
Propositional Logic
Proposition: a declarative sentence that is either true or false (not both).

Conventional letters used for propositional variables are p, q, r , s, ...

Truth value of a proposition: true, denoted by T; false, denoted by F.
Compound propositions are build using logical connectives:

Negation ¬
Conjunction ∧
Disjunction ∨

Exclusive or ⊕
Implication →
Biconditional ↔

Tautology: A compound proposition 
that is always true, no matter what the 
truth values of the propositional 
variables that occur in it.

Contradiction: A compound proposition that is always false.

The compound propositions p and q are called logically 
equivalent, denoted by p ≡ q, if p ↔ q is a tautology.

Useful Law

Predicate Logic and Quantified 
Statements

Predicate Logic: make statements with variables: 
P(x).
Propositional function P(x) sp=ecify⇒ x 

Proposition

Quantified Statements: Universal quantifier ∀xP(x); 
Existential quantifier ∃xP(x)

Propositional function P(x)
for all/some

=⇒x in domain
Proposition

Validity of Argument Form:
The argument form with premises p1, p2, ..., pn and conclusion q is valid, if

(p1 ∧ p2 ∧ · · · ∧ pn) → q is a tautology.

Methods of Proving Theorems

A proof is a valid argument that establishes the truth of a mathematical
statement.

Direct proof 直接证明
p → q is proved by showing that if p is true then q follows 
Proof by contrapositive反证法证明
show the contrapositive ¬q → ¬p
Proof by contradiction矛盾证明
show that (p ∧ ¬q) contradicts the assumptions

Proof by cases分类讨论证明
give proofs for all possible cases
Proof of equivalence等价性证明
p ↔ q is replaced with (p → q) ∧ (q ← p)

Proof Exercise 1

Prove that

√
m2 is irrational. (Rational numbers are those of the form n ,

where m and n are integers.)

Proof:√ Suppose that
√
2 is rational. Then, there exist integers a and b

with 2 = a/b, where b ̸= 0 and a and b have no common factors (so
that the fraction a/b is in lowest terms.)

√
Since 2 = a/b, it follows that 2b2 = a2. By the definition of an even
integer, it follows that a2 is even, so a is even (see Exercise 16).

Since a is even, a = 2k for some integer k. Thus, b2 = 2k2. This implies
that b2 is even, so b is even.

As a result, a and b have a common factor 2, which contradicts our
assumption.

Proof Exercise 2
Show that there exist irrational numbers x and y such that xy is rational.

Proof: We know that
√
2 is irrational. Consider the number

√
2
√
2
.

Case 1: If 2
√ √

2
is rational, then we have two irrational numbers x =

√
2

and y =
√
2 with xy =

√
2
√
2
rational.

√ √
2
is irrational, then we let x =

√
2
√
2
and y =

√
2. WeCase 2: If 2

have xy = (
√
2
√
2
)
√
2 = 2 is rational.

Note that although we do not know which case works, we know that one
of the two cases has the desired property.

Sets A set is an unordered collection of objects. {x | x has property P or property P (x ))}

Proof of Subset:

Showing A ⊆ B: if x belongs to A, then x also belongs to B.

Showing A ⊈ B: find a single x ∈ A such that x ∈/ B.

Prove A = B?

Cardinality, Power Set, Tuples, and Cartesian Product
Cardinality: If there are exactly n distinct elements in S , where n is a nonnegative 
integer, we say that S is a finite set and n is the cardinality of S , denoted by |S |.

Power Set: Given a set S , the power set of S is the set of all subsets of the set 
S , denoted by P (S ).

Tuples: The ordered n-tuple (a1, a2, ..., an) is the ordered collection that has a1 as its 
first element and a2 as its second element and so on.

Cartesian Product: Let A and B be sets. The Cartesian product of A and B  , denoted by A × 
B , is the set of all ordered pairs (a, b), where a ∈ A and b ∈ B  :

A × B = {(a, b) | a ∈ A ∧ b ∈ B  }

Conditional Statement (Implication) p → q 
if p then q   p implies q p is sufficient for q   q is necessary for p   q follows from p

q unless ¬p (Or equivalently, if you does not get an A, it cannot be the case 
that you get 100 on the final.)
p only if q (Or equivalently, only if you get an A, you may get 100 on the final.)
(“If” indicates sufficient condition; “only if” indicates necessary condition)

The converse of p → q is q → p.

