Two sets A, B are equal
$\forall x(x \in A \leftrightarrow x \in B)$ ．
$\forall x(x \in A \leftrightarrow x \in B)$.
If $A \subseteq B$ ，but $A \neq B$ ，then we say A is a proper subset of B ，i．，
$\forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x A)$ denoted by $A \subset B$ ．
－Conventional letters used for propositional variables are p, q, r, s, \ldots
Compound propositions are build using logical connectives：
－Negation $\neg \quad$－Exclusive or $\oplus \quad \begin{aligned} & \text { Tautology：A compound proposition } \\ & \text { that is always true，no matter what }\end{aligned}$ －Conjunction \wedge－Implication $\rightarrow \quad \begin{aligned} & \text { that is always true，no matter wha } \\ & \text { truth values of the propositional }\end{aligned}$ －Disjunction \vee－Biconditional \leftrightarrow variables that occur in it．
Conditional Statement（Implication）$p \rightarrow q$

q unless $\neg p$（Or equivalently，
that you get 100 on the final．）．
p only if q（Or equivalently，only if you get an A ，you may get 100 on the final．）
（＂If＂indicates sufficient condition；＂only if＂indicates ne cessary condition）
Contradiction：A compound proposition that is always false The compound propositions p and q are called logically
equivalent，denoted by $p \equiv q$ ，if $p \leftrightarrow q$ is a tautology．

$(p \vee q) \vee r \equiv p \vee(q \vee r)$ $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$	Associaicic laws
$p \vee(q \wedge n)=(p \vee q) \wedge(p \vee r)$ $p \wedge(q \vee)=(p \vee q) \vee(p \wedge \wedge)$	Distribuire laws
$\begin{gathered} \sim(p \wedge q)=\neg p \vee \sim q \\ (p \vee q)=\neg p \wedge \sim q \end{gathered}$	De Mogesms＇s lans
$\begin{aligned} & p \vee(p \wedge)=p \\ & p \wedge(p \vee q)=p \end{aligned}$	Absortion laws
$p=$ T	Negation

Predicate L Statements

Predicate Logic：make statements with vari
$P(x)$ ．
Prosositional function $P(x)$ Pecifif \times Proposition

By definition，we need to prove $\forall x(x \in \emptyset \rightarrow x \in S)$ ．Since the empty set does not contain any element，$x \in \emptyset$ is always false．
Then the implication is always true．

Prove that $S \subseteq S$

Proof：

 By definition，obviously true．
Power Set Given a set S ，
the set S ，denoted by $\mathcal{P}(S)$ ．

Example：What is the power set of the set $\{0,1,2\}$ ？
$\mathcal{P}(\{0,1,2\})=\{0,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$

Cartesian Product

Let A and B be sets．The Cartesian product of A and B ，denoted B ，is the set of all ordered pairs (a, b) ，where $a \in A$ and $b \in B$ ：

$A \times B=\{(a, b) \mid a \in A \wedge b \in B\}$
$A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i}\right.$ for $\left.i=1,2, \ldots, n\right\}$
$A^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A\right.$ for $\left.i=1,2, \ldots, n\right\}$
$A^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A\right.$ for $\left.i=1,2, \ldots, n\right\}$

ogic Expression 3：

－$A(x)$ ：＂x has studied algebra＂．Logic Expression 2：
－$C(x)$ ：＂x is in this class＂－$M(x)$ ：＂x has visited Mexico＂
$S(x)$ ：＂x is a student＂
－Domain：all people
－$\forall x(S(x) \wedge C(x) \rightarrow A(x))$
pretthatds of Proving Theorems
A proof is a valid argument that establishes the truth of a mathematical tatement．

