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Topics of This Course

Logic and Mathematical Proofs

/ Sets and Functions

Relations . .
Complexity of Algorithms

Numbe] Theory i Cryptography

Graphs Il Groups, Rings, and Fields*
| Mathematical Induction and Recursion

Graphs |

Trees Finite Fields

Counting

Discrete Probability*
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Coverage for First Midterm

1 Logic and Mathematical Proofs 3 Complexity of Algorithms

2 Sets and Functions 4 Number Theory
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Lecture Schedule

1 Logic and Mathematical Proofs 3 Complexity of Algorithms

2 Sets and Functions 4 Number Theory
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Propositional Logic

Proposition: a declarative sentence that is either true or false (not both).
@ Conventional letters used for propositional variables are p, q, r, s, ...
@ Truth value of a proposition: true, denoted by T; false, denoted by F.
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Propositional Logic

Proposition: a declarative sentence that is either true or false (not both).
@ Conventional letters used for propositional variables are p, q, r, s, ...
@ Truth value of a proposition: true, denoted by T; false, denoted by F.

Compound propositions are build using logical connectives:

o Negation — @ Exclusive or &
@ Conjunction A @ Implication —
e Disjunction V @ Biconditional >
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Tautology and Logical Equivalences

@ Tautology: A compound proposition that is always true, no matter
what the truth values of the propositional variables that occur in it.

» Eg.,pV-p
@ Contradiction: A compound proposition that is always false.
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Tautology and Logical Equivalences

@ Tautology: A compound proposition that is always true, no matter
what the truth values of the propositional variables that occur in it.

» Eg.,pV-p
@ Contradiction: A compound proposition that is always false.

The compound propositions p and g are called logically equivalent,
denoted by p = q, if p +> g is a tautology.

e Eg., ~(pVgqg)and -pA—gq
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Tautology and Logical Equivalences

@ Tautology: A compound proposition that is always true, no matter
what the truth values of the propositional variables that occur in it.
» Eg.,pV-p

@ Contradiction: A compound proposition that is always false.

The compound propositions p and g are called logically equivalent,
denoted by p = q, if p +> g is a tautology.

e Eg., ~(pVgqg)and -pA—gq

That is, two compound propositions are equivalent if they always have the
same truth value.
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Tautology and Logical Equivalences

@ Tautology: A compound proposition that is always true, no matter
what the truth values of the propositional variables that occur in it.

» Eg., pV-p

@ Contradiction: A compound proposition that is always false.

The compound propositions p and g are called logically equivalent,
denoted by p = q, if p <> g is a tautology.

e Eg., ~(pVgqg)and -pA—gq
That is, two compound propositions are equivalent if they always have the
same truth value.
Determine logically equivalent propositions using:
@ Truth table
o Logical Equivalences 2JU-UIUC INSTITUTE
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Important Logical Equivalences

Equivalence Naine

pAT=p Identity laws
pvF=p

pvT=T Domination laws
pAF=F

pVp=rp Idempotent laws
PAPEPp

—(-p)=p Double negation law
pVg=qVp Commutative laws
PANGEGAPp
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Important Logical Equivalences

(pVv@)Vr=pvigVvr) Associative laws
(pAGQ)AFr=pAlgAT)

pV@Ar)=(pVg)A(pVr) Distributive laws
PA@GVIHY=(pAgVI(PAT)

—(pAg)=—pV—q De Morgan’s laws
—~(pVa)=—-pr—q

pVv(ipAg)=Pp Absorption laws
PA(pPVg)=p

pv—-p=T Negation laws
pAn—-p=F
p—>q=-pVg
Useful Law
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Predicate Logic and Quantified Statements

Predicate Logic: make statements with variables: P(x).

. . if .
Propositional function P(x) ""==* Proposition
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Predicate Logic and Quantified Statements

Predicate Logic: make statements with variables: P(x).