The contrapositive of p → q is ¬q → ¬p.
The inverse of p → q is ¬p → ¬q.

A predicate is a statement P (x1, x2, ..., xn) that contains n variables 
x1, x2, ... xn. It becomes a proposition when specific values are 
substituted for the variables x1, x2, ... xn.
The domain (universe) D of the predicate variables x1, x2, ... xn 
is the set of all values that may be substituted in place of the 
variables.

The truth set of P (x1, x2, ..., xn) is the set of all values of the 
predicate variables (x1, x2, ..., xn) such that the proposition
P (x1, x2, ..., xn) is true.

Question 1: Is ∀xP(x) a proposition?

Yes. Its truth value?

True if P(x) is true for all x in the domain.

False if there is an x in the domain such that P(x) is false.
(counterexample)

Every student in this class has studied algebra.

Logic Expression 3:

A(x): “x has studied algebra”.

C (x): “x is in this class”

S(x): “x is a student”

Domain: all people

∀x(S(x) ∧ C (x) → A(x))

Some student in this class has visited Mexico.

Logic Expression 2:

M(x): “x has visited Mexico”.

C (x): “x is a student in this class.”

Domain: all people

∃x(C (x) ∧M(x))

Argument: A sequence of propositions that end with a conclusion.

Applying Rules of Inference for Quantified Statements

C (x): x is in this class.

B(x): x has read the book.

P(x): x passed the first exam.

Domain of x : all students

Premises: ∃x(C (x) ∧ ¬B(x)), ∀x(C (x)→ P(x))

Conclusion: ∃x(P(x) ∧ ¬B(x))

If A ⊆ B , but A ̸= B , then we say A is a proper subset of B , i.e.,
∀x (x ∈ A → x ∈ B ) ∧ ∃x (x ∈ B ∧ x ∈/ A), denoted by A ⊂ B .

Prove that ∅ ⊆ S .

Prove that S ⊆ S .

Power Set  Given a set S , the power set of S is the set of all subsets of 
the set S , denoted by P(S).

Example: What is the power set of the set {0, 1, 2}?

P({0, 1, 2}) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}

Cartesian Product
Let A and B be sets. The Cartesian product of A and B, denoted by A × 
B, is the set of all ordered pairs (a, b), where a ∈ A and b ∈ B:

A× B = {(a, b) | a ∈ A ∧ b ∈ B}

A1 × A2 × ...× An = {(a1, a2, ..., an) | ai ∈ Ai for i = 1, 2, ..., n}

An = {(a1, a2, ..., an) | ai ∈ A for i = 1, 2, ..., n}

Difference: Let A and B be sets. The difference of A and B, denoted by A − 
B, is the set containing the elements of A that are not in B.
A − B = {x | x ∈ A ∧ x ∈/ B} = A ∩ B̄.

Complement: If A is a set, then the complement of the set A (with
respect to U), denoted by Ā is the set U − A, Ā = {x ∈ U | x ∈/ A}

Set Operations
Union: Let A and B be sets. The union of the sets A and B, denoted by
A ∪ B, is the set {x | x ∈ A ∨ x ∈ B}.

Intersection: The intersection of the sets A and B, denoted by A ∩ B, is
the set {x | x ∈ A ∧ x ∈ B}.

Two sets A and B are called disjoint if their intersection is empty, i.e., A ∩ B = ∅.

Cardinality of the Union
|A ∪ B| = |A| + |B| − |A ∩ B|

The generalization of this result to unions of an arbitrary number of sets is 
called the principle of inclusion–exclusion.

Prove that A ∩ B = Ā ∪ B̄

Proof 1: Using membership tables. Consider an arbitrary element x : 1, x 
is in A; 0, x is not in A.
Proof 2: by showing that A ∩ B ⊆ Ā ∪ B̄ and Ā ∪ B̄ ⊆ A ∩ B

A ∩ B ⊆ Ā ∪ B̄:
▶ Suppose that x ∈ A ∩ B. By the definition of complement, x ∈/ A ∩ B.