Direct proof 直接证明

$p \rightarrow q$ is proved by showing that if p is true then q follows
Proof by contrapositive 㤆证法证明 Question $1:$ Is truth value？
show the contrapositive $\neg q \rightarrow \neg p \quad$ True if $P(x)$ is true for all x in the domain．
 show that $(p \wedge \neg q)$ contradicts the assumptions
show that $(p \wedge \neg q)$ contradicts the assumptions
Proof by cases \int 类讨论证明 The converse of $p \rightarrow q$ is $q \rightarrow p$ $\begin{array}{ll}\text { give proofs for all possible cases } & \text { The converse of } p \rightarrow q \text { is } q \rightarrow p . \\ \text { The contrapositive of } p \rightarrow q \text { is } \neg q\end{array}$ Proof of equivalence等价性证明 The inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$ ． $p \leftrightarrow q$ is replaced with $(p \rightarrow q) \wedge(q \leftarrow p)$
Proof Exercise 1
$\overline{2}$ is irrational．（Rational numbers are those of the form $\frac{m}{n}$ ， where m and η are integers．
Proof：Suppose that $\sqrt{2}$ is rational．Then，there exist integers a and b with $\sqrt{2}=a / b$ ，where $b \neq 0$ and a and b have no common factors（so
that the fraction that the fraction a / b is in lowest terms．） Since $\sqrt{2}=a / b$ ，it follows that $2 b^{2}=a^{2}$ ．By the definition of an even integer，it follows that a^{2} is even，so a is even（see Exercise 16） Since a is even，$a=2 k$ for some integer k ．Thus，$b^{2}=2 k^{2}$ ．This implies that b^{2} is even，so b is even．
As a result，a and b have a common factor 2 ，which contradicts ou assumption．
Proof Exercise 2
Show that there exist irrational numbers x and y such that x^{y} is rational．
Proof：We know that $\sqrt{2}$ is irrational．Consider the number $\sqrt{2}^{\sqrt{2}}$ ．
Case 1：If $\sqrt{2}^{\sqrt{2}}$ is rational，then we have two irrational numbers $x=\sqrt{2}$ and $y=\sqrt{2}$ with $x^{y}=\sqrt{2}^{\sqrt{2}}$ rational．
Case 2：If $\sqrt{2}^{\sqrt{2}}$ is irrational，then we let $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$ ．We have $x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=2$ is rational Applying Rules of Inference for Quantified Statements

Note that although we do not know which case works，we know that on of the two cases has the desired property．
 Proof of Subset：
Showing $A \subseteq B$ ：if x belongs to A ，then x also belongs to B ．
－Showing A
Prove $A=B$ ？
Cardinality Power Set，Tuples，and Cartesian Product Carcinality：If there are exactly n distinct elements in S ，where n is a nonnegative Power Set：Given a
S ，denoted by $\mathcal{P}(S)$ ．
Tuples：The ordered n－tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordere
first element and a_{2} as its second element and so

he set $\{x \mid x \in A \wedge x \in B\}$ ．

Difference：Let A and B be sets．The difference of A and B ，denoted by A
B ，is the set containing the elements of A that are not in B ，
$x \in A \wedge x \notin B\}=A \cap \bar{B}$.
Complement：If A is a set，then the complement of the set A（with
respect to U ），denoted by \bar{A} is the set $U-A, \bar{A}=\{x \in U \mid x \notin A\}$ sets A and B are called disjoint if their intersection is empty，i．e．，$A \cap B=A$ ， Cardinality of the Union The generalization of this result to unions of an arbitrary number of sets is Prove that $A \cap B=\bar{A} \cup \bar{B}$ Proof 1：Using membership tables．Consider an arbitrary element x ： $1, x$ is in $A ; 0, x$ is not in A ．

Suppose that $x \in \overline{A \cap B}$ ．By the definition of complement，$x \notin A \cap B$ ． 2 If f is a bijection，then it is invertible Using the definition of intersection，$\neg((x \in A) \wedge(x \in B)$ ）is true．
By applying De Morgan＇s law，$\neg(x \in A) \vee \neg(x \in B))$ Th By applying De Morgan＇s law，$\neg(x \in A) \vee \neg(x \in B))$ ．Thus，$x \notin A$

2 If f is a bijection，then it is inverti
3 Determine the inverse function

By the definition of union，we see that $x \in \bar{A} \cup \bar{B}$ ．Thus，$\overline{A \cap B} \subset \bar{A} \cup \bar{B}$ ．
$\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$
Proof 3：Using set builder and logical equivalences
$\overline{A \cap B}=\{x \mid x \notin A \cap B\}$
rove olly if fis onto．＂

roof：Since $|A|=n$ ，let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be elements of

is one－to－one，then f is onto（direct proof）：Suppose is one－to－one．According to the definition of one－to－one

function，
$f\left(x_{i}\right) \neq f\left(x_{j}\right)$ for any $i \neq j$ ．Thus，$|f(A)|=\left|\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\}\right|=n$ ．
Since $|B|=n$ and $f(A) \subseteq B$ ，we have $f(A)=B$ ． If f is onto，then fis one－to－one（contradiction）：Suppose that fis onto． Suppose that f is not one－toone．Thus $f\left(f x_{i}\right)=f\left(x_{j}\right)$ forsome $i \neq j$ ．
Then，$\left|\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\}\right| \leq n-1$ ．Note that $|f(A)|=|B|=n$ ，which Two Functions on Real Numbers

