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Topics of This Course
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Coverage for First Midterm

1 Logic and Mathematical Proofs

2 Sets and Functions

3 Complexity of Algorithms

4 Number Theory
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Lecture Schedule

1 Logic and Mathematical Proofs

2 Sets and Functions

3 Complexity of Algorithms

4 Number Theory
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Propositional Logic

Proposition: a declarative sentence that is either true or false (not both).

Conventional letters used for propositional variables are p, q, r , s, ...

Truth value of a proposition: true, denoted by T; false, denoted by F.

Compound propositions are build using logical connectives:

Negation ¬
Conjunction ∧
Disjunction ∨

Exclusive or ⊕
Implication →
Biconditional ↔
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Tautology and Logical Equivalences

Tautology: A compound proposition that is always true, no matter
what the truth values of the propositional variables that occur in it.

▶ E.g., p ∨ ¬p
Contradiction: A compound proposition that is always false.

The compound propositions p and q are called logically equivalent,
denoted by p ≡ q, if p ↔ q is a tautology.

E.g., ¬(p ∨ q) and ¬p ∧ ¬q

That is, two compound propositions are equivalent if they always have the
same truth value.

Determine logically equivalent propositions using:

Truth table

Logical Equivalences
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Important Logical Equivalences
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Important Logical Equivalences

Useful Law
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Predicate Logic and Quantified Statements

Predicate Logic: make statements with variables: P(x).

Propositional function P(x)
specify x
=⇒ Proposition

Quantified Statements: Universal quantifier ∀xP(x); Existential quantifier
∃xP(x)

Propositional function P(x)
for all/some x in domain

=⇒ Proposition
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Negation and Nest Quantifier
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Validity of Argument Form:

The argument form with premises p1, p2, ..., pn and conclusion q is valid, if

(p1 ∧ p2 ∧ · · · ∧ pn)→ q is a tautology.

Note: According to the definition of p → q, we do not worry about the

case where p1 ∧ p2 ∧ · · · ∧ pn is false.
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Rules of Inference for Propositional Logic
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Methods of Proving Theorems

A proof is a valid argument that establishes the truth of a mathematical
statement.

Direct proof

p → q is proved by showing that if p is true then q follows

Proof by contrapositive

show the contrapositive ¬q → ¬p
Proof by contradiction

show that (p ∧ ¬q) contradicts the assumptions

Proof by cases

give proofs for all possible cases

Proof of equivalence

p ↔ q is replaced with (p → q) ∧ (q ← p)
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Proof Exercise 1

Prove that
√
2 is irrational. (Rational numbers are those of the form m

n ,
where m and n are integers.)

Proof: Suppose that
√
2 is rational. Then, there exist integers a and b

with
√
2 = a/b, where b ̸= 0 and a and b have no common factors (so

that the fraction a/b is in lowest terms.)

Since
√
2 = a/b, it follows that 2b2 = a2. By the definition of an even

integer, it follows that a2 is even, so a is even (see Exercise 16).

Since a is even, a = 2k for some integer k. Thus, b2 = 2k2. This implies
that b2 is even, so b is even.

As a result, a and b have a common factor 2, which contradicts our
assumption.
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Proof Exercise 2

Show that there exist irrational numbers x and y such that xy is rational.

Proof: We know that
√
2 is irrational. Consider the number

√
2
√
2
.

Case 1: If
√
2
√
2
is rational, then we have two irrational numbers x =

√
2

and y =
√
2 with xy =

√
2
√
2
rational.

Case 2: If
√
2
√
2
is irrational, then we let x =

√
2
√
2
and y =

√
2. We

have xy = (
√
2
√
2
)
√
2 = 2 is rational.

Note that although we do not know which case works, we know that one
of the two cases has the desired property.
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Lecture Schedule

1 Logic and Mathematical Proofs

2 Sets and Functions

3 Complexity of Algorithms

4 Number Theory
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Sets

A set is an unordered collection of objects.

listing (enumerating) the elements

if enumeration is hard, use ellipses (...)

definition by property, using the set builder

{x | x has property P or property P(x))}

Proof of Subset:

Showing A ⊆ B: if x belongs to A, then x also belongs to B.