- . if .
Propositional function P(x) ""==* Proposition

Quantified Statements: Universal quantifier VxP(x); Existential quantifier

IxP(x)
Statement When true? When false?
Vx P(x) P(x) true forall x | There is an x
where P(x) is false.
3Ix P(x) There is some x for | P(x) is false for all
which P(x) is true. |x.

Propositional function P

Meng Zhang @ ZJUI MATH 213

for all/some x in domain
(x) =

Proposition
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Negation and Nest Quantifier

: Equivalent When Is Negation ?
Negation Statement True? When False?

There is an x for which
— Jx P(X) Vx — P(X) For every x, P(x) is false. P(x) is true.

There is an x for which
- Vx ’D(X) dx - P(X) P(x) is false. P(x) is true for every x.
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Negation and Nest Quantifier

Negation Equivalent When Is Negation| \When False?
Statement True?
There is an x for which
— Jx P(X) Vx — P(X) For every x, P(x) is false. P(x) is true.
There is an x for which
- Vx P(x) | dx ~P(x) P(x) is false. P(x) is true for every x.
Statement When True? When False?
VxVyP(x,y) P(x,y) is true for every pair x, y. There is a pair x, y for
VyVxP(x,y) which P(x, y) is false.
Vx3yP(x,y) For every x there is a y for There is an x such that
which P(x,y) is true. P(x,y) is false for every y.
AxVyP(x,y) There is an x for which P(x, y) For every x there is a y for
is true for every y. which P(x, y) is false.
xAyP(x,y) There is a pair x, y for which P(x, y) is false for every
DHAIPY | Pl y)is true. pair x, y. INSTITUTE
il 3033 i



Validity of Argument Form:

The argument form with premises p1, p2, ..., pn and conclusion q is valid, if
(pr Ap2 A+ A pp) — qis a tautology.

Note: According to the definition of p — g, we do not worry about the

case where p1 A pp A--- A pp is false.

ZJU-UIUC INSTITUTE
HIAFFFIEFAFCEATRRERAFR

Meng Zhang @ ZJUI SE Fall 2022 10/62



Rules of Inference for Propositional Logic

Rule of Inference Tautology Name

14 (pA(p—>q)—>q Modus ponens
pP—>q

—-q (=q A(p—>q) > —p Modus tollens
pP—>q

P—=>q (p=>@AN@G—>1r)—>(p—>r) Hypothetical syllogism
q—r

Sp—r

pVaq (pVag)A=p) —q Disjunctive syllogism
-p
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Rules of Inference for Propositional Logic

P p—>(pVag) Addition

PAg (pAg)—p Simplification

(P A@) = (pAg) Conjunction

PVvqg ((pvg)AN(=pVr)—(gVr) Resolution
—pVr

S.qgVr
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Rules of Inference for Propositional Logic

Rule of Inference Name

VxP(x)
. P(c)

Universal instantiation

P (c) for an arbitrary ¢
L VxP(x)

Universal generalization

AxP(x)

P Existential instantiation
. P(c) for some element ¢

P(c) for some element ¢

Existential generalization
. 3AxP(x)
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Methods of Proving Theorems

A proof is a valid argument that establishes the truth of a mathematical
statement.

o Direct proof
p — q is proved by showing that if p is true then g follows

Proof by contrapositive

show the contrapositive -q — —p

Proof by contradiction

show that (p A —q) contradicts the assumptions

Proof by cases
give proofs for all possible cases
@ Proof of equivalence

p <> q is replaced with (p — q) A (g < p)
ZJU-UIUC INSTITUTE
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Proof Exercise 1

Prove that v/2 is irrational. (Rational numbers are those of the form %
where m and n are integers.)
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Proof Exercise 1

Prove that v/2 is irrational. (Rational numbers are those of the form %

where m and n are integers.)

Proof: Suppose that 1/2 is rational. Then, there exist integers a and b
with v/2 = a/b, where b # 0 and a and b have no common factors (so
that the fraction a/b is in lowest terms.)

