# Basic Discrete Mathematics 

## Review 1

## Meng Zhang

ZJU-UIUC Institute
Zhejiang University
Email: mengzhang@intl.zju.edu.cn

## Topics of This Course

Logic and Mathematical Proofs


## Coverage for First Midterm

1 Logic and Mathematical Proofs
2 Sets and Functions

3 Complexity of Algorithms
4 Number Theory

## Lecture Schedule

1 Logic and Mathematical Proofs
2 Sets and Functions

3 Complexity of Algorithms
4 Number Theory

## Propositional Logic

Proposition: a declarative sentence that is either true or false (not both).

- Conventional letters used for propositional variables are $p, q, r, s, \ldots$
- Truth value of a proposition: true, denoted by T; false, denoted by F.


## Propositional Logic

Proposition: a declarative sentence that is either true or false (not both).

- Conventional letters used for propositional variables are $p, q, r, s, \ldots$
- Truth value of a proposition: true, denoted by T; false, denoted by F.

Compound propositions are build using logical connectives:

- Negation $ᄀ$
- Conjunction $\wedge$
- Disjunction $\vee$
- Exclusive or $\oplus$
- Implication $\rightarrow$
- Biconditional $\leftrightarrow$


## Tautology and Logical Equivalences

- Tautology: A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it.
- E.g., $p \vee \neg p$
- Contradiction: A compound proposition that is always false.


## Tautology and Logical Equivalences

- Tautology: A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it.
- E.g., $p \vee \neg p$
- Contradiction: A compound proposition that is always false.

The compound propositions $p$ and $q$ are called logically equivalent, denoted by $p \equiv q$, if $p \leftrightarrow q$ is a tautology.

- E.g., $\neg(p \vee q)$ and $\neg p \wedge \neg q$


## Tautology and Logical Equivalences

- Tautology: A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it.
- E.g., $p \vee \neg p$
- Contradiction: A compound proposition that is always false.

The compound propositions $p$ and $q$ are called logically equivalent, denoted by $p \equiv q$, if $p \leftrightarrow q$ is a tautology.

- E.g., $\neg(p \vee q)$ and $\neg p \wedge \neg q$

That is, two compound propositions are equivalent if they always have the same truth value.

## Tautology and Logical Equivalences

－Tautology：A compound proposition that is always true，no matter what the truth values of the propositional variables that occur in it．
－E．g．，$p \vee \neg p$
－Contradiction：A compound proposition that is always false．

The compound propositions $p$ and $q$ are called logically equivalent， denoted by $p \equiv q$ ，if $p \leftrightarrow q$ is a tautology．
－E．g．，$\neg(p \vee q)$ and $\neg p \wedge \neg q$
That is，two compound propositions are equivalent if they always have the same truth value．

Determine logically equivalent propositions using：
－Truth table
－Logical Equivalences

## Important Logical Equivalences

| Equivalence | Name |
| :--- | :--- |
| $p \wedge \mathbf{T} \equiv p$ | Identity laws |
| $p \vee \mathbf{F} \equiv p$ |  |
| $p \vee \mathbf{T} \equiv \mathbf{T}$ | Domination laws |
| $p \wedge \mathbf{F} \equiv \mathbf{F}$ |  |
| $p \vee p \equiv p$ |  |
| $p \wedge p \equiv p$ | Idempotent laws |
| $\neg(\neg p) \equiv p$ | Double negation law |
| $p \vee q \equiv q \vee p$ |  |
| $p \wedge q \equiv q \wedge p$ | Commutative laws |

## Important Logical Equivalences

| $(p \vee q) \vee r \equiv p \vee(q \vee r)$ | Associative laws |
| :--- | :--- |
| $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$ |  |
| $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$ | Distributive laws |
| $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$ |  |
| $\neg(p \wedge q) \equiv \neg p \vee \neg q$ | De Morgan’s laws |
| $\neg(p \vee q) \equiv \neg p \wedge \neg q$ |  |
| $p \vee(p \wedge q) \equiv p$ <br> $p \wedge(p \vee q) \equiv p$ | Absorption laws |
| $p \vee \neg p \equiv \mathbf{T}$ <br> $p \wedge \neg p \equiv \mathbf{F}$ | Negation laws |
| $p \rightarrow q \equiv \neg p \vee q$ |  |

## Predicate Logic and Quantified Statements

Predicate Logic: make statements with variables: $P(x)$.
Propositional function $P(x) \stackrel{\text { specify }}{\Longrightarrow}$ Proposition

## Predicate Logic and Quantified Statements

Predicate Logic: make statements with variables: $P(x)$.
Propositional function $P(x) \xrightarrow{\text { specify } x}$ Proposition
Quantified Statements: Universal quantifier $\forall x P(x)$; Existential quantifier $\exists x P(x)$

| Statement | When true? | When false? |
| :---: | :--- | :--- |
| $\forall x P(x)$ | $P(x)$ true for all $x$ | There is an $x$ <br> where $P(x)$ is false. |
| $\exists x P(x)$ | There is some $x$ for <br> which $P(x)$ is true. | $P(x)$ is false for all <br> $x$. |

Propositional function $P(x) \stackrel{\text { for all/some } x \text { in domain }}{\Longrightarrow}$ Proposition

## Negation and Nest Quantifier

| Negation | Equivalent Statement | When Is Negation True? | When False? |
| :---: | :---: | :---: | :---: |
| $\neg \exists x P(x)$ | $\forall x \neg P(x)$ | For every $x, P(x)$ is false. | There is an $x$ for which $P(x)$ is true. |
| $\neg \forall x P(x)$ | $\exists x \neg P(x)$ | There is an $x$ for which $P(x)$ is false. | $P(x)$ is true for every $x$. |