Showing A ⊈ B: find a single x ∈ A such that x /∈ B.

Prove A = B?
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Cardinality, Power Set, Tuples, and Cartesian Product

Cardinality: If there are exactly n distinct elements in S , where n is a
nonnegative integer, we say that S is a finite set and n is the cardinality of
S , denoted by |S |.

Power Set: Given a set S , the power set of S is the set of all subsets of
the set S , denoted by P(S).

Tuples: The ordered n-tuple (a1, a2, ..., an) is the ordered collection that
has a1 as its first element and a2 as its second element and so on.

Cartesian Product: Let A and B be sets. The Cartesian product of A and
B, denoted by A× B, is the set of all ordered pairs (a, b), where a ∈ A
and b ∈ B:

A× B = {(a, b) | a ∈ A ∧ b ∈ B}
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Set Operations

Union: Let A and B be sets. The union of the sets A and B, denoted by
A ∪ B, is the set {x | x ∈ A ∨ x ∈ B}.

Intersection: The intersection of the sets A and B, denoted by A ∩ B, is
the set {x | x ∈ A ∧ x ∈ B}.

Complement: If A is a set, then the complement of the set A (with
respect to U), denoted by Ā is the set U − A, Ā = {x ∈ U | x /∈ A}

Difference: Let A and B be sets. The difference of A and B, denoted by
A− B, is the set containing the elements of A that are not in B.
A− B = {x | x ∈ A ∧ x /∈ B} = A ∩ B̄.

Principle of inclusion–exclusion: |A ∪ B| = |A|+ |B| − |A ∩ B|

Meng Zhang @ ZJUI MATH 213 Fall 2022 18 / 62



Set Identities
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Proof of Set Identities

Prove that A ∩ B = Ā ∪ B̄

Proof 1: Using membership tables. Consider an arbitrary element x : 1, x
is in A; 0, x is not in A.
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Function

Let A and B be two sets. A function from A to B, denoted by f : A→ B,
is an assignment of exactly one element of B to each element of A.

One-to-one (injective) function:
▶ A function f is called one-to-one or injective if and only if f (x) = f (y)

implies x = y for all x , y in the domain of f .

Onto (surjective) function:
▶ A function f is called onto or surjective if and only if for every b ∈ B

there is an element a ∈ A such that f (a) = b.

One-to-one (bijective) correspondence
▶ One-to-one and onto
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Proof for One-to-One and Onto
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Inverse Function and Composition of Functions

Inverse function: Let f be a one-to-one correspondence (bijection) from
the set A to the set B. The inverse function of f is the function that
assigns to an element b belonging to B the unique element a in A such
that f (a) = b.

Let f be a function from B to C and let g be a function from A to B.
The composition of the functions f and g , denoted by f ◦ g , is defined by
(f ◦ g)(x) = f (g(x)).

The floor function assigns a real number x the largest integer that is ≤ x ,
denoted by ⌊x⌋. E.g., ⌊3.5⌋ = 3.

The ceiling function assigns a real number x the smallest integer that is
≥ x , denoted by ⌈x⌉. E.g., ⌈3.5⌉ = 4.
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Sequences

A sequence is a function from a subset of the set of integers (typically the
set {0, 1, 2, ...} or {1, 2, 3, ...}) to a set S .

We use the notation an to denote the image of the integer n. {an}
represents the ordered list {a1, a2, a3, ...}

Recursively Defined Sequences: provide

One or more initial terms

A rule for determining subsequent terms from those that precede
them.
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Cardinality of Sets

A set that is either finite or has the same cardinality as the set of positive
integers Z+ is called countable.

If there is a one-to-one function from A to B, the cardinality of A is less
than or equal to the cardinality of B, denoted by |A| ≤ |B|.

Theorem: If there is a one-to-one correspondence between elements in A
and B, then the sets A and B have the same cardinality.

