have $\lfloor x + \frac{1}{2} \rfloor = n$. Thus, $\lfloor 2 \rfloor$ $\bullet \ \frac{1}{2} \le \epsilon < 1$: In this case, $2x$	$2x = 2n$, and $[x] + [x + \frac{1}{2}] = 2n$ = $2n + 2\epsilon = (2n + 1) + (2\epsilon - 1)$.	the elements of the set in a sequence (indexed by the positive integers):	
Proof Exercise 2		 One-to 	p-one and onto		$\hat{0} \le 2\epsilon - 1 < 1$, we have $\lfloor 2$	[x] = 2n + 1	Cardinality of Sets	
Show that there exist irrational num	bers x and y such that x ^y is ratio	nal. FTOOT Suppos	e that $f: A \rightarrow B$.	F	Proof: This statement is false. Con	isider a counterexample $x = \frac{1}{2}$ a	nd ş.	
Proof: We know that $\sqrt{2}$ is irration	al. Consider the number $\sqrt{2}^{\sqrt{2}}$.	Turka		v	We can find that $\lceil x + y \rceil = 1$, but nfinite geometric series can be con	$\lceil x \rceil + \lceil y \rceil = 2.$ mputed in the closed form for	A set that is either finite or has the same cardinality as the set of positive $x_{1} < 1$ integers Z^{+} is called countable.	
Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational, then we and $x = \sqrt{2}$ with $x^{\gamma} = \sqrt{2}^{\sqrt{2}}$ ration	have two irrational numbers $x =$	$\sqrt{2}$ f is inj	w that Show that if $f(x) = f(y)$ for all $x, y \in A$, sective $x = y$	then \int_{∞}^{∞}	$\int_{-\infty}^{\infty} x^k = \lim_{k \to \infty} \sum_{k=1}^{n} x^k = \lim_{k \to \infty} \frac{x^{n+1}}{n}$	$\frac{k+1-1}{k} = \frac{1}{k} \sum_{k=1}^{\infty} kx^{k-1} = \frac{1}{k}$	$\frac{1}{1-x^{2}}$ If there is a one-to-one function from A to B, the cardinality of A is less	
and $y = \sqrt{2}$ with $x^2 = \sqrt{2}$ ration Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational then w	where $x = \sqrt{2}\sqrt{2}$ and $v = \sqrt{2}$. We	Tereberr	whet C. Find an effective state of C. A such that		$\int_{0}^{n} \int_{0}^{n \to \infty} \sum_{k=0}^{n} \int_{0}^{n \to \infty} x$	-1 $1-x^{k=0}$	than or equal to the cardinality of <i>B</i> , denoted by $ A \leq B $.	
have $x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = 2$ is rational	· · · · · ·	is not in	<i>ijective</i> and $f(x) = f(y)$	x ≠ y	$\sum_{k=1}^{\infty} k^2$	$\frac{n(n+1)(2n+1)}{6}$	Theorem : If there is a <u>one-to-one correspondence</u> between elements in A and B, then the sets A and B have the <u>same cardinality</u> .	