## Negation and Nest Quantifier

| Negation | Equivalent Statement | When Is Negation True？ | When False？ |
| :---: | :---: | :---: | :---: |
| $\neg \exists x P(x)$ | $\forall x \neg P(x)$ | For every $x, P(x)$ is false． | There is an $x$ for which $P(x)$ is true． |
| $\neg \forall x P(x)$ | $\exists x \neg P(x)$ | There is an $x$ for which $P(x)$ is false． | $P(x)$ is true for every $x$ ． |


| Statement | When True？ | When False？ |
| :--- | :--- | :--- |
| $\forall x \forall y P(x, y)$ <br> $\forall y \forall x P(x, y)$ | $P(x, y)$ is true for every pair $x, y$. | There is a pair $x, y$ for <br> which $P(x, y)$ is false． |
| $\forall x \exists y P(x, y)$ | For every $x$ there is a $y$ for <br> which $P(x, y)$ is true． | There is an $x$ such that <br> $P(x, y)$ is false for every $y$. |
| $\exists x \forall y P(x, y)$ | There is an $x$ for which $P(x, y)$ <br> is true for every $y$. | For every $x$ there is a $y$ for <br> which $P(x, y)$ is false． |
| $\exists x \exists y P(x, y)$ | There is a pair $x, y$ for which <br> $\exists y \exists x P(x, y)$ | $P(x, y)$ is true． <br> pair $x, y$. |

## Validity of Argument Form:

The argument form with premises $p_{1}, p_{2}, \ldots, p_{n}$ and conclusion $q$ is valid, if

$$
\left(p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}\right) \rightarrow q \text { is a tautology. }
$$

Note: According to the definition of $p \rightarrow q$, we do not worry about the case where $p_{1} \wedge p_{2} \wedge \cdots \wedge p_{n}$ is false.

## Rules of Inference for Propositional Logic

| Rule of Inference | Tautology | Name |
| :---: | :--- | :--- |
| $p$ | $(p \wedge(p \rightarrow q)) \rightarrow q$ | Modus ponens |
| $\therefore \frac{p \rightarrow q}{q}$ |  |  |
| $\neg q$ | $(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p$ | Modus tollens |
| $\therefore \frac{p \rightarrow q}{\neg p}$ |  |  |
| $p \rightarrow q$ <br> $q \rightarrow r$ <br> $\therefore P \rightarrow r$ | $((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$ | Hypothetical syllogism |
| $p \vee q$ | $((p \vee q) \wedge \neg p) \rightarrow q$ |  |
| $\therefore \frac{\neg p}{q}$ |  | Disjunctive syllogism |

## Rules of Inference for Propositional Logic

| $\therefore \frac{p}{p \vee q}$ | $p \rightarrow(p \vee q)$ | Addition |
| :--- | :--- | :--- |
| $\therefore \frac{p \wedge q}{p}$ | $(p \wedge q) \rightarrow p$ | Simplification |
| $p$ | $((p) \wedge(q)) \rightarrow(p \wedge q)$ | Conjunction |
| $\therefore \frac{q}{p \wedge q}$ |  |  |
| $\quad p \vee q$ |  |  |
| $\therefore \frac{\neg p \vee r}{q \vee r}$ | $((p \vee q) \wedge(\neg p \vee r)) \rightarrow(q \vee r)$ | Resolution |

## Rules of Inference for Propositional Logic

| Rule of Inference | Name |
| :---: | :--- |
| $\therefore \frac{\forall x P(x)}{P(c)}$ | Universal instantiation |
| $\therefore \frac{P(c) \text { for an arbitrary } c}{\forall x P(x)}$ | Universal generalization |
| $\therefore \frac{\exists x P(x)}{P(c) \text { for some element } c}$ | Existential instantiation |
| $\therefore \frac{P(c) \text { for some element } c}{\exists x P(x)}$ | Existential generalization |

## Methods of Proving Theorems

A proof is a valid argument that establishes the truth of a mathematical statement.

- Direct proof
$p \rightarrow q$ is proved by showing that if $p$ is true then $q$ follows
- Proof by contrapositive
show the contrapositive $\neg q \rightarrow \neg p$
- Proof by contradiction show that $(p \wedge \neg q)$ contradicts the assumptions
- Proof by cases
give proofs for all possible cases
- Proof of equivalence
$p \leftrightarrow q$ is replaced with $(p \rightarrow q) \wedge(q \leftarrow p)$


## Proof Exercise 1

Prove that $\sqrt{2}$ is irrational. (Rational numbers are those of the form $\frac{m}{n}$, where $m$ and $n$ are integers.)

## Proof Exercise 1

Prove that $\sqrt{2}$ is irrational. (Rational numbers are those of the form $\frac{m}{n}$, where $m$ and $n$ are integers.)

Proof: Suppose that $\sqrt{2}$ is rational. Then, there exist integers $a$ and $b$ with $\sqrt{2}=a / b$, where $b \neq 0$ and $a$ and $b$ have no common factors (so that the fraction $a / b$ is in lowest terms.)
Since $\sqrt{2}=a / b$, it follows that $2 b^{2}=a^{2}$. By the definition of an even integer, it follows that $a^{2}$ is even, so $a$ is even (see Exercise 16).

Since $a$ is even, $a=2 k$ for some integer $k$. Thus, $b^{2}=2 k^{2}$. This implies that $b^{2}$ is even, so $b$ is even.

As a result, $a$ and $b$ have a common factor 2 , which contradicts our assumption.

## Proof Exercise 2

Show that there exist irrational numbers $x$ and $y$ such that $x^{y}$ is rational.

## Proof Exercise 2

Show that there exist irrational numbers $x$ and $y$ such that $x^{y}$ is rational.
Proof: We know that $\sqrt{2}$ is irrational. Consider the number $\sqrt{2}^{\sqrt{2}}$.
Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational, then we have two irrational numbers $x=\sqrt{2}$ and $y=\sqrt{2}$ with $x^{y}=\sqrt{2}^{\sqrt{2}}$ rational.
Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational, then we let $x=\sqrt{2}^{\sqrt{2}}$ and $y=\sqrt{2}$. We have $x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=2$ is rational.
Note that although we do not know which case works, we know that one of the two cases has the desired property.

## Lecture Schedule

1 Logic and Mathematical Proofs
2 Sets and Functions

3 Complexity of Algorithms
4 Number Theory

## Sets

A set is an unordered collection of objects.

- listing (enumerating) the elements
- if enumeration is hard, use ellipses (...)
- definition by property, using the set builder

$$
\{x \mid x \text { has property } P \text { or property } P(x))\}
$$

## Sets

A set is an unordered collection of objects.

- listing (enumerating) the elements
- if enumeration is hard, use ellipses (...)
- definition by property, using the set builder

$$
\{x \mid x \text { has property } P \text { or property } P(x))\}
$$

## Proof of Subset:

- Showing $A \subseteq B$ : if $x$ belongs to $A$, then $x$ also belongs to $B$.
- Showing $A \nsubseteq B$ : find a single $x \in A$ such that $x \notin B$.