Using the definition of intersection, ¬((x ∈ A) ∧ (x ∈ B)) is true.
▶ By applying De Morgan’s law, ¬(x ∈ A) ∨ ¬(x ∈ B)). Thus, x ∈/ A or

x ∈/ B. Using the definition of the complement of a set, x ∈ Ā or
x ∈ B̄.

▶ By the definition of union, we see that x ∈ Ā∪ B̄.Thus, A ∩ B ⊆ Ā∪ B̄.
Ā ∪ B̄ ⊆ A ∩ B

Proof 3: Using set builder and logical equivalences

Let f be a function from A to B.
A is the domain of f ; B is the codomain of f
If f (a) = b, b is called the image of a and a is a preimage of b. 
The range of f is the set of all images of elements of A, denoted by
f (A).
We also say f maps A to B.

Let A and B be two sets. A function from A to B, denoted by f : A→ B,
is an assignment of exactly one element of B to each element of A.
One-to-one (injective) function:
▶ A function f is called one-to-one or injective if and only if f (x) = f (y)

implies x = y for all x , y in the domain of f .

Onto (surjective) function:
▶ A function f is called onto or surjective if and only if for every b ∈ B 

there is an element a ∈ A such that f (a) = b.
One-to-one (bijective) correspondence
▶ One-to-one and onto

Proof for One-to-One and Onto

One-to-One and Onto

Prove that “for a function f : A → B with |A| = |B | = n, f is one-to-one if 
and only if f is onto.”

Proof: Since |A| = n, let {x1, x2, ..., xn} be elements of A.

If f is one-to-one, then f is onto (direct proof ): Suppose that 
f is one-to-one. According to the definition of one-to-one 
function,
f (xi ) ̸= f (xj ) for any i ̸= j . Thus, |f (A)| = |{f (x1), ..., f (xn)}| = n. 
Since |B | = n and f (A) ⊆ B , we have f (A) = B .

If f is onto, then f is one-to-one (contradiction): Suppose that f is onto. 
Suppose that f is not one-to-one. Thus, f (xi ) = f (xj ) for some i ̸= j . 
Then, |{f (x1), ..., f (xn)}| ≤ n − 1. Note that |f (A)| = |B | = n, which 
leads to a contradiction.

Two Functions on Real Numbers

Let f1 and f2 be functions from A to R. Then f1 + f2 and f1f2 are 
also functions from A to R defined for all x ∈ A by

(f1 + f2)(x) = f1(x) + f2(x)

(f1f2)(x) = f1(x)f2(x)

Inverse Functions

Let f be a one-to-one correspondence (bijection) from the set A to the set
B. The inverse function of f is the function that assigns
to an element b belonging to B the unique element a in A such that
f (a) = b.

The inverse function of f is denoted by f −1.
Hence, f −1(b) = a when f (a) = b.

A bijection is called invertible.

Proof for Inverse Function
1 Prove function f is a bijection: injective, surjective

2 If f is a bijection, then it is invertible

3 Determine the inverse function
Let f be a function from B to C and let g be a function from A to B . The 
composition of the functions f and g , denoted by f ◦ g , is defined by (f ◦ g )
(x ) = f (g (x )).

The floor function assigns a real number x the largest integer that is ≤ x , 
denoted by ⌊x ⌋. E.g., ⌊3.5⌋ = 3.

The ceiling function assigns a real number x the smallest integer that is ≥ x , 
denoted by ⌈x ⌉. E.g., ⌈3.5⌉ = 4.

Note: Identity function is sometimes denoted by ιA(·):

ιA(x) = x

1
2Prove that if x is a real number, then ⌊2x⌋ = ⌊x⌋+ ⌊x + ⌋.

Proof: Let x = n + ϵ, where n is an integer and 0 ≤ ϵ < 1.

0 ≤ ϵ < 1
2 : In this case, 2x = 2n + 2ϵ. Since 0 ≤ 2ϵ < 1, we have

1
2

1
2

1
2

1
2 2

⌊2x⌋ = 2n. Similarly, x + = n + + ϵ. Since 0 ≤ + ϵ < 1, we
have ⌊x + ⌋ = n. Thus, ⌊2x⌋ = 2n, and ⌊x⌋+ ⌊x + 1⌋ = 2n.
1
2 ≤ ϵ < 1: In this case, 2x = 2n + 2ϵ = (2n + 1) + (2ϵ− 1). Since
0 ≤ 2ϵ− 1 < 1, we have ⌊2x⌋ = 2n + 1. ....