 Applying Rules of Inference for Qua • C(x): x is in this class. Premise 	s: $\exists x(C(x) \land \neg B(x)), \forall x(C(x) \rightarrow P(x))$	Taska	u that Carridar an arbitrary alement u C R and f	Cardina	k = 1 n 2	$n^2(n+1)^2$	Theorem: If A and B are sets with $ A \leq B $ and $ B \leq A $, then	
 B(x): x has read the book. Conclus P(x): x passed the first exam. Step 	ion: $\exists x(P(x) \land \neg B(x))$ Reason	f is su	<i>consider an arbitrary element</i> $y \in B$ and <i>r</i> <i>element</i> $x \in A$ such that $f(x) = y$	ind an	$\sum_{k=1}^{\infty} k^3$	$\frac{n(n+1)}{4}$		
Domain of x: all students Domain of x: all students 1. 3x(C(2. C(a))	$(x) \land \neg B(x)$) Premise $(\neg B(a)$ Existential instantiation from Simulification from (2)	(1) To show	that f Find a specific element $y \in B$ such that f(A set that is either finite or has positive integers \mathbf{Z}^+ is called co	s the same cardinality as the untable. A set that is not o		
4. $\forall x (C)$ 5. $C(a) =$	$(x) \rightarrow P(x)$) Premise $\Rightarrow P(a)$ Universal instantiation from	(4) is not su	injective for all $x \in A$	x) 7 3 6	called uncountable.Why are these set can be enumerated and liste	e called countable?The eleme ed.	nts of the set of real numbers to the set of real numbers. We say that f	
6. $P(a)$ 7. $\neg B(a)$ 8. $P(a)$	Modus ponens from (3) and Simplification from (2) $\neg B(a)$ Conjunction from (6) and (7)	3)			Countable Sets:	Example 1	(x) is $O(g(x))$ if there are constants C and k such that	
9. $\exists x (P)$ Note that although we do not know	$(x) \land \neg B(x)$) Existential generalization fr v which case works, we know that	^{m (8)}	$A f: A \rightarrow B \qquad B \qquad A f: A \rightarrow B$		The set of odd positi	ve integers: $A = \{1, 3, 5, 7,\}$.	is it countable? $ f(x) \le C g(x) ,$	
of the two cases has the desired pro	operty.	roperty P(v))			the set of positive int consider the function	tegers \mathbf{Z}^+ to this set A?	whenever $x > k$. [This is read as " $f(x)$ is big-oh of	
DETS A set is an unordered collecti Proof of Subset:	on or objects. (x x has property P or	-opercy P(X))}			- F	f(n) = 2n - 1	g(x)."]	
 Showing A ⊆ B: if x belongs to A, then Showing A ⊈ B: find a single x ∈ A successful A 	a x also belongs to B. In that $x \notin B$.	```		-+	One-to-one: Sup leads to n = m. Onto: For any a	pose $r(n) = r(m)$. Then, $2n - r$ rbitrary element in $t \in A$, we have	xve an ↓ C• g(x) 40%6 - //	
Prove $A = B$?	ad Cartagian Droduct		Injective function		$n = (t + 1)/2 \in$ Theorem: The	Z ⁺ such that f(n) = t. set of positive rational numbers it	s countable.	
Cardinality, Power Set, Juples, al Cardinality: If there are exactly <i>n</i> distinct interer, we say that S is a finite set	elements in S , where n is a nonnegative of S	(a) One-to-one, e not onto	(b) Onto, (c) One-to-one, (d) Neither one-to-on not one-to-one and onto nor onto	∎e (e) No ●1	Hint: prove by can be listed in a	showing that the set of positive a sequence: specifying the initial	ational numbers	
Power Set: Given a set S, the power set	of S is the set of all subsets of the ∞	t <i>a</i> •	•2 b•	•2 **	Solution: Constructing th	e list: first		
S, denoted by $\mathcal{P}(S)$.		<i>b</i> •		• 3	• 3 list p/q with p+c list p/q with p+c	$\gamma = 2$, next $\gamma = 3$, and so $\gamma = 3$,	2	
Iuples: The ordered n-tuple $(a_1, a_2,, a_n)$ first element and a_2 as its second elemen	s the ordered collection that has a_1 as t and so on.	ts	•4 d• • • 4 d•	•4	on. 1, 1/2, 2, 3, 1/3, 1	L/4,2/3,	\$ 4 log n \$	
Cartesian Product: Let A and B be sets. The C	artesian product of A and B , denoted by A	×						
B , is the set of all ordered pairs (a, b) , where a	E A and DE B							

$1+2+\cdots+n=O(n^2)$	Big-O Notation: Example	Theorem: Let <i>m</i> be a positi $c = d \pmod{m}$ then	ve integer. If $a \equiv b \pmod{m}$ and	Alg	orithm: Computing div and mod	Algorithm: Binary Modular Exponentiation Compute $b^n \mod m$: Let $n = (a_{k-1}a_1a_0)_2$.		