## Sets

A set is an unordered collection of objects.

- listing (enumerating) the elements
- if enumeration is hard, use ellipses (...)
- definition by property, using the set builder

$$
\{x \mid x \text { has property } P \text { or property } P(x))\}
$$

## Proof of Subset:

- Showing $A \subseteq B$ : if $x$ belongs to $A$, then $x$ also belongs to $B$.
- Showing $A \nsubseteq B$ : find a single $x \in A$ such that $x \notin B$.

Prove $A=B$ ?

## Cardinality, Power Set, Tuples, and Cartesian Product

Cardinality: If there are exactly $n$ distinct elements in $S$, where $n$ is a nonnegative integer, we say that $S$ is a finite set and n is the cardinality of $S$, denoted by $|S|$.

## Cardinality, Power Set, Tuples, and Cartesian Product

Cardinality: If there are exactly $n$ distinct elements in $S$, where $n$ is a nonnegative integer, we say that $S$ is a finite set and n is the cardinality of $S$, denoted by $|S|$.

Power Set: Given a set $S$, the power set of $S$ is the set of all subsets of the set $S$, denoted by $\mathcal{P}(S)$.

## Cardinality, Power Set, Tuples, and Cartesian Product

Cardinality: If there are exactly $n$ distinct elements in $S$, where $n$ is a nonnegative integer, we say that $S$ is a finite set and n is the cardinality of $S$, denoted by $|S|$.

Power Set: Given a set $S$, the power set of $S$ is the set of all subsets of the set $S$, denoted by $\mathcal{P}(S)$.

Tuples: The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has $a_{1}$ as its first element and $a_{2}$ as its second element and so on.

## Cardinality, Power Set, Tuples, and Cartesian Product

Cardinality: If there are exactly $n$ distinct elements in $S$, where $n$ is a nonnegative integer, we say that $S$ is a finite set and n is the cardinality of $S$, denoted by $|S|$.

Power Set: Given a set $S$, the power set of $S$ is the set of all subsets of the set $S$, denoted by $\mathcal{P}(S)$.

Tuples: The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has $a_{1}$ as its first element and $a_{2}$ as its second element and so on.

Cartesian Product: Let $A$ and $B$ be sets. The Cartesian product of $A$ and $B$, denoted by $A \times B$, is the set of all ordered pairs $(a, b)$, where $a \in A$ and $b \in B$ :

$$
A \times B=\{(a, b) \mid a \in A \wedge b \in B\}
$$

## Set Operations

Union: Let $A$ and $B$ be sets. The union of the sets $A$ and $B$, denoted by $A \cup B$, is the set $\{x \mid x \in A \vee x \in B\}$.
Intersection: The intersection of the sets $A$ and $B$, denoted by $A \cap B$, is the set $\{x \mid x \in A \wedge x \in B\}$.

Complement: If $A$ is a set, then the complement of the set $A$ (with respect to $U$ ), denoted by $\bar{A}$ is the set $U-A, \bar{A}=\{x \in U \mid x \notin A\}$

Difference: Let $A$ and $B$ be sets. The difference of $A$ and $B$, denoted by $A-B$, is the set containing the elements of A that are not in B .
$A-B=\{x \mid x \in A \wedge x \notin B\}=A \cap \bar{B}$.
Principle of inclusion-exclusion: $|A \cup B|=|A|+|B|-|A \cap B|$

## Set Identities

| $A \cap U=A$ | Identity laws |
| :--- | :--- |
| $A \cup \emptyset=A$ |  |
| $A \cup U=U$ | Domination laws |
| $A \cap \emptyset=\emptyset$ | Idempotent laws |
| $A \cup A=A$ |  |
| $A \cap A=A$ | Complementation law |
| $\overline{(\bar{A})}=A$ | Commutative laws |
| $A \cup B=B \cup A$ |  |
| $A \cap B=B \cap A$ |  |

## Set Identities

| $A \cup(B \cup C)=(A \cup B) \cup C$ | Associative laws |
| :--- | :--- |
| $A \cap(B \cap C)=(A \cap B) \cap C$ |  |
| $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ | Distributive laws |
| $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ |  |
| $\overline{A \cap B}=\bar{A} \cup \bar{B}$ | De Morgan's laws |
| $\overline{A \cup B}=\bar{A} \cap \bar{B}$ |  |
| $A \cup(A \cap B)=A$ | Absorption laws |
| $A \cap(A \cup B)=A$ | Complement laws |
| $A \cup \bar{A}=U$ |  |
| $A \cap \bar{A}=\emptyset$ |  |

## Proof of Set Identities

Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$

## Proof of Set Identities

Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$
Proof 1: Using membership tables. Consider an arbitrary element $x: 1, x$ is in $A ; 0, x$ is not in $A$.

| $A$ | $B$ | $\bar{A}$ | $\bar{B}$ | $\overline{A \cap B}$ | $\bar{A} \cup \bar{B}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 1 | 1 |

## Proof of Set Identities

Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$
Proof 1: Using membership tables. Consider an arbitrary element $x$ : $1, x$ is in $A ; 0, x$ is not in $A$.
Proof 2: by showing that $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$ and $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

- $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}:$


## Proof of Set Identities

Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$
Proof 1: Using membership tables. Consider an arbitrary element $x: 1, x$ is in $A ; 0, x$ is not in $A$.
Proof 2: by showing that $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$ and $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

- $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}:$
- Suppose that $x \in \overline{A \cap B}$. By the definition of complement, $x \notin A \cap B$. Using the definition of intersection, $\neg((x \in A) \wedge(x \in B))$ is true.


## Proof of Set Identities

Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$
Proof 1: Using membership tables. Consider an arbitrary element $x: 1, x$ is in $A ; 0, x$ is not in $A$.
Proof 2: by showing that $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$ and $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

- $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}:$
- Suppose that $x \in \overline{A \cap B}$. By the definition of complement, $x \notin A \cap B$. Using the definition of intersection, $\neg((x \in A) \wedge(x \in B))$ is true.
- By applying De Morgan's law, $\neg(x \in A) \vee \neg(x \in B))$. Thus, $x \notin A$ or $x \notin B$. Using the definition of the complement of a set, $x \in \bar{A}$ or $x \in \bar{B}$.