Theorem: If A and B are sets with |A| ≤ |B| and |B| ≤ |A|, then
|A| = |B|.
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Lecture Schedule

1 Logic and Mathematical Proofs

2 Sets and Functions

3 Complexity of Algorithms

4 Number Theory
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Big-O Notation

Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers.We say that f (x) is O(g(x)) if there
are constants C and k such that

|f (x)| ≤ C |g(x)|,

whenever x > k . [This is read as “f (x) is big-oh of g(x).”]
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Big-O Estimates for Some Functions
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Big-Omega Notation

Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers.We say that f (x) is Ω(g(x)) if there
are positive constants C and k such that

|f (x)| ≥ C |g(x)|

whenever x > k . [This is read as “f (x) is big-Omega of g(x).”]

Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers.We say that f (x) is Θ(g(x)) if

f (x) is O(g(x)) and

f (x) is Ω(g(x)).

When f (x) is Θ(g(x)), we say that f (x) is big-Theta of g(x), that f (x) is
of order g(x), and that f (x) and g(x) are of the same order.
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Lecture Schedule

1 Logic and Mathematical Proofs

2 Sets and Functions

3 Complexity of Algorithms

4 Number Theory
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Division

Divisibility: We say that a divides b if there is an integer c such that
b = ac , or equivalently b/a is an integer.

If a, b, c are integers, where a ̸= 0, such that a|b and a|c , then
a|(mb + nc) whenever m and n are integers.

Congruence Relation: If a and b are integers and m is a positive integer,
then a is congruent to b modulo m if m divides a− b, denoted by
a ≡ b (mod m).

The integers a and b are congruent modulo m if and only if there is an
integer k such that

a = b + km.
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Congruence: Properties

Theorem: Let m be a positive integer. If a ≡ b (mod m) and
c ≡ d (mod m), then

a+ c ≡ b + d (mod m)

ac ≡ bd (mod m)

Corollary: Let m be a positive integer and let a and b be integers. Then,

(a+ b) mod m = ((a mod m) + (b mod m)) mod m

ab mod m = ((a mod m)(b mod m)) mod m
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Primes

A integer p that is greater than 1 is called a prime if the only positive
factors of p are 1 and p.

If n is composite, then n has a prime divisor less than or equal to
√
n.

Let a and b be integers, not both 0. The largest integer d such that d |a
and d |b is called the greatest common divisor of a and b, denoted by
gcd(a, b). Let a = pa11 pa22 ...pann and b = pb11 pb22 ...pbnn . Then,

gcd(a, b) = pmin(a1,b1)pmin(a2,b2)...pmin(an,bn)

The least common multiple of a and b is the smallest positive integer that
is divisible by both a and b, denoted by lcm(a, b).Let a = pa11 pa22 ...pann and

b = pb11 pb22 ...pbnn . Then,

lcm(a, b) = pmax(a1,b1)pmax(a2,b2)...pmax(an,bn).
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Euclidean Algorithm

Computing the greatest common divisor of two integers directly from the
prime factorizations can be time consuming since we need to find all
factors of the two integers.

For two integers 287 and 91, we want to find gcd(287, 91).

Step 1: 287 = 91 · 3 + 14

Step 2: 91 = 14 · 6 + 7

Step 3: 14 = 7 · 2 + 0

gcd(287, 91) = gcd(91, 14) = gcd(14, 7) = 7
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GCD as Linear Combinations

Bezout’S Theorem: If a and b are positive integers, then there exist
integers s and t such that

gcd(a, b) = sa+ tb.

This equation is called Bezout’s identity.

We can use extended Euclidean algorithm to find Bezout’s identity.

Lemma: If a, b, c are positive integers such that gcd(a, b) = 1 and a|bc,
then a|c .

Lemma: If p is prime and p|a1a2...an, then p|ai for some i .
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Linear Congruences

A congruence of the form ax ≡ b (mod m), where m is a positive integer,
a and b are integers, and x is a variable, is called a linear congruence.

The solutions to a linear congruence ax ≡ b (mod m) are all integers x
that satisfy the congruence.

Modular Inverse: An integer ā such that āa ≡ 1 (mod m) is said to be
an inverse of a modulo m.