$n! = O(n^n)$	Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$. Proof: We can readily estimate the size of $f(x)$ when $x > 1$:	a+	$c \equiv b + d \pmod{m}$	Con	npute $q = a \operatorname{div} d$ and $r = a \operatorname{mod}$	$b^n = b^{a_{k-1}\cdot 2^{k-1}+\dots+a_1\cdot 2+a_0} = b^{a_{k-1}\cdot 2^{k-1}} \cdots b^{a_1\cdot 2} \cdot b^{a_0}$		
$\log n = O(n \log n)$ $\log_a n = O(n) \text{ for an integer } a \ge 2$ $0 \le x^2 + 2x + 1 \le x^2 + 2x^2 + x^2 = 4x^2.$		$ac \equiv bd \pmod{m}$		U.	edure division algorithm (a: integer, d: positive integer)	Successively finds $b \mod m$, $b^2 \mod m$, $b^4 \mod m$, , $b^{2^{k-1}} \mod m$, and multiplies together the terms b^{2^j} , where $a_j = 1$.		
$n^a = O(n^b)$ for integers $a \le b$	This is because when $x > 1$, $x < x^2$ and $1 < x^2$. Thus, let $C = f(x) \le C x^2 $, whenever $x > k$.	Corollary: Let <i>m</i> be a positi	ve integer and let a and b be integers. T	q := 0 r :=	0 a	procedure modular exponentiation(b: integer, $n = (a_{k+1}a_{k+2}a_1a_0)_2$, m: positive integers)		
$n^a = O(2^n)$ for an integer a	Hence, $f(x) = O(x^2)$. Note that there are multiple ways for proving this. Alternatively	$(a+b) \mod m =$	((a mod m) + (b mod m)) mod m	while	$e r \ge d$ r := r - d	$x := 1$ $power := b \mod m$		
	estimate the size of $f(x)$ when $x > 2$: $0 \le x^2 + 2x + 1 \le x^2 + x^2 + x^2 - 2x^2$	$ab \mod m = ($	(a mod m)(b mod m)) mod m	q if a <	r := q + r < 0 and $r > 0$ then r := d - r	for $i := 0$ to $k - 1$ if $a_i = 1$ then $x_i := (x \cdot power) \mod m$ $power := (power \cdot power) \mod m$		
	$0 \le x + 2x + 1 \le x + x + x = 3x$ It follows that $C = 3, k = 2$	t \mathbf{Z}_m be the set of nonnegat	tive integers less than m : {0, 1,, m	- 1}. q	r := a - r q := -(q+1) $rn (a, r) \{a = a div d is the auotient, r = a mod d is the$	return $x \{x \text{ equals } b^n \mod m \}$		
Big-Omega Notation	ı	+m: $a + m b = (a + b) \mod m \cdot m$: $a \cdot m b = ab \mod m$ Arithmetic Modulo m			ran (q, r) (q = a threat is the quotient, r = a mode a structure range of the structure of	Recall that $ab = ((a \mod m)(b \mod m))(\mod m)$		
Let f and g be functions	from the set of integers or the set of real	The operations $+_m$ and \cdot_m sat	isfy many of the same properties of ordi	nary comple Algor	extiy $O(n^2)$, where $n = \max(\log a, \log d)$ rithm: Binary Modular Exponentiation	Primes		
numbers to the set of real are positive constants C a	I numbers. We say that $f(x)$ is $\Omega(g(x))$ if there and k such that	Closure: If <i>a</i> and <i>b</i> belong to Z_m , then $a + _m b$ and $a \cdot _m b$ belong to			he algorithm to find 3 ⁶⁴⁴ mod 645:	A integer p that is greater than 1 is called a prime if the only positive		
	$ f(x) \ge C g(x) $	Associativity: If a, b, and c belong to \mathbf{Z}_m , then (a+mb)+mc = a+m(b+mc) and $(a+mb)+mc = a+m(b+mc)$			integers) x := 1 power ::: b mod m for i:: 0 to k = 1	factors of p are 1 and p. • If n is composite, then n has a prime divisor less than or equal to \sqrt{n} .		