## Proof of Set Identities

Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$
Proof 1: Using membership tables. Consider an arbitrary element $x$ : $1, x$ is in $A ; 0, x$ is not in $A$.
Proof 2: by showing that $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$ and $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

- $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}:$
- Suppose that $x \in \overline{A \cap B}$. By the definition of complement, $x \notin A \cap B$. Using the definition of intersection, $\neg((x \in A) \wedge(x \in B))$ is true.
- By applying De Morgan's law, $\neg(x \in A) \vee \neg(x \in B))$. Thus, $x \notin A$ or $x \notin B$. Using the definition of the complement of a set, $x \in \bar{A}$ or $x \in \bar{B}$.
- By the definition of union, we see that $x \in \bar{A} \cup \bar{B}$. Thus, $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$.


## Proof of Set Identities

Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$
Proof 1: Using membership tables. Consider an arbitrary element $x: 1, x$ is in $A ; 0, x$ is not in $A$.
Proof 2: by showing that $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$ and $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

- $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}:$
- Suppose that $x \in \overline{A \cap B}$. By the definition of complement, $x \notin A \cap B$. Using the definition of intersection, $\neg((x \in A) \wedge(x \in B))$ is true.
- By applying De Morgan's law, $\neg(x \in A) \vee \neg(x \in B))$. Thus, $x \notin A$ or $x \notin B$. Using the definition of the complement of a set, $x \in \bar{A}$ or $x \in \bar{B}$.
- By the definition of union, we see that $x \in \bar{A} \cup \bar{B}$. Thus, $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$.
- $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$


## Proof of Set Identities

Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$
Proof 1: using membership tables.
Proof 2: by showing that $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$ and $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$
Proof 3: Using set builder and logical equivalences

## Proof of Set Identities

Prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$
Proof 1: using membership tables.
Proof 2: by showing that $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$ and $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$
Proof 3: Using set builder and logical equivalences

$$
\begin{aligned}
\overline{A \cap B} & =\{x \mid x \notin A \cap B\} \\
& =\{x \mid \neg(x \in(A \cap B))\} \\
& =\{x \mid \neg(x \in A \wedge x \in B)\} \\
& =\{x \mid \neg(x \in A) \vee \neg(x \in B)\} \\
& =\{x \mid x \notin A \vee x \notin B\} \\
& =\{x \mid x \in \bar{A} \vee x \in \bar{B}\} \\
& =\{x \mid x \in \bar{A} \cup \bar{B}\} \\
& =\bar{A} \cup \bar{B}
\end{aligned}
$$

by definition of complement
by definition of does not belong symbol
by definition of intersection
by the first De Morgan law for logical equivalences
by definition of complement
by definition of union
by meaning of set builder notation

$$
=\{x \mid x \notin A \vee x \notin B\} \quad \text { by definition of does not belong symbol }
$$

## Function

Let $A$ and $B$ be two sets．A function from $A$ to $B$ ，denoted by $f: A \rightarrow B$ ， is an assignment of exactly one element of $B$ to each element of $A$ ．

## Function

Let $A$ and $B$ be two sets. A function from $A$ to $B$, denoted by $f: A \rightarrow B$, is an assignment of exactly one element of $B$ to each element of $A$.

- One-to-one (injective) function:
- A function $f$ is called one-to-one or injective if and only if $f(x)=f(y)$ implies $x=y$ for all $x, y$ in the domain of $f$.


## Function

Let $A$ and $B$ be two sets. A function from $A$ to $B$, denoted by $f: A \rightarrow B$, is an assignment of exactly one element of $B$ to each element of $A$.

- One-to-one (injective) function:
- A function $f$ is called one-to-one or injective if and only if $f(x)=f(y)$ implies $x=y$ for all $x, y$ in the domain of $f$.
- Onto (surjective) function:
- A function $f$ is called onto or surjective if and only if for every $b \in B$ there is an element $a \in A$ such that $f(a)=b$.


## Function

Let $A$ and $B$ be two sets. A function from $A$ to $B$, denoted by $f: A \rightarrow B$, is an assignment of exactly one element of $B$ to each element of $A$.

- One-to-one (injective) function:
- A function $f$ is called one-to-one or injective if and only if $f(x)=f(y)$ implies $x=y$ for all $x, y$ in the domain of $f$.
- Onto (surjective) function:
- A function $f$ is called onto or surjective if and only if for every $b \in B$ there is an element $a \in A$ such that $f(a)=b$.
- One-to-one (bijective) correspondence
- One-to-one and onto


## Proof for One-to-One and Onto

Suppose that $f: A \rightarrow B$.

| To show that <br> $f$ is injective | Show that if $f(x)=f(y)$ for all $x, y \in A$, then <br> $x=y$ |
| :--- | :--- |
| To show that $f$ <br> is not injective | Find specific elements $x, y \in A$ such that $x \neq y$ <br> and $f(x)=f(y)$ |
| To show that <br> $f$ is surjective | Consider an arbitrary element $y \in B$ and find an <br> element $x \in A$ such that $f(x)=y$ |
| To show that $f$ <br> is not surjective | Find a specific element $y \in B$ such that $f(x) \neq y$ <br> for all $x \in A$ |

## Inverse Function and Composition of Functions

Inverse function: Let $f$ be a one-to-one correspondence (bijection) from the set $A$ to the set $B$. The inverse function of $f$ is the function that assigns to an element $b$ belonging to $B$ the unique element $a$ in $A$ such that $f(a)=b$.

## Inverse Function and Composition of Functions

Inverse function: Let $f$ be a one-to-one correspondence (bijection) from the set $A$ to the set $B$. The inverse function of $f$ is the function that assigns to an element $b$ belonging to $B$ the unique element $a$ in $A$ such that $f(a)=b$.

Let $f$ be a function from $B$ to $C$ and let $g$ be a function from $A$ to $B$. The composition of the functions $f$ and $g$, denoted by $f \circ g$, is defined by $(f \circ g)(x)=f(g(x))$.

## Inverse Function and Composition of Functions

Inverse function: Let $f$ be a one-to-one correspondence (bijection) from the set $A$ to the set $B$. The inverse function of $f$ is the function that assigns to an element $b$ belonging to $B$ the unique element $a$ in $A$ such that $f(a)=b$.

Let $f$ be a function from $B$ to $C$ and let $g$ be a function from $A$ to $B$. The composition of the functions $f$ and $g$, denoted by $f \circ g$, is defined by $(f \circ g)(x)=f(g(x))$.