1
2 2

Prove or disprove that ⌈x + y⌉ = ⌈x⌉+ ⌈y⌉ for all real numbers x and y .

Proof: This statement is false. Consider a counterexample x = and 1 .
We can find that ⌈x + y⌉ = 1, but ⌈x⌉+ ⌈y⌉ = 2.

Infinite geometric series can be computed in the closed form for |x | < 1.

A set that is either finite or has the same cardinality as the set of 
positive integers Z+ is called countable. A set that is not countable is 
called uncountable.Why are these called countable?The elements of the 
set can be enumerated and listed.

Countable Sets: Example 1

The set of odd positive integers: A = {1, 3, 5, 7, ...}. Is it countable?

Proof: Using the definition: If there is a one-to-one correspondence from
the set of positive integers Z+ to this set A?

Consider the function
f (n) = 2n − 1

One-to-one: Suppose f (n) = f (m). Then, 2n − 1 = 2m − 1, which
leads to n = m.

Onto: For any arbitrary element in t ∈ A, we have an
n = (t + 1)/2 ∈ Z+ such that f (n) = t.

Theorem: The set of positive rational numbers is countable.

Hint: prove by showing that the set of positive rational numbers 
can be listed in a sequence: specifying the initial term and rule

Countable Sets: Example 4

Theorem: The set of finite strings S over a finite alphabet A is countably
infinite. (Assume an alphabetical ordering of symbols in A)

For example, let A = {‘a’, ‘b’, ‘c’}. Then, set
S = {‘’, ‘a’, ‘b’, ‘c’, ‘ab’ ..., ‘aaaaa’, ...}

The set of all Java programs is countable.

Theorem: Any subset of a countable set is countable.

Proof: Consider a countable set A and its subset B ⊆ A.

A is a finite set: |B| ≤ |A| < ∞. Thus, |B| is a finite set and hence
countable.

A is not a finite set: Since A is countable, the elements of A can be
listed in a sequence. By removing the elements in the list that are not
in B, we can obtain a list for B. Thus, B is countable

Theorem: If A and B are countable sets, then A ∪ B is also countable.

A set that is not countable is called uncountable.

Theorem: The set of real numbers R is uncountable.

Proof by Contradiction: Suppose R is countable. Then, the interval 
from 0 to 1 is countable. This implies that the elements of this set can be 
listed as r1, r2, r3, ..., where

r1 = 0.d11d12d13d14
r2 = 0.d21d22d23d24
r3 = 0.d31d32d33d34

where all dij ∈ {0, 1, 2, ..., 9}.

Uncountable Sets: Example 1

A set that is not countable is called uncountable.

Theorem: The set of real numbers R is uncountable.

Proof by Contradiction:
We want to show that not all real numbers in the interval between 0 and 1
are in this list. Form a new number called r = 0.d1d2d3d4, where di = 2 if
dii ̸= 2, and di = 3 if dii = 2.

r and ri differ in the i-th decimal place for all i .
This leads to a contradiction.

Uncountable Sets: Example 2

Theorem: The set P(N) is uncountable.

Form a new set called R = b0b1b2b3..., where bi = 0 if bii = 1, and bi = 1
if bii = 0. R is different from each set in the list. Each bit string is unique,
and R and Si differ in the i-th bit for all i .

Schroder-Bernstein Theorem

Theorem: If A and B are sets with |A| ≤ |B| and |B| ≤ |A|, then
|A| = |B|.

In other words, if there are one-to-one functions f from A to B and g from
B to A, then there is a one-to-one correspondence between A and B, and
hence |A| = |B|.

Example: Show that |(0, 1)| = |(0, 1]|

f (x) = x , g(x) = x/2

Cantor’s theorem: If S is a set, then |S | < |P(S)|.
Countable Sets

Theorem: An infinite set is countable if and only if it is possible to list
the elements of the set in a sequence (indexed by the positive integers):

Cardinality of Sets

A set that is either finite or has the same cardinality as the set of positive 
integers Z+ is called countable.