whenever $x > k$. [This is	read as " $f(x)$ is big-Omega of $g(x)$."]			if a ₀ -1 then x:= (x-power) mod m power> (power power) mod m return x x equals b ⁶ mod m }		Let a and b be integers, not both 0. The largest integer d such that $d a$ and $d b$ is called the greatest common divisor of a and b, denoted by		
Let f and g be functions	from the set of integers or the set of real	Additive inverses: If $a \neq 0$ and $a \in \mathbb{Z}_m$, then $m - a$ is an add of a modulo m . That is, $a + m(m - a) = 0$ and $0 + m 0 = 0$.		verse The al	Igorithm initially sets $x = 1$ and power = 3 mod 645 = 3. The	$gcd(a, b)$. Let $a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$ and $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$. Then, $\dots (a, b) = \min(a, b) = \min(a, b) = \min(a, b_1)$		
 numbers to the set of real f(x) is O(g(x)) and 	I numbers.We say that $f(x)$ is $\Theta(g(x))$ if	Commutativity: If $a, b \in Z_m$	then $a +_m b = b +_m a$.	binary (i = 0. Because $a_0 = 0$, we have $x = 1$ and power $= 3^2 \mod 645 = 9 \mod 645 = 9$; i = 1: Because $a_1 = 0$, we have $x = 1$ and power $= 9^2 \mod 645 = 81 \mod 645 = 81$;	$gcd(a, b) = p^{-m(c_1(c_1))}p^{-m(c_2(c_2))}p^{-m(c_2(c_2))}p^{-m(c_2(c_2))}$ The least common multiple of a and b is the smallest positive integer that		
• $f(x)$ is $\Omega(g(x))$. When $f(x)$ is $\Theta(g(x))$, we	$a = a_1 + b_2 + f(x)$ is hig. That $a = a_1(x) + b_2 + f(x)$ is	Distributivity: If $a, b, c \in \mathbb{Z}_m$, then			i = 2. Because a ₂ = 1, we have x = 1 × 31 and 645 = 81 and power = 81 ³ and 645 = 0.661 mod 645 = 111; i = 3. Because a ₂ = 0, we have x = 81 and power = 111 ³ and 645 = 12,321 and 645 = 66; i = 4. Because a ₄ = 0, we have x = 81 and power = 66 ³ mod 645 = 1436 mod 645 = 436; i = 5. Because a ₆ = 0, we have x = 81 and power = 480 ³ mod 645 = 436; because a ₆ = 0, we have x = 81 and power = 480 ³ .	is divisible by both a and b, denoted by lcm(a, b).Let $a = \rho_1^{a_1} \rho_2^{a_2} \dots \rho_n^{a_n}$ and $b = \rho_1^{b_1} \rho_2^{b_2} \dots \rho_n^{b_n}$. Then,		
of order $g(x)$, and that $f(x)$	(x) and $g(x)$ are of the same order.	$a \cdot_m (b +_m)$ $(a +_m b) \cdot_m$	$c) = (a \cdot_m b) +_m (a \cdot_m c)$ $c = (a \cdot_m c) +_m (b \cdot_m c)$		 i = 6: Because a₀ = 0, we have x = 81 and power = 126² mod 645 = 15.876 mod 645 = 396; i = 7: Because a₁ = 1, we find that x = (81 · 396) mod 645 = 471 and power = 396² mod 645 = 156,816 mod 645 = 60 mod 645 = 60 mod 645 = 60 mod 645 = 60 mod 645 = 111; i = 8: Because a₂ = 0, we have x = 471 and power = 81² mod 645 = 6501 mod 645 = 111; 	$\operatorname{lcm}(a,b) = p^{\max(a_1,b_2)} p^{\max(a_2,b_2)} p^{\max(a_n,b_n)}.$		
If $f_1(x)$ is $O(g_1(x))$	(x)) and $f_2(x)$ is $O(g_2(x))$, then	Base-b Expansion	S	ì	$x = 9$. Because $w_0 = 1$, we find that $x = (471 \cdot 111) \mod 645 = 36$.	GCD as Linear Combinations		
$(f_1 + f_2)(x) = O$	$(\max(g_1(x) , g_2(x))).$	procedure <i>base b expansion</i> (<i>n</i> , <i>b</i> : positive integers wi		Euc	lidean Algorithm			
then $(f_1(x)) = O(g_1)$	(x) and $f_2(x)$ is $O(g_2(x))$	$q \coloneqq n$ $k \coloneqq 0$		Com	puting the greatest common divisor of two integers directly from the	Bezout'S Theorem: If a and b are positive integers, then there exist integers s and t such that		
NP-Complete	$- O(g_1(x)g_2(x)).$	while $(q \neq 0)$		facto	ors of the two integers.	gcd(a, b) = sa + tb.		