The floor function assigns a real number $x$ the largest integer that is $\leq x$, denoted by $\lfloor x\rfloor$. E.g., $\lfloor 3.5\rfloor=3$.

## Inverse Function and Composition of Functions

Inverse function: Let $f$ be a one-to-one correspondence (bijection) from the set $A$ to the set $B$. The inverse function of $f$ is the function that assigns to an element $b$ belonging to $B$ the unique element $a$ in $A$ such that $f(a)=b$.

Let $f$ be a function from $B$ to $C$ and let $g$ be a function from $A$ to $B$. The composition of the functions $f$ and $g$, denoted by $f \circ g$, is defined by $(f \circ g)(x)=f(g(x))$.

The floor function assigns a real number $x$ the largest integer that is $\leq x$, denoted by $\lfloor x\rfloor$. E.g., $\lfloor 3.5\rfloor=3$.

The ceiling function assigns a real number $x$ the smallest integer that is $\geq x$, denoted by $\lceil x\rceil$. E.g., $\lceil 3.5\rceil=4$.

## Sequences

A sequence is a function from a subset of the set of integers (typically the set $\{0,1,2, \ldots\}$ or $\{1,2,3, \ldots\})$ to a set $S$.

We use the notation $a_{n}$ to denote the image of the integer $n .\left\{a_{n}\right\}$ represents the ordered list $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$

Recursively Defined Sequences: provide

- One or more initial terms
- A rule for determining subsequent terms from those that precede them.


## Cardinality of Sets

A set that is either finite or has the same cardinality as the set of positive integers $\mathbf{Z}^{+}$is called countable.

If there is a one-to-one function from $A$ to $B$, the cardinality of $A$ is less than or equal to the cardinality of $B$, denoted by $|A| \leq|B|$.

Theorem: If there is a one-to-one correspondence between elements in $A$ and $B$, then the sets $A$ and $B$ have the same cardinality.

Theorem: If $A$ and $B$ are sets with $|A| \leq|B|$ and $|B| \leq|A|$, then $|A|=|B|$.

## Lecture Schedule

1 Logic and Mathematical Proofs
2 Sets and Functions

3 Complexity of Algorithms
4 Number Theory

## Big-O Notation

Let $f$ and $g$ be functions from the set of integers or the set of real numbers to the set of real numbers. We say that $f(x)$ is $O(g(x))$ if there are constants $C$ and $k$ such that

$$
|f(x)| \leq C|g(x)|,
$$

whenever $x>k$. [This is read as " $f(x)$ is big-oh of $g(x)$. .]

## Big－O Notation

Let $f$ and $g$ be functions from the set of integers or the set of real numbers to the set of real numbers．We say that $f(x)$ is $O(g(x))$ if there are constants $C$ and $k$ such that

$$
|f(x)| \leq C|g(x)|,
$$

whenever $x>k$ ．［This is read as＂$f(x)$ is big－oh of $g(x)$. ．］


## Big-O Estimates for Some Functions



## Big-Omega Notation

Let $f$ and $g$ be functions from the set of integers or the set of real numbers to the set of real numbers. We say that $f(x)$ is $\Omega(g(x))$ if there are positive constants $C$ and $k$ such that

$$
|f(x)| \geq C|g(x)|
$$

whenever $x>k$. [This is read as " $f(x)$ is big-Omega of $g(x)$. ."]

## Big-Omega Notation

Let $f$ and $g$ be functions from the set of integers or the set of real numbers to the set of real numbers. We say that $f(x)$ is $\Omega(g(x))$ if there are positive constants $C$ and $k$ such that

$$
|f(x)| \geq C|g(x)|
$$

whenever $x>k$. [This is read as " $f(x)$ is big-Omega of $g(x)$. .]
Let $f$ and $g$ be functions from the set of integers or the set of real numbers to the set of real numbers. We say that $f(x)$ is $\Theta(g(x))$ if

- $f(x)$ is $O(g(x))$ and
- $f(x)$ is $\Omega(g(x))$.

When $f(x)$ is $\Theta(g(x))$, we say that $f(x)$ is big-Theta of $g(x)$, that $f(x)$ is of order $g(x)$, and that $f(x)$ and $g(x)$ are of the same order.

## Lecture Schedule

1 Logic and Mathematical Proofs
2 Sets and Functions

3 Complexity of Algorithms
4 Number Theory

## Division

Divisibility: We say that $a$ divides $b$ if there is an integer $c$ such that $b=a c$, or equivalently $b / a$ is an integer.

- If $a, b, c$ are integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$ whenever $m$ and $n$ are integers.


## Division

Divisibility: We say that $a$ divides $b$ if there is an integer $c$ such that $b=a c$, or equivalently $b / a$ is an integer.

- If $a, b, c$ are integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$ whenever $m$ and $n$ are integers.

Congruence Relation: If $a$ and $b$ are integers and $m$ is a positive integer, then $a$ is congruent to $b$ modulo $m$ if $m$ divides $a-b$, denoted by $a \equiv b(\bmod m)$.

## Division

Divisibility: We say that $a$ divides $b$ if there is an integer $c$ such that $b=a c$, or equivalently $b / a$ is an integer.

- If $a, b, c$ are integers, where $a \neq 0$, such that $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$ whenever $m$ and $n$ are integers.

Congruence Relation: If $a$ and $b$ are integers and $m$ is a positive integer, then $a$ is congruent to $b$ modulo $m$ if $m$ divides $a-b$, denoted by $a \equiv b(\bmod m)$.
The integers $a$ and $b$ are congruent modulo $m$ if and only if there is an integer $k$ such that

$$
a=b+k m .
$$

## Congruence: Properties

Theorem: Let $m$ be a positive integer. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then

$$
\begin{aligned}
a+c & \equiv b+d(\bmod m) \\
a c & \equiv b d(\bmod m)
\end{aligned}
$$

## Congruence: Properties

Theorem: Let $m$ be a positive integer. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then

$$
\begin{aligned}
a+c & \equiv b+d(\bmod m) \\
a c & \equiv b d(\bmod m)
\end{aligned}
$$

Corollary: Let $m$ be a positive integer and let $a$ and $b$ be integers. Then,

$$
\begin{gathered}
(a+b) \bmod m=((a \bmod m)+(b \bmod m)) \bmod m \\
a b \bmod m=((a \bmod m)(b \bmod m)) \bmod m
\end{gathered}
$$

## Primes

A integer $p$ that is greater than 1 is called a prime if the only positive factors of $p$ are 1 and $p$.