Solve the congruence ax ≡ b (mod m) by multiplying both sides by ā.

x ≡ āb (mod m).
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Modular Inverse

Modular Inverse: An integer ā such that āa ≡ 1 (mod m) is said to be
an inverse of a modulo m.

When does inverse exist?
Theorem: If a and m are relatively prime integers and m > 1, then an
inverse of a modulo m exists. The inverse is unique modulo m. That is,

there is a unique positive integer ā less than m that is an inverse of a
modulo m and

every other inverse of a modulo m is congruent to ā modulo m.

If we obtain an arbitrary inverse of a modulo m, how to obtain the inverse
that is less than m?
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an inverse of a modulo m.

When does inverse exist?
Theorem: If a and m are relatively prime integers and m > 1, then an
inverse of a modulo m exists. The inverse is unique modulo m. That is,

there is a unique positive integer ā less than m that is an inverse of a
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Modular Inverse

How to find inverses?

Using extended Euclidean algorithm:

Example: Find an inverse of 101 modulo 4620. That is, find ā such that
ā · 101 ≡ 1 (mod 4620).

With extended Euclidean algorithm, we obtain gcd(a, b) = sa+ tb, i.e.,
1 = −35 · 4620 + 1601 · 101. It tells us that −35 and 1601 are Bezout
coefficients of 4620 and 101. We have

1 mod 4620 = 1601 · 101 mod 4620.

Thus, 1601 is an inverse of 101 modulo 4620.
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The Chinese Remainder Theorem

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)
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The Chinese Remainder Theorem

Theorem (The Chinese Remainder Theorem): Let m1, m2, . . . , mn be
pairwise relatively prime positive integers greater than 1 and a1, a2, . . . ,
an arbitrary integers. Then, the system

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ an (mod mn)

has a unique solution modulo m = m1m2...mn.
(That is, there is a solution x with 0 ≤ x < m, and all other solutions are
congruent modulo m to this solution.)
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The Chinese Remainder Theorem

Proof: To show such a solution exists: Let Mk = m/mk for k = 1, 2, ..., n
and m = m1m2...mn. Thus, Mk = m1...mk−1mk+1...mn.

Since gcd(mk ,Mk) = 1, there is an integer yk , an inverse of Mk modulo
mk , such that Mkyk ≡ 1 (mod mk). Let

x = a1M1y1 + a2M2y2 + ...+ anMnyn.

It is checked that x is a solution to the n congruences:

x mod mk = (a1M1y1 + a2M2y2 + ...+ anMnyn) mod mk

Since Mk = m/mk , we have x mod mk = akMkyk mod mk . Since
Mkyk ≡ 1 (mod mk), we have akMkyk mod mk = ak mod mk . Thus,

x ≡ ak (mod mk).

Meng Zhang @ ZJUI MATH 213 Fall 2022 44 / 49



The Chinese Remainder Theorem

Proof: To show such a solution exists: Let Mk = m/mk for k = 1, 2, ..., n
and m = m1m2...mn. Thus, Mk = m1...mk−1mk+1...mn.

Since gcd(mk ,Mk) = 1, there is an integer yk , an inverse of Mk modulo
mk , such that Mkyk ≡ 1 (mod mk). Let

x = a1M1y1 + a2M2y2 + ...+ anMnyn.

It is checked that x is a solution to the n congruences:

x mod mk = (a1M1y1 + a2M2y2 + ...+ anMnyn) mod mk

Since Mk = m/mk , we have x mod mk = akMkyk mod mk . Since
Mkyk ≡ 1 (mod mk), we have akMkyk mod mk = ak mod mk . Thus,

x ≡ ak (mod mk).

Meng Zhang @ ZJUI MATH 213 Fall 2022 44 / 49



The Chinese Remainder Theorem

Proof: To show such a solution exists: Let Mk = m/mk for k = 1, 2, ..., n
and m = m1m2...mn. Thus, Mk = m1...mk−1mk+1...mn.

Since gcd(mk ,Mk) = 1, there is an integer yk , an inverse of Mk modulo
mk , such that Mkyk ≡ 1 (mod mk). Let

x = a1M1y1 + a2M2y2 + ...+ anMnyn.