P: Problems that are solv	able using an algorithm with polynomial	$a_k \coloneqq q \mod b$ $q \coloneqq q \operatorname{\mathbf{div}} b$		For 1	Step 1: 287 = 91 - 3 + 14	This equation is called Bezout's identity.		
NP: Problems for which a	a solution can be checked in polynomial time.	k := k + 1 return(a,, a, a ₂){(a ₁)	(a, a, a_n) is base <i>b</i> expansion of <i>n</i> }		Step 2: $91 = 14 \cdot 6 + 7$ Step 3: $14 = 7 \cdot 2 + 0$	We can use extended Euclidean algorithm to find Bezout's identity.		
NP-Hard: Problems at le	east as hard as the hardest problems in NP.	1 Cturn (u_{k-1} ,, u_1 , u_0)($(u_k$.	1 u1u0/6 is base o expansion of Aj	gcd($(287,91)=\gcd(91,14)=\gcd(14,7)=7$	Lemma: If a, b, c are positive integers such that $gcd(a, b) = 1$ and $a bc$, then $a c$.		
NP-Complete: If any of worst-case time algorithm	these problems can be solved by a polynomial , then all problems in the class NP can be solved	Binary Addition	n of Integers			Lemma: If p is prime and $p a_1a_2a_n$, then $p a_i$ for some i .		
by polynomial worst-case	time algorithms. a =	$(a_{n-1}a_{n-2}a_1a_0), b = (b_n)$	$b_{n-1}b_{n-2}b_1b_0)$	Linear	Congruences	Modular Inverse		
NP-H	ard NP-Hard	procedure add(a, b: positive integ	ers)	A congr	ruence of the form $ax \equiv b \pmod{m}$, where <i>m</i> is a positive integer base integers, and <i>x</i> is a variable is called a linear congruence.	я,		
NP-Com	plete	the binary expansions of a and b a	re $(a_{n-1}, a_{n-2},, a_0)_2$ and $(b_{n-1}, b_{n-2},, b_0)_2$, respective	The sol	lutions to a linear congruence $ax \equiv b \pmod{m}$ are all integers x	Modular Inverse : An integer \bar{a} such that $\bar{a}a \equiv 1 \pmod{m}$ is said to be		
NP	P = NP ≃ NP-Complete	for $j := 0$ to $n - 1$ $d := \lfloor (a_j + b_j + c)/2 \rfloor$		that sat Modula	tisty the congruence. ar Inverse : An integer \overline{a} such that $\overline{a}a \equiv 1 \pmod{m}$ is said to be	an inverse of a modulo m.		
P		$s_j := a_j + b_j + c - 2d$ c := d		an inver	rise of a modulo <i>m</i> .	When does inverse exist?		
P≠1	NP P = NP	<pre>s_n := c return(s₀,s₁,, s_n){the binary expa </pre>	nsion of the sum is $(s_n, s_{n-1},, s_0)_2$ }	Solve tr	$x \equiv \overline{a}b \pmod{m}$ by multiplying both sides by a . $x \equiv \overline{a}b \pmod{m}.$	Theorem: If a and m are relatively prime integers and $m > 1$, then an inverse of a module m gright. The inverse is unique module m. That is		
Functions of the Sa	ame Type	Algorithm: Binary Mul	tiplication of Integers	How to f	find inverses?	 there is a unique positive integer a less than m that is an inverse of a 		
		$a = (a_{n-1}a_{n-2}a_1a_0)_2, b =$	$(b_{n-1}b_{n-2}b_1b_0)_2$	Example	tended Euclidean algorithm: e: Find an inverse of 101 modulo 4620. That is, find a such that	modulo <i>m</i> and		
Definition: Two positiv	ve functions $f(n)$ and $g(n)$ are of the same typ	$e^{ie} = a(b_0 2^0 + b_1 2^1 + b_n - b_0 2^0 + b_0 2^0$	$(a_{12}^{n-1}) = a(b_0 2^0) + a(b_1 2^1) + a(b_{n-1} 2^n)$	$\binom{n-1}{\overline{a} \cdot 101} \equiv$ With ext	tended Euclidean algorithm, we obtain $gcd(a, b) = sa + tb$, i.e.,	\bullet every other inverse of a modulo m is congruent to \bar{a} modulo $m.$		
c1.	$g(n^{a_1})^{b_1} \leq f(n) \leq c_2 g(n^{a_2})^{b_2}$	the binary expansions of a and b a for $j := 0$ to $n - 1$	are $(a_{n-1}, a_{n-2},, a_0)_2$ and $(b_{n-1}, b_{n-2},, b_0)_2$, respective	l = -35 ty} coefficien	$\sim 4620 + 1601 \cdot 101$. It tells us that -35 and 1601 are Bezout nts of 4620 and 101. We have	If we obtain an arbitrary inverse of a modulo m , how to obtain the inverse that is less than m^2		
for all large n , where a_1	, b_1 , c_1 , a_2 , b_2 , c_2 are some positive constants	if $b_j = 1$ then $c_j = a$ shifted j p else $c_j := 0$	laces	Thur 16	1 mod 4620 = 1601 · 101 mod 4620.	GCD as Linear Combinations		
Example:		${c_o, c_1,, c_{n-1}}$ are the partial product p := 0	s} × 101 110 000	Suppose $r_0 = a a$	that a and b are positive integers with $a \ge b$. Let and $r_1 = b$.	We can use extended Euclidean algorithm to find Bezout's identity.		