- If $n$ is composite, then $n$ has a prime divisor less than or equal to $\sqrt{n}$.


## Primes

A integer $p$ that is greater than 1 is called a prime if the only positive factors of $p$ are 1 and $p$.

- If $n$ is composite, then $n$ has a prime divisor less than or equal to $\sqrt{n}$.

Let $a$ and $b$ be integers, not both 0 . The largest integer $d$ such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of $a$ and $b$, denoted by $\operatorname{gcd}(a, b)$. Let $a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{n}^{a_{n}}$ and $b=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{n}^{b_{n}}$. Then,

$$
\operatorname{gcd}(a, b)=p^{\min \left(a_{1}, b_{1}\right)} p^{\min \left(a_{2}, b_{2}\right)} \ldots p^{\min \left(a_{n}, b_{n}\right)}
$$

## Primes

A integer $p$ that is greater than 1 is called a prime if the only positive factors of $p$ are 1 and $p$.

- If $n$ is composite, then $n$ has a prime divisor less than or equal to $\sqrt{n}$.

Let $a$ and $b$ be integers, not both 0 . The largest integer $d$ such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of $a$ and $b$, denoted by $\operatorname{gcd}(a, b)$. Let $a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{n}^{a_{n}}$ and $b=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{n}^{b_{n}}$. Then,

$$
\operatorname{gcd}(a, b)=p^{\min \left(a_{1}, b_{1}\right)} p^{\min \left(a_{2}, b_{2}\right)} \ldots p^{\min \left(a_{n}, b_{n}\right)}
$$

The least common multiple of $a$ and $b$ is the smallest positive integer that is divisible by both $a$ and $b$, denoted by $\operatorname{lcm}(a, b)$. Let $a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{n}^{a_{n}}$ and $b=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{n}^{b_{n}}$. Then,

$$
\operatorname{lcm}(a, b)=p^{\max \left(a_{1}, b_{1}\right)} p^{\max \left(a_{2}, b_{2}\right)} \ldots p^{\max \left(a_{n}, b_{n}\right)}
$$

## Euclidean Algorithm

Computing the greatest common divisor of two integers directly from the prime factorizations can be time consuming since we need to find all factors of the two integers.

For two integers 287 and 91 , we want to find $\operatorname{gcd}(287,91)$.

$$
\begin{gathered}
\text { Step 1: } 287=91 \cdot 3+14 \\
\text { Step 2: } 91=14 \cdot 6+7 \\
\text { Step 3: } 14=7 \cdot 2+0 \\
\operatorname{gcd}(287,91)=\operatorname{gcd}(91,14)=\operatorname{gcd}(14,7)=7
\end{gathered}
$$

## GCD as Linear Combinations

Bezout'S Theorem: If $a$ and $b$ are positive integers, then there exist integers $s$ and $t$ such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

This equation is called Bezout's identity.

## GCD as Linear Combinations

Bezout'S Theorem: If $a$ and $b$ are positive integers, then there exist integers $s$ and $t$ such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

This equation is called Bezout's identity.
We can use extended Euclidean algorithm to find Bezout's identity.

## GCD as Linear Combinations

Bezout'S Theorem: If $a$ and $b$ are positive integers, then there exist integers $s$ and $t$ such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

This equation is called Bezout's identity.
We can use extended Euclidean algorithm to find Bezout's identity.
Lemma: If $a, b, c$ are positive integers such that $\operatorname{gcd}(a, b)=1$ and $a \mid b c$, then $a \mid c$.

## GCD as Linear Combinations

Bezout'S Theorem: If $a$ and $b$ are positive integers, then there exist integers $s$ and $t$ such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

This equation is called Bezout's identity.
We can use extended Euclidean algorithm to find Bezout's identity.
Lemma: If $a, b, c$ are positive integers such that $\operatorname{gcd}(a, b)=1$ and $a \mid b c$, then $a \mid c$.

Lemma: If $p$ is prime and $p \mid a_{1} a_{2} \ldots a_{n}$, then $p \mid a_{i}$ for some $i$.

## Linear Congruences

A congruence of the form $a x \equiv b(\bmod m)$, where $m$ is a positive integer, $a$ and $b$ are integers, and $x$ is a variable, is called a linear congruence.

## Linear Congruences

A congruence of the form $a x \equiv b(\bmod m)$, where $m$ is a positive integer, $a$ and $b$ are integers, and $x$ is a variable, is called a linear congruence.

The solutions to a linear congruence $a x \equiv b(\bmod m)$ are all integers $x$ that satisfy the congruence.

## Linear Congruences

A congruence of the form $a x \equiv b(\bmod m)$, where $m$ is a positive integer, $a$ and $b$ are integers, and $x$ is a variable, is called a linear congruence.

The solutions to a linear congruence $a x \equiv b(\bmod m)$ are all integers $x$ that satisfy the congruence.

Modular Inverse: An integer $\bar{a}$ such that $\bar{a} a \equiv 1(\bmod m)$ is said to be an inverse of a modulo $m$.

## Linear Congruences

A congruence of the form $a x \equiv b(\bmod m)$, where $m$ is a positive integer, $a$ and $b$ are integers, and $x$ is a variable, is called a linear congruence.

The solutions to a linear congruence $a x \equiv b(\bmod m)$ are all integers $x$ that satisfy the congruence.

Modular Inverse: An integer $\bar{a}$ such that $\bar{a} a \equiv 1(\bmod m)$ is said to be an inverse of a modulo $m$.

Solve the congruence $a x \equiv b(\bmod m)$ by multiplying both sides by $\bar{a}$.

$$
x \equiv \bar{a} b(\bmod m)
$$

## Modular Inverse

Modular Inverse: An integer $\bar{a}$ such that $\bar{a} a \equiv 1(\bmod m)$ is said to be an inverse of a modulo $m$.

When does inverse exist?
Theorem: If $a$ and $m$ are relatively prime integers and $m>1$, then an inverse of a modulo $m$ exists. The inverse is unique modulo $m$. That is,

- there is a unique positive integer $\bar{a}$ less than $m$ that is an inverse of $a$ modulo $m$ and
- every other inverse of a modulo $m$ is congruent to $\bar{a}$ modulo $m$.