Let f_{1} and f_{2} be functions from A to \boldsymbol{R} ．Then $f_{1}+f_{2}$ and $f_{1} f_{2}$ are also functions from A to \boldsymbol{R} defined for all $x \in A$ by
Example： $f_{1}=x-1$ and $\left.f_{2}=x^{3}+1 \quad \begin{array}{rl}\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x) \\ \left(f_{1} f_{2}\right)(x)=f_{1}(x)\end{array}\right)$ Th $\left(f_{1}+f_{2}\right)(x)=x^{3}+x$
$\left(f_{1} f_{2}\right)(x)=x^{4}-x^{3}+x-1$
Let f be a one－to－one correspondence（bijection）from the B．The inverse function of f is the function that assigns
an element b belonging to B the unique element a in an element b belonging to B the unique element a in A such that
$f(a)=b$ ．

Theorem：The set of finite strings S over a finite alphabet A is countably
infinite．（Assume an alphabetical ordering of simbals in A ）
ordering of symbols in A ）
For example，let $A=\{$＇a＇，＇b＇，＇c＇$\}$ ．Then，set
$S=\left\{{ }^{\prime}\right.$＇，＇a＇，＇b＇，＇c＇，＇ab＇... ＇aaaa＇，...$\left.\}\right\}$

Solution：

We show that the strings can be listed in a sequence．First list （i）all the strings of length 0 in alphabetical order．
（ii）then all the strings of length 1 in lexicographic order
（iii）and so on．
This implies a bijection from \mathbf{Z}^{+}to S ．
The set of all Java programs is countable．

Solution

Let S be the set of strings constructed from the characters
hich may appear in a Java program．Use the ordering from the feed the string ike each string in tur
－if the complier says YES，this is a syntactically correct Java
program，we add this program to the list
－we move on to the next string
In this way，we construct a bijection from \mathbf{Z}^{+}to the set of
ava programs．

Thent Any se countable．

Proof：Consider a countable set A and its subset $B \subseteq A$ ．
－A is a finite set：$|B| \leq|A|<\infty$ ．Thus，$|B|$ is a finite set and hence countable．
A is not a finite set：Since A is countable，the elements of A can be sted in a sequence．By removing the elements in the list that are in B ，we can obtain a list for B ．Thus，B is countable

Theorem：If A and B are countable sets，then $A \cup B$ is also countable． $r_{2}=0 . d_{21} d_{22} d_{23} d_{24}$ $r_{3}=0 . d_{31} d_{32} d_{33} d_{34}$
Proof for Inverse Function

To show that f is injective	Show that if $f(x)=f(y)$ for all $x, y \in A$ ，then $x=y$
To show that f is not injective	Find specific elements $x, y \in A$ such that $x \neq y$ and $f(x)=f(y)$
To show that f is suriective	Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that $f(x)=y$
To show that f	Find a specific element $y \in B$ such that $f(x) \neq y$ for all $x \in A$

$(x)=f(g(x))$ ．
 The ceiling function assigns a real number x the smallest integer that is $\geq x$
denoted by $[x \mid$ ． E, g, ．$[3.5]=4$ ．

－Suppose that f is a bijection from A to B ．Then
$f \circ f^{-1}=I_{B}$ and $f^{-1} \circ f=I_{A}$ ．Since
heorem：The set of real numbers \mathbf{R} is uncountable．where all $d_{i j} \in\{0,1,2, \ldots, 9\}$ Proof by Contradiction：Suppose \mathbf{R} is countable．Then，the interval from 0 to 1 is countable．This implies that the elements of this set can be
listed as $r_{1}, r_{2}, r_{3}, \ldots$ ，where

Uncountable Sets：Example 1
A set that is not countable is called uncountable．
Theorem：The set of real numbers \mathbf{R} is uncountable．

Proof by Contradiction：

We want to show that not all real numbers in the interval between 0 and 1 are in this list．Form a new number called $r=0 . d_{1} d_{2} d_{3} d_{4}$ ，where $d_{i}=2$ if $d_{i i} \neq 2$ ，and $d_{i}=3$ if $d_{i i}=2$ ．

B	$=\{x \mid x \notin A \cap B\}$		by definition of complement
	$=\{x \mid \neg(x \in(A \cap B))$		by definition of does not belong symbol
	$=\{x \mid \neg(x \in A \wedge x \in B)\}$		by definition of intersection
	$=\{x \mid \neg(x \in A) \vee \neg(x \in B)$	by the first De Morgan law for logical equivalences	
	$=\{x \mid x \notin A \vee x \notin B\}$		by definition of does not belong symbol
	$=\{x \mid x \in \bar{A} \vee x \in \bar{B}\}$		by definition of complement
	$=\{x \mid x \in \bar{A} \cup \bar{B}\}$		by definition of union