It is checked that x is a solution to the n congruences:

x mod mk = (a1M1y1 + a2M2y2 + ...+ anMnyn) mod mk

Since Mk = m/mk , we have x mod mk = akMkyk mod mk . Since
Mkyk ≡ 1 (mod mk), we have akMkyk mod mk = ak mod mk . Thus,

x ≡ ak (mod mk).

Meng Zhang @ ZJUI MATH 213 Fall 2022 44 / 49



The Chinese Remainder Theorem

How to prove the uniqueness of the solution modulo m?

Proof: Suppose that x and x ′ are both solutions to all the congruences.
As x and x ′ give the same remainder, when divided by mk , their difference
x − x ′ is a multiple of each mk for all k = 1, 2, ..., n.

As m1, m2, . . . , mn be pairwise relatively prime positive integers, their
product m divides x − x ′, and thus x and x ′ are congruent modulo m, i.e.,
x ≡ x ′ (mod m).

This implies that given a solution x with 0 ≤ x < m, all other solutions are
congruent modulo m to this solution.

Meng Zhang @ ZJUI MATH 213 Fall 2022 45 / 49



The Chinese Remainder Theorem

How to prove the uniqueness of the solution modulo m?

Proof: Suppose that x and x ′ are both solutions to all the congruences.
As x and x ′ give the same remainder, when divided by mk , their difference
x − x ′ is a multiple of each mk for all k = 1, 2, ..., n.

As m1, m2, . . . , mn be pairwise relatively prime positive integers, their
product m divides x − x ′, and thus x and x ′ are congruent modulo m, i.e.,
x ≡ x ′ (mod m).

This implies that given a solution x with 0 ≤ x < m, all other solutions are
congruent modulo m to this solution.

Meng Zhang @ ZJUI MATH 213 Fall 2022 45 / 49



The Chinese Remainder Theorem

How to prove the uniqueness of the solution modulo m?

Proof: Suppose that x and x ′ are both solutions to all the congruences.
As x and x ′ give the same remainder, when divided by mk , their difference
x − x ′ is a multiple of each mk for all k = 1, 2, ..., n.

As m1, m2, . . . , mn be pairwise relatively prime positive integers, their
product m divides x − x ′, and thus x and x ′ are congruent modulo m, i.e.,
x ≡ x ′ (mod m).

This implies that given a solution x with 0 ≤ x < m, all other solutions are
congruent modulo m to this solution.

Meng Zhang @ ZJUI MATH 213 Fall 2022 45 / 49



The Chinese Remainder Theorem: Example

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

1 Let m = 3 · 5 · 7 = 105, M1 = m/3 = 35, M2 = m/5 = 21, and
M3 = m/7 = 15.

2 Compute the inverse of Mk modulo mk :
▶ 35 · 2 ≡ 1 (mod 3) y1 = 2
▶ 21 ≡ 1 (mod 5) y2 = 1
▶ 15 ≡ 1 (mod 7) y3 = 1

3 Compute a solution x :
x = 2 · 35 · 2 + 3 · 21 · 1 + 2 · 15 · 1 ≡ 233 ≡ 23 (mod 105)

4 The solutions are all integers x that satisfy x ≡ 23 (mod 105).
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Back Substitution
We may also solve systems of linear congruences with pairwise relatively
prime moduli m1,m2, ...mn by back substitution.

Example:

(1) x ≡ 1 (mod 5)
(2) x ≡ 2 (mod 6)
(3) x ≡ 3 (mod 7)

According to (1), x = 5t + 1, where t is an integer.

Substituting this expression into (2), we have 5t + 1 ≡ 2 (mod 6), which
means that t ≡ 5 (mod 6). Thus, t = 6u + 5, where u is an integer.

Substituting x = 5t + 1 and t = 6u + 5 into (3), we have
30u + 26 ≡ 3 (mod 7), which implies that u ≡ 6 (mod 7). Thus,
u = 7v + 6, where v is an integer.

Thus, we must have x = 210v + 206. Translating this back into a
congruence,

x ≡ 206 (mod 210).
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