All polynomials a	re of the same type	for $j := 0$ to $n - 1$ $p := add(p,c_i)$ return p {p is the value of ab }	110	-	$r_0 = r_1q_1 + r_2$ $0 \le r_2 < r_1,$ $r_1 = r_2q_2 + r_3$ $0 \le r_3 < r_2,$	Example: Express $gcd(252, 198) = 18$ as a linear combination of 252 and 108		
Polynomials and	exponentials are of different type	25.	ALGORITHM 1 The Euclidean Algorithm.			Solution: To show that $gcd(252, 198) = 18$, the Euclidean algorithm uses		
If a and b are int	tegers with $a \neq 0$,		procedure $gcd(a, b: positive integers)$ x := a		$r_{n:2} = r_{n:1}q_{n:1} + r_n 0 \le r_n < r_{n:1}, r_{n:1} = r_nq_n.$	these divisions: $252 = 1 \cdot 198 + 54$		
 we say that 	a divides b if there is an integer	c such that $b = ac$, o	y := b while $y \neq 0$ $r := x \mod y$	gcd(a, b	$b) = gcd(r_0, r_1) = = gcd(r_{n-1}, r_n) = gcd(r_n, 0) = r_n$	$198 = 3 \cdot 54 + 36$ $54 = 1 \cdot 36 + 18$		
equivalently	b/a is an integer.	d h is a multiple of	x := y y := r	orollaries of	Bezout's Theorem	36 = 2 · 18. Substituting the above expressions:		
a. (We use the no	tations $a b, a \nmid b$) $4 24$ $4 \nmid 5$		return x{gcd(a, b) is x}	emma: If a, b,	, c are positive integers such that $\gcd(a,b)=1$ and $a bc,$	$18 = 54 - 1 \cdot 36 = 54 - 1 \cdot (198 - 3 \cdot 54) = 4 \cdot 54 - 1 \cdot 198.$		
Divisibility			ti	ien a c. roof: Since go	d(a, b) = 1, by Bezout's Theorem there exist s and t such	$18 = 4 \cdot (252 - 1 \cdot 198) - 1 \cdot 198 = 4 \cdot 252 - 5 \cdot 198.$		
All integers divisible b Question: Let n and	y d > 0 can be enumerated as:, -kd,, d be two positive integers. How many positive	-2d, -d, 0, d, 2d,, kd, ive integers not exceeding	·· ti S	hat $1 = sa + tb$ ince $a bc$, we h	b. This yields $c = sac + tbc$. have $a tbc$. Then, since $a sac$, we have $a (sac + tbc)$, i.e.,	Theorem: A prime factorization of a positive integer, where the primes		
n are divisible by d?		0 0	а	с.		are in nondecreasing order, is unique.		