If there is a one-to-one function from A to B, the cardinality of A is less 
than or equal to the cardinality of B, denoted by |A| ≤ |B|.

Theorem: If there is a one-to-one correspondence between elements in A 
and B, then the sets A and B have the same cardinality.

Theorem: If A and B are sets with |A| ≤ |B| and |B| ≤ |A|, then
|A| = |B|.

BiBig-O Notation

Let f and g be functions from the set of integers or the 
set of real numbers to the set of real numbers.We say that f 
(x ) is O (g (x )) if there are constants C and k such that

|f (x )| ≤ C |g (x )|,

whenever x > k . [This is read as “f (x  ) is big-oh of 
g (x ).”]



Number Theory
If a and b are integers with a ̸= 0,

we say that a divides b if there is an integer c such that b = ac , or
equivalently b/a is an integer.

In this case, we say that a is a factor or divisor of b, and b is a multiple of
a. (We use the notations a|b, a ∤ b) 4|24 4 ∤ 5

Divisibility
All integers divisible by d > 0 can be enumerated as:...,−kd , ...,−2d ,−d , 0, d , 2d , ..., kd , ...

Question: Let n and d be two positive integers. How many positive integers not exceeding 
n are divisible by d ?

Answer: Count the number of integers such that 0 < kd ≤ n. Therefore, there are ⌊n/d ⌋ such 
positive integers.

Divisibility: Properties
Let a, b, c be integers. Then the following hold:

(i) if a|b and a|c , then a|(b + c)

(ii) if a|b then a|bc for all integers c

(iii) if a|b and b|c , then a|c

Proof: Suppose that a|b and a|c . Then, from the definition of divisibility,
it follows that there are integers s and t with b = as and c = at. Hence,

b + c = as + at = a(s + t).

Therefore, a divides b + c .

Corollary If a, b, c are integers, where a ̸= 0, such that a|b and a|c , then 
a|(mb + nc) whenever m and n are integers. Proof: By part (ii) and part (i) of Properties.

The Division Algorithm
If a is an integer and d a positive integer, then there are unique integers q and 
r , with 0 ≤ r < d, such that

a = dq + r
In this case, d is called the divisor, a is called the dividend, q is called the 
quotient, and r is called the remainder.

In this case, we use the notations q = a div d and r = a mod d. 
Congruence Relation

If a and b are integers and m is a positive integer, then a is congruent to b modulo m if m divides a − b, denoted by a 
≡ b (mod m). This is called congruence and m is its modulus. 15 ≡ 3 (mod 12) −1 ≡ 11 (mod 6)

Congruence Relation
.
Let m be a positive integer. The integers a and b are congruent modulo 
m if and only if there is an integer k such that

a = b + km

If part: If there is an integer k such that a = b + km, then
km = a− b. Hence, m divides a− b, so that a ≡ b (mod m).

Only if part: If a ≡ b (mod m), by the definition of congruence, we
know that m|(a− b). This means that there is an integer k such that
a− b = km, so that a = b + km.

Big-O Notation: Example

Show that f (x) = x2 + 2x + 1 is O(x2).

Proof: We can readily estimate the size of f (x) when x > 1:

0 ≤ x2 + 2x + 1 ≤ x2 + 2x2 + x2 = 4x2.

This is because when x > 1, x < x2 and 1 < x2. Thus, let C = 4, k = 1:

|f (x)| ≤ C |x2|, whenever x > k .

Hence, f (x) = O(x2).

Note that there are multiple ways for proving this. Alternatively, we can
estimate the size of f (x) when x > 2:

0 ≤ x2 + 2x + 1 ≤ x2 + x2 + x2 = 3x2.

It follows that C = 3, k = 2. ...

Big-Omega Notation

Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers.We say that f (x) is Ω(g(x)) if there
are positive constants C and k such that

|f (x)| ≥ C |g(x)|

whenever x > k . [This is read as “f (x) is big-Omega of g(x).”]

Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers.We say that f (x) is Θ(g(x)) if

f (x) is O(g(x)) and

f (x) is Ω(g(x)).