## Modular Inverse

Modular Inverse: An integer $\bar{a}$ such that $\bar{a} a \equiv 1(\bmod m)$ is said to be an inverse of a modulo $m$.

When does inverse exist?
Theorem: If $a$ and $m$ are relatively prime integers and $m>1$, then an inverse of a modulo $m$ exists. The inverse is unique modulo $m$. That is,

- there is a unique positive integer $\bar{a}$ less than $m$ that is an inverse of $a$ modulo $m$ and
- every other inverse of a modulo $m$ is congruent to $\bar{a}$ modulo $m$.

If we obtain an arbitrary inverse of a modulo $m$, how to obtain the inverse that is less than $m$ ?

## Modular Inverse

How to find inverses?
Using extended Euclidean algorithm:
Example: Find an inverse of 101 modulo 4620 . That is, find $\bar{a}$ such that $\bar{a} \cdot 101 \equiv 1(\bmod 4620)$.

With extended Euclidean algorithm, we obtain $\operatorname{gcd}(a, b)=s a+t b$, i.e., $1=-35 \cdot 4620+1601 \cdot 101$. It tells us that -35 and 1601 are Bezout coefficients of 4620 and 101. We have

$$
1 \bmod 4620=1601 \cdot 101 \bmod 4620 .
$$

Thus, 1601 is an inverse of 101 modulo 4620.

## The Chinese Remainder Theorem

Systems of linear congruences have been studied since ancient times．
今有物不知其数 三二数之剩二 五五数之剩三 七七数之剩二问物几何

About 1500 years ago，the Chinese mathematician Sun－Tsu asked：＂There are certain things whose number is unknown． When divided by 3 ，the remainder is 2 ；when divided by 5 ， the remainder is 3 ；when divided by 7 ，the remainder is 2 ． What will be the number of things？＂
－$x \equiv 2(\bmod 3)$
－$x \equiv 3(\bmod 5)$
－$x \equiv 2(\bmod 7)$

## The Chinese Remainder Theorem

Theorem (The Chinese Remainder Theorem): Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers greater than 1 and $a_{1}, a_{2}, \ldots$, $a_{n}$ arbitrary integers. Then, the system

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right)
\end{aligned}
$$

$$
x \equiv a_{n}\left(\bmod m_{n}\right)
$$

has a unique solution modulo $m=m_{1} m_{2} \ldots m_{n}$.
(That is, there is a solution $x$ with $0 \leq x<m$, and all other solutions are congruent modulo $m$ to this solution.)

## The Chinese Remainder Theorem

Proof: To show such a solution exists: Let $M_{k}=m / m_{k}$ for $k=1,2, \ldots, n$ and $m=m_{1} m_{2} \ldots m_{n}$. Thus, $M_{k}=m_{1} \ldots m_{k-1} m_{k+1} \ldots m_{n}$.

## The Chinese Remainder Theorem

Proof: To show such a solution exists: Let $M_{k}=m / m_{k}$ for $k=1,2, \ldots, n$ and $m=m_{1} m_{2} \ldots m_{n}$. Thus, $M_{k}=m_{1} \ldots m_{k-1} m_{k+1} \ldots m_{n}$.

Since $\operatorname{gcd}\left(m_{k}, M_{k}\right)=1$, there is an integer $y_{k}$, an inverse of $M_{k}$ modulo $m_{k}$, such that $M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$. Let

$$
x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\ldots+a_{n} M_{n} y_{n} .
$$

It is checked that $x$ is a solution to the $n$ congruences:

## The Chinese Remainder Theorem

Proof: To show such a solution exists: Let $M_{k}=m / m_{k}$ for $k=1,2, \ldots, n$ and $m=m_{1} m_{2} \ldots m_{n}$. Thus, $M_{k}=m_{1} \ldots m_{k-1} m_{k+1} \ldots m_{n}$.

Since $\operatorname{gcd}\left(m_{k}, M_{k}\right)=1$, there is an integer $y_{k}$, an inverse of $M_{k}$ modulo $m_{k}$, such that $M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$. Let

$$
x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\ldots+a_{n} M_{n} y_{n} .
$$

It is checked that $x$ is a solution to the $n$ congruences:

$$
x \boldsymbol{\operatorname { m o d }} m_{k}=\left(a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\ldots+a_{n} M_{n} y_{n}\right) \bmod m_{k}
$$

Since $M_{k}=m / m_{k}$, we have $x \bmod m_{k}=a_{k} M_{k} y_{k} \bmod m_{k}$. Since $M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$, we have $a_{k} M_{k} y_{k} \bmod m_{k}=a_{k} \bmod m_{k}$. Thus,

$$
x \equiv a_{k}\left(\bmod m_{k}\right)
$$

## The Chinese Remainder Theorem

How to prove the uniqueness of the solution modulo $m$ ?
Proof: Suppose that $x$ and $x^{\prime}$ are both solutions to all the congruences. As $x$ and $x^{\prime}$ give the same remainder, when divided by $m_{k}$, their difference $x-x^{\prime}$ is a multiple of each $m_{k}$ for all $k=1,2, \ldots, n$.

## The Chinese Remainder Theorem

How to prove the uniqueness of the solution modulo $m$ ?
Proof: Suppose that $x$ and $x^{\prime}$ are both solutions to all the congruences. As $x$ and $x^{\prime}$ give the same remainder, when divided by $m_{k}$, their difference $x-x^{\prime}$ is a multiple of each $m_{k}$ for all $k=1,2, \ldots, n$.

As $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers, their product $m$ divides $x-x^{\prime}$, and thus $x$ and $x^{\prime}$ are congruent modulo $m$, i.e., $x \equiv x^{\prime}(\bmod m)$.

## The Chinese Remainder Theorem

How to prove the uniqueness of the solution modulo $m$ ?
Proof: Suppose that $x$ and $x^{\prime}$ are both solutions to all the congruences. As $x$ and $x^{\prime}$ give the same remainder, when divided by $m_{k}$, their difference $x-x^{\prime}$ is a multiple of each $m_{k}$ for all $k=1,2, \ldots, n$.

As $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers, their product $m$ divides $x-x^{\prime}$, and thus $x$ and $x^{\prime}$ are congruent modulo $m$, i.e., $x \equiv x^{\prime}(\bmod m)$.
This implies that given a solution $x$ with $0 \leq x<m$, all other solutions are congruent modulo $m$ to this solution.