Answer: Count the nur	mber of integers such that $0 < kd \le n$. Therefo	re, there are $\lfloor n/d \rfloor$ such	L	emma: If <i>p</i> is	prime and $p a_1a_2a_n$, then $p a_i$ for some <i>i</i> .	Proof (by contradiction): Suppose that the positive integer <i>n</i> can be written as a product of primes in two distinct ways:		
Divisibility: Propert	ies		($n = p_1 p_2 p_s$ and $n = q_1 q_2 q_t$				
Let <i>a</i> , <i>b</i> , <i>c</i> be intege	ers. Then the following hold:		The	eorem: If a	and <i>m</i> are relatively prime integers and $m > 1$, then dulo <i>m</i> exists. The inverse is unique modulo <i>m</i> .	an temove all common primes from the factorizations to get		
(i) if $a b$ and $a c$, t	then $a (b + c)$ Proof: Suppose that $a b$ and $a c$. it follows that there are integers s	Then, from the definition of divisibility and t with $b = as$ and $c = at$. Hence,	/. Pro	of: Since go	$\operatorname{cd}(a,m)=1$, there are integers s and t such that	$p_{i_1}p_{i_2}p_{i_u}=q_{j_1}q_{j_2}q_{j_ u}$		
(ii) if $a b$ then $a bc$ (iii) if $a b$ and $b c$, t	then $a c$ Therefore a divides $b + c = as$	+ at = a(s + t).			sa + tm = 1.	Flue, $p_{i_1} q_{j_1}q_{j_2}q_{j_v}$. It then follows that p_{i_1} divides q_{j_k} for some k,		
Corollary If a, b,	c are integers, where $a \neq 0$, such	that $a b$ and $a c$, then	Her sa =	ice sa + tm i = 1 (mod m	$\equiv 1 \pmod{m}$. Since $tm \equiv 0 \pmod{m}$, it follows that m . This means that s is an inverse of $a \mod m$.	at Theorem* : Let $gcd(a, m) = d$. Let $m' = m/d$ and $a' = a/d$. The congruence $ax \equiv b \pmod{mod m}$ has solutions if and only if $d \mid b$.		
a (mb+nc) whe	enever m and n are integers. Proof: By	part (ii) and part (i) of Properties.	Ho	w to prove	the uniqueness of the inverse?	 If d b, then there are exactly d solutions, where by "solution" we mean a congruence class mod m 		
The Division	Algorithm		Sup ba	pose that b ≡ 1 (mod m	and c are both inverses of a modulo m. Then n) and $ca \equiv 1 \pmod{m}$. Hence, $ba \equiv ca \pmod{m}$.	• If x_0 is a solution, then the other solutions are given by $x_0 + m', x_0 + 2m',, x_0 + (d-1)m'$.		
If a is an integer and r with 0 < r < d	nd <i>d</i> a positive integer, then there are such that	e unique integers q and	Bec	ause $gcd(a, a) = b(mc)$	m) = 1 it follows that $b \equiv c \pmod{m}$.	Proof:		
7, with 0 <u>-</u> 7 < 0,	a = dq + r		Note	that aax mo	od $m = ((\bar{a}a \mod m)(x \mod m)) \mod m = x \mod m$	only if : Let x_0 be a solution, then $ax_0 - b = km$. Thus, $ax_0 - km = b$. Since $d \mid ax_0 - km$, we must have $d \mid b$.		
In this case, d is a	called the divisor, <i>a</i> is called the div	idend, q is called the	Thus	, x mod <i>m</i> =	$= \bar{a}ax \mod m = \bar{a}b \mod m$, which implies that	"if": Suppose that $d \mid b$. Let $b = kd$. Since $gcd(a, m) = d$, there exist integers <i>s</i> and <i>t</i> such that $d = as + mt$. Multiplying both sides by <i>k</i> .		
In this case, we u	se the notations $q = a \operatorname{div} d$ and r	$= a \mod d$. The	orem (The Chinese Remainder Theorem): Let	<i>m</i> ₁ , <i>m</i> ₂ ,	$x \equiv ab \pmod{m}$. , m_n be Proof : To show such a solution exists: Let $M_k = m/k$	Then, $D = ask + mtk$. Let $x_0 = sk$. Then $ax_0 \equiv b \pmod{m}$. m_k for $k = 1, 2,, n$		
Congruence Relation		pairv a _n ar	vise relatively prime positive integers greater t bitrary integers. Then, the system	han 1 and a ₁	$a_2, \dots, a_k = m_1 m_2 \dots m_k$. Thus, $m_k = m_1 \dots m_{k-1} \dots \dots m_{k-1} \dots \dots$	erse of <i>M_k</i> modulo		
If a and b are integers and	<i>m</i> is a positive integer, then <i>a</i> is congruent to <i>b</i> modulo	m if m divides $a - b$, denoted	$x \equiv a_1 \pmod{m_1}$ $x \equiv a_2 \pmod{m_2}$		$x = a_1 M_1 y_1 + a_2 M_2 y_2 + \dots + a_n M_n$	y _n .		