When f (x) is Θ(g(x)), we say that f (x) is big-Theta of g(x), that f (x) is
of order g(x), and that f (x) and g(x) are of the same order.

If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then
(f1 + f2)(x) = O(max(|g1(x)|, |g2(x)|)).
If f1(x) is O(g1(x)) and f2(x) is O(g2(x)) 
then (f1f2)(x) = O(g1(x)g2(x)).
NP-Complete
P: Problems that are solvable using an algorithm with polynomial
worst-case complexity

NP: Problems for which a solution can be checked in polynomial time.

NP-Hard: Problems at least as hard as the hardest problems in NP.

NP-Complete: If any of these problems can be solved by a polynomial
worst-case time algorithm, then all problems in the class NP can be solved
by polynomial worst-case time algorithms.

Functions of the Same Type

Definition: Two positive functions f (n) and g(n) are of the same type if

c1g(n
a1)b1 ≤ f (n) ≤ c2g(n

a2)b2

for all large n, where a1, b1, c1, a2, b2, c2 are some positive constants.

Example:

All polynomials are of the same type
Polynomials and exponentials are of different types.

Theorem: Let m be a positive integer. If a ≡ b (mod m) and
c ≡ d (mod m), then

a+ c ≡ b + d (mod m)

ac ≡ bd (mod m)

Corollary: Let m be a positive integer and let a and b be integers. Then,

(a+ b) mod m = ((a mod m) + (b mod m)) mod m

ab mod m = ((a mod m)(b mod m)) mod m

Let Zm be the set of nonnegative integers less than m: {0, 1, ...,m − 1}.
+m: a+m b = (a+ b) mod m ·m: a ·m b = ab mod m

Arithmetic Modulo m

The operations +m and ·m satisfy many of the same properties of ordinary
addition and multiplication of integers:

Closure: If a and b belong to Zm, then a+m b and a ·m b belong to Zm.

Associativity: If a, b, and c belong to Zm, then
(a+m b) +m c = a+m (b +m c) and (a ·m b) ·m c = a ·m (b ·m c).

Identity elements: a+m 0 = a and a ·m 1 = a.

Additive inverses: If a ̸= 0 and a ∈ Zm, then m − a is an additive inverse
of a modulo m. That is, a+m (m − a) = 0 and 0 +m 0 = 0.

Commutativity: If a, b ∈ Zm, then a+m b = b +m a.

Distributivity: If a, b, c ∈ Zm, then

a ·m (b +m c) = (a ·m b) +m (a ·m c)

(a+m b) ·m c = (a ·m c) +m (b ·m c)

Base-b Expansions

Binary Addition of Integers
a = (an−1an−2...a1a0), b = (bn−1bn−2...b1b0)

Algorithm: Binary Multiplication of Integers

a = (an−1an−2...a1a0)2, b = (bn−1bn−2...b1b0)2

ab = a(b02
0 + b12

1 + + bn−12
n−1) = a(b02

0) + a(b12
1) + + a(bn−12

n−1)

.

Algorithm: Computing div and mod
Compute q = a div d and r = a mod 
d :

O(q log a) bit operations. But there exist more efficient algorithms with 
complextiy O(n2), where n = max(log a, log d)

Algorithm: Binary Modular Exponentiation
Compute bn mod m: Let n = (ak−1...a1a0)2.

bn = bak−1·2k−1+···+a1·2+a0 = bak−1·2k−1 · · · ba1·2 · ba0

Successively finds b mod m, b2 mod m, b4 mod m, . . . , b2
k−1

mod m,
and multiplies together the terms b2

j
, where aj = 1.

Recall that
ab ≡ ((a mod m)(b mod m))(mod m).

Algorithm: Binary Modular Exponentiation
Use the algorithm to find 3644 mod 645:

The algorithm initially sets x = 1 and power = 3 mod 645 = 3. The
binary expansion of 644 is (1010000100)2. Here are the steps used:

Primes

A integer p that is greater than 1 is called a prime if the only positive
factors of p are 1 and p.

If n is composite, then n has a prime divisor less than or equal to
√
n.