Let f be a function from A to B ．
$\left(f^{-1} \circ f\right)(a)=f^{-1}(f(a))=f^{-1}(b)=a$
$\left(f \circ f^{-1}\right)(b)=f\left(f^{-1}(b)\right)=f(a)=b$,
$\left(f \circ \circ^{-1}\right)(b)=f\left(f^{-1}(b)\right)=f(a)=b$,
I_{A}, I_{B} denote the identity functions on the sets A
and B ，respectively．

The range of f is the set of all images of elements of A ，denoted by $f(A)$ ．

Example：

${ }_{L_{A}}(x)=x$

$A=\{1,2,3\}, B=\{a, b, c\}$
$-c$ is the image of 1
-2 is a preimage of a
－the domain of f is $\{1,2,3\}$
－the codomain of f is $\{a, b, c\}$
－the range of f is $\{a, c\}$
Let A and B be two sets．A function from A to B ，denoted by $f: A \rightarrow$ is an assignment of exactly one element of B to each element of A ． One－to－one（injective）function

A function f is called one－to－one or injective if and only if $f(x)=f$
mplies $x=y$ for all x, y in the domain of f ．
A function f is called onto or surjective if and only if for every $b \in B$
there is an element $a \in A$ such that $f(a)=b$ ．
One－to－one（bijective）correspo
One－to－one and onto
Proof for One－to－One and Onto
Suppose that $f: A \rightarrow B$ ．

Suppose that $f: A \rightarrow B$.
To show that f is injective Show that if $f(x)=f(y)$ for all $x, y \in A$, then $x=y$ To show that f is not injective Find specific elements $x, y \in A$ such that $x \neq y$ and $f(x)=f(y)$ To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that $f(x)=y$ To show that f is not surjective Find a specific element $y \in B$ such that $f(x) \neq y$ for all $x \in A$

Proof：Th
We can fin

（1a）$\lfloor x\rfloor=n$ if and only if $n \leq x<n+1$
（1b）$\lceil x\rceil=n$ if and only if $n-1<x \leq n$
（1c）$\lfloor x\rfloor=n$ if and only if $x-1<n \leq x$
（1d）$\lceil x\rceil=n$ if and only if $x \leq n<x+1$
（2）$x-1<\lfloor x\rfloor \leq x \leq\lceil x\rceil<x+1$
（3a）$\lfloor-x\rfloor=-\lceil x\rceil$
（3b）$\lceil-x\rceil=-\lfloor x\rfloor$
（4a）$\lfloor x+n\rfloor=\lfloor x\rfloor+n$
（4b）$\lceil x+n\rceil=\lceil x\rceil+n$
Prove that if x is a real number，then $\lfloor 2 x\rfloor=\lfloor x\rfloor+\left\lfloor x+\frac{1}{2}\right\rfloor$.

 have $\left[x+\frac{1}{2}\right]=n$ ．Thus，$[2 x]=2 n$ ，and $[x]+\left[x+\frac{1}{2}\right]=2 n$ ． $-\frac{1}{2} \leq \epsilon<1$ ： 1 nthis case $2 x=2 n+2 \epsilon(2 n+1)+(2 \epsilon-1)$ ．Since $0 \leq 2 \epsilon-1<1$ ，we have $[2 x]=2 n+1 . .$.

郎 Cardinality of Sets
Theorem
$|A|=|B|$ ．
In other words，if there are one－to－one functions f from A to B and g from B to A ，then there is a one－to－one correspondence between A and B ，and －
Example：Show that $|(0,1)|=\mid(0,1]$
$f(x)=x, g(x)=x / 2$
Cantor＇s theorem：If S is a set，then $|S|<|P(S)|$ ． Countable Sets
tet f and g be functions from the set of integers or the set of real numbers to the set of real numbers．We say that
(x) is $O(g(x))$ if there are constants C and k such that
$\sum_{=0} x^{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} x^{k}=\lim _{n \rightarrow \infty} \frac{x^{n+1}-1}{x-1}=\frac{1}{1-x} \sum_{k=0}^{\infty} k x^{k-1}=\frac{1}{\left.(1-x)^{2}\right)^{2}}$ If there is a one－to－one function from A to B ，the cardinality of A is less

$\sum_{k=1}^{n} k^{2}$	that to the cardinality of B ，denoted by $\|A\| \leq\|B\|$ ．