Congruence Relation	a congruence and <i>m</i> is its modulus. $15 \equiv 3 \pmod{3}$	$12) -1 \equiv 11 \pmod{6}$	$x \equiv a_n \pmod{m_n}$		It is checked that x is a solution to the n congruences			
Let <i>m</i> be a positive integer. The integers <i>a</i> and <i>b</i> are congruent modulo $m = m_1 m_2 \dots m_n.$ (That is, there is a solution x with $0 \le x < m$, and all other solutions are $Since M_k = m_1 m_k$, we have x mod $m_k = a_k M_k y_k$ mod m_k . Since								
m if and only if there is	an integer k such that	cong How to prove the	ruent modulo m to this solution.) uniqueness of the solution modulo m?		$M_k y_k \equiv 1 \pmod{m_k}$, we have $a_k M_k y_k \mod m_k = a_k$ $x \equiv a_k \pmod{m_k}$.	Back Substitution		
	a = b + km	Proof: Suppose t	$x \equiv 2 \pmod{3}$	We may also solve systems of linear congruences with pairwise relatively prime moduli $m_1, m_2,, m_n$ by back substitution.				
 If part: If there is a <i>km</i> = a - b. Hence 	n integer k such that $a = b + km$, then e, m divides $a - b$, so that $a \equiv b \pmod{mod}$	$\begin{array}{ccc} n & As x and x' give \\ m \end{pmatrix}, & x = x' is a multimeter \\ \end{array}$	eir difference	$x \equiv 3 \pmod{5}$ $x \equiv 2 \pmod{7}$	Example: (1) $x \equiv 1 \pmod{5}$			
• Only if part: If $a \equiv$	$b \pmod{m}$, by the definition of congr	uence, we As m_1, m_2, \ldots	, m_n be pairwise relatively prime positive inte	gers, their	• Let $m = 3 \cdot 5 \cdot 7 = 105$, $M_1 = m/3 = 35$, $M_2 = m/3$	$(2) x \equiv 2 \pmod{6}$ 5 = 21, and (3) $x \equiv 3 \pmod{7}$		
know that $m (a - b) = km$ so the	b). This means that there is an integer $a = b + km$	k such that product \overline{m} divides $x \equiv x' \pmod{m}$	s $x - x'$, and thus x and x' are congruent mo	dulo m, i.e.,	 M₃ = m/7 = 15. Compute the inverse of M_k modulo m_k: 	According to (1), $x = 5t + 1$, where t is an integer. Substituting this expression into (2), we have $5t + 1 \equiv 2 \pmod{6}$, which report that $t = 5 \pmod{6}$.		
2 <i>D</i> – Kiii, 50 tild		This implies that	given a solution x with $0 \le x < m$, all other	solutions are	▶ $35 \cdot 2 \equiv 1 \pmod{3}$ $y_1 = 2$ ▶ $21 \equiv 1 \pmod{5}$ $y_2 = 1$ ▶ $15 \equiv 1 \pmod{7}$ $y_2 = 1$	means unset $t = 3$ (mod 0). Thus, $T = 0u + 5$, where u is an integer. Substituting $x = 5t + 1$ and $t = 6u + 5$ into (3), we have $30u + 26 \equiv 3$ (mod 7) which implies that $u = 6$ (mod 7). Thus		
		congruent module	o m to this solution.		Compute a solution x: $x = 2 \cdot 35 \cdot 2 + 3 \cdot 21 \cdot 1 + 2 \cdot 15 \cdot 1 = 233 = 22$ (mm	u = 7v + 6, where v is an integer, and $u = 0$ (mod r). Thus, u = 7v + 6, where v is an integer.		
					• The solutions are all integers x that satisfy $x \equiv 23$ (mo	mod 105). congruence,		