Let a and b be integers, not both 0. The largest integer d such that d |a
and d |b is called the greatest common divisor of a and b, denoted by
gcd(a, b). Let a = p1

a1p2
a2 ...pn

an and b = p1
b1p2

b2 ...pn
bn . Then,

gcd(a, b) = pmin(a1,b1)pmin(a2,b2)...pmin(an,bn)

The least common multiple of a and b is the smallest positive integer that
is divisible by both a and b, denoted by lcm(a, b).Let a = p1

a1p2
a2 ...pn

an and

b = p1
b1p2

b2 ...pn
bn . Then,

lcm(a, b) = pmax(a1,b1)pmax(a2,b2)...pmax(an,bn).

Euclidean Algorithm

Computing the greatest common divisor of two integers directly from the
prime factorizations can be time consuming since we need to find all
factors of the two integers.

For two integers 287 and 91, we want to find gcd(287, 91).

Step 1: 287 = 91 · 3 + 14

Step 2: 91 = 14 · 6 + 7

Step 3: 14 = 7 · 2 + 0

gcd(287, 91) = gcd(91, 14) = gcd(14, 7) = 7

GCD as Linear Combinations

Bezout’S Theorem: If a and b are positive integers, then there exist
integers s and t such that

gcd(a, b) = sa+ tb.

This equation is called Bezout’s identity.

We can use extended Euclidean algorithm to find Bezout’s identity.

Lemma: If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc,
then a|c .

Lemma: If p is prime and p|a1a2...an, then p|ai for some i .

Linear Congruences

A congruence of the form ax ≡ b (mod m), where m is a positive integer,
a and b are integers, and x is a variable, is called a linear congruence.

The solutions to a linear congruence ax ≡ b (mod m) are all integers x
that satisfy the congruence.

Modular Inverse: An integer ā such that āa ≡ 1 (mod m) is said to be
an inverse of a modulo m.

Solve the congruence ax ≡ b (mod m) by multiplying both sides by ā.

x ≡ āb (mod m).

Modular Inverse

Modular Inverse: An integer ā such that āa ≡ 1 (mod m) is said to be
an inverse of a modulo m.

When does inverse exist?
Theorem: If a and m are relatively prime integers and m > 1, then an
inverse of a modulo m exists. The inverse is unique modulo m. That is,

there is a unique positive integer ā less than m that is an inverse of a
modulo m and

every other inverse of a modulo m is congruent to ā modulo m.

If we obtain an arbitrary inverse of a modulo m, how to obtain the inverse
that is less than m?

How to find inverses?

Using extended Euclidean algorithm:

Example: Find an inverse of 101 modulo 4620. That is, find ā such that
ā · 101 ≡ 1 (mod 4620).

With extended Euclidean algorithm, we obtain gcd(a, b) = sa+ tb, i.e.,
1 = −35 · 4620 + 1601 · 101. It tells us that −35 and 1601 are Bezout
coefficients of 4620 and 101. We have

1 mod 4620 = 1601 · 101 mod 4620.

Thus, 1601 is an inverse of 101 modulo 4620.

Suppose that a and b are positive integers with a ≥ b. Let
r0 = a and r1 = b.

gcd(a, b) = gcd(r0, r1) = ... = gcd(rn−1, rn) = gcd(rn, 0) = rn

GCD as Linear Combinations

We can use extended Euclidean algorithm to find Bezout’s identity.

Example: Express gcd(252, 198) = 18 as a linear combination of 252 and
198.

Solution: To show that gcd(252, 198) = 18, the Euclidean algorithm uses
these divisions:

Substituting the above expressions:

18 = 54− 1 · 36 = 54− 1 · (198− 3 · 54) = 4 · 54− 1 · 198.

18 = 4 · (252− 1 · 198)− 1 · 198 = 4 · 252− 5 · 198.

Corollaries of Bezout’s Theorem

Lemma: If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc,
then a|c .

Proof: Since gcd(a, b) = 1, by Bezout’s Theorem there exist s and t such
that 1 = sa+ tb. This yields c = sac + tbc.

Since a|bc, we have a|tbc. Then, since a|sac , we have a|(sac + tbc), i.e.,
a|c .

Lemma: If p is prime and p|a1a2...an, then p|ai for some i .

(This will be proven in later chapters. Mathematical induction.)