## The Chinese Remainder Theorem: Example

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 2(\bmod 7)
\end{aligned}
$$

## The Chinese Remainder Theorem: Example

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 2(\bmod 7)
\end{aligned}
$$

(1) Let $m=3 \cdot 5 \cdot 7=105, M_{1}=m / 3=35, M_{2}=m / 5=21$, and $M_{3}=m / 7=15$.

## The Chinese Remainder Theorem: Example

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 2(\bmod 7)
\end{aligned}
$$

(1) Let $m=3 \cdot 5 \cdot 7=105, M_{1}=m / 3=35, M_{2}=m / 5=21$, and $M_{3}=m / 7=15$.
(2) Compute the inverse of $M_{k}$ modulo $m_{k}$ :

- $35 \cdot 2 \equiv 1(\bmod 3) y_{1}=2$
- $21 \equiv 1(\bmod 5) y_{2}=1$
- $15 \equiv 1(\bmod 7) y_{3}=1$


## The Chinese Remainder Theorem：Example

```
x\equiv2(mod 3)
x\equiv3(mod 5)
x\equiv2(mod 7)
```

（1）Let $m=3 \cdot 5 \cdot 7=105, M_{1}=m / 3=35, M_{2}=m / 5=21$ ，and $M_{3}=m / 7=15$ ．
（2）Compute the inverse of $M_{k}$ modulo $m_{k}$ ：
－ $35 \cdot 2 \equiv 1(\bmod 3) y_{1}=2$
－ $21 \equiv 1(\bmod 5) y_{2}=1$
－ $15 \equiv 1(\bmod 7) y_{3}=1$
（3）Compute a solution $x$ ：

$$
x=2 \cdot 35 \cdot 2+3 \cdot 21 \cdot 1+2 \cdot 15 \cdot 1 \equiv 233 \equiv 23(\bmod 105)
$$

## The Chinese Remainder Theorem：Example

$x \equiv 2(\bmod 3)$
$x \equiv 3(\bmod 5)$
$x \equiv 2(\bmod 7)$
（1）Let $m=3 \cdot 5 \cdot 7=105, M_{1}=m / 3=35, M_{2}=m / 5=21$ ，and $M_{3}=m / 7=15$ ．
（2）Compute the inverse of $M_{k}$ modulo $m_{k}$ ：
－ $35 \cdot 2 \equiv 1(\bmod 3) y_{1}=2$
－ $21 \equiv 1(\bmod 5) y_{2}=1$
－ $15 \equiv 1(\bmod 7) y_{3}=1$
（3）Compute a solution $x$ ：
$x=2 \cdot 35 \cdot 2+3 \cdot 21 \cdot 1+2 \cdot 15 \cdot 1 \equiv 233 \equiv 23(\bmod 105)$
（9）The solutions are all integers $x$ that satisfy $x \equiv 23(\bmod 105)$ ．

## Back Substitution

We may also solve systems of linear congruences with pairwise relatively prime moduli $m_{1}, m_{2}, \ldots m_{n}$ by back substitution.

## Back Substitution

We may also solve systems of linear congruences with pairwise relatively prime moduli $m_{1}, m_{2}, \ldots m_{n}$ by back substitution.

## Example:

(1) $x \equiv 1(\bmod 5)$
(2) $x \equiv 2(\bmod 6)$
(3) $x \equiv 3(\bmod 7)$

## Back Substitution

We may also solve systems of linear congruences with pairwise relatively prime moduli $m_{1}, m_{2}, \ldots m_{n}$ by back substitution.

## Example:

(1) $x \equiv 1(\bmod 5)$
(2) $x \equiv 2(\bmod 6)$
(3) $x \equiv 3(\bmod 7)$

According to (1), $x=5 t+1$, where $t$ is an integer.

## Back Substitution

We may also solve systems of linear congruences with pairwise relatively prime moduli $m_{1}, m_{2}, \ldots m_{n}$ by back substitution．

## Example：

（1）$x \equiv 1(\bmod 5)$
（2）$x \equiv 2(\bmod 6)$
（3）$x \equiv 3(\bmod 7)$
According to（1），$x=5 t+1$ ，where $t$ is an integer．
Substituting this expression into（2），we have $5 t+1 \equiv 2(\bmod 6)$ ，which means that $t \equiv 5(\bmod 6)$ ．Thus，$t=6 u+5$ ，where $u$ is an integer．

## Back Substitution

We may also solve systems of linear congruences with pairwise relatively prime moduli $m_{1}, m_{2}, \ldots m_{n}$ by back substitution.

## Example:

(1) $x \equiv 1(\bmod 5)$
(2) $x \equiv 2(\bmod 6)$
(3) $x \equiv 3(\bmod 7)$

According to (1), $x=5 t+1$, where $t$ is an integer.
Substituting this expression into (2), we have $5 t+1 \equiv 2(\bmod 6)$, which means that $t \equiv 5(\bmod 6)$. Thus, $t=6 u+5$, where $u$ is an integer.
Substituting $x=5 t+1$ and $t=6 u+5$ into (3), we have $30 u+26 \equiv 3(\bmod 7)$, which implies that $u \equiv 6(\bmod 7)$. Thus, $u=7 v+6$, where $v$ is an integer.

## Back Substitution

We may also solve systems of linear congruences with pairwise relatively prime moduli $m_{1}, m_{2}, \ldots m_{n}$ by back substitution.

## Example:

(1) $x \equiv 1(\bmod 5)$
(2) $x \equiv 2(\bmod 6)$
(3) $x \equiv 3(\bmod 7)$

According to (1), $x=5 t+1$, where $t$ is an integer.
Substituting this expression into (2), we have $5 t+1 \equiv 2(\bmod 6)$, which means that $t \equiv 5(\bmod 6)$. Thus, $t=6 u+5$, where $u$ is an integer.
Substituting $x=5 t+1$ and $t=6 u+5$ into (3), we have $30 u+26 \equiv 3(\bmod 7)$, which implies that $u \equiv 6(\bmod 7)$. Thus, $u=7 v+6$, where $v$ is an integer.

Thus, we must have $x=210 v+206$. Translating this back into a congruence,

$$
x \equiv 206(\bmod 210)
$$