Since v2 = a/b, it follows that 2b% = 22, By the definition of an even
integer, it follows that a? is even, so a is even (see Exercise 16).

Since a is even, a = 2k for some integer k. Thus, b?> = 2k?. This implies
that b2 is even, so b is even.

As a result, a and b have a common factor 2, which contradicts our
assumption.
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Proof Exercise 2

Show that there exist irrational numbers x and y such that x” is rational.
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Proof Exercise 2

Show that there exist irrational numbers x and y such that x” is rational.

Proof: We know that v/2 is irrational. Consider the number \/5\@

Case 1: If ﬂﬁ is rational, then we have two irrational numbers x = /2
and y = V2 with x¥ = ﬂﬁ rational.

Case 2: If \@ﬁ is irrational, then we let x = \/iﬁ and y = V2. We
have x¥ = (\@ﬁ)ﬁ = 2 is rational.

Note that although we do not know which case works, we know that one
of the two cases has the desired property.
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Lecture Schedule

1 Logic and Mathematical Proofs 3 Complexity of Algorithms

2 Sets and Functions 4 Number Theory
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Sets

A set is an unordered collection of objects.
o listing (enumerating) the elements
@ if enumeration is hard, use ellipses (...)

o definition by property, using the set builder

{x | x has property P or property P(x))}
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Sets

A set is an unordered collection of objects.
o listing (enumerating) the elements
@ if enumeration is hard, use ellipses (...)

o definition by property, using the set builder

{x | x has property P or property P(x))}

Proof of Subset:
@ Showing A C B: if x belongs to A, then x also belongs to B.
e Showing A ¢ B: find a single x € A such that x ¢ B.
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Sets

A set is an unordered collection of objects.
o listing (enumerating) the elements
@ if enumeration is hard, use ellipses (...)

o definition by property, using the set builder
{x | x has property P or property P(x))}

Proof of Subset:

@ Showing A C B: if x belongs to A, then x also belongs to B.

e Showing A ¢ B: find a single x € A such that x ¢ B.
Prove A= B?
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Cardinality, Power Set, Tuples, and Cartesian Product

Cardinality: If there are exactly n distinct elements in S, where nis a

nonnegative integer, we say that S is a finite set and n is the cardinality of
S, denoted by |S|.
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Cardinality, Power Set, Tuples, and Cartesian Product

Cardinality: If there are exactly n distinct elements in S, where nis a

nonnegative integer, we say that S is a finite set and n is the cardinality of
S, denoted by |S|.

Power Set: Given a set S, the power set of S is the set of all subsets of
the set S, denoted by P(S).
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Cardinality, Power Set, Tuples, and Cartesian Product

Cardinality: If there are exactly n distinct elements in S, where n is a
nonnegative integer, we say that S is a finite set and n is the cardinality of
S, denoted by |S|.

Power Set: Given a set S, the power set of S is the set of all subsets of
the set S, denoted by P(S).

Tuples: The ordered n-tuple (a1, a2, ..., an) is the ordered collection that
has a; as its first element and a, as its second element and so on.
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Cardinality, Power Set, Tuples, and Cartesian Product

Cardinality: If there are exactly n distinct elements in S, where n is a
nonnegative integer, we say that S is a finite set and n is the cardinality of
S, denoted by |S|.

Power Set: Given a set S, the power set of S is the set of all subsets of
the set S, denoted by P(S).

Tuples: The ordered n-tuple (a1, a2, ..., an) is the ordered collection that
has a; as its first element and a, as its second element and so on.

Cartesian Product: Let A and B be sets. The Cartesian product of A and
B, denoted by A x B, is the set of all ordered pairs (a, b), where a € A
and b e B:

Ax B={(a,b)|ac ANbe B}
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Set Operations

Union: Let A and B be sets. The union of the sets A and B, denoted by
AUB, istheset {x | x€ AV x € B}.

Intersection: The intersection of the sets A and B, denoted by AN B, is
theset {x | x € AAx € B}.

Complement: If A is a set, then the complement of the set A (with
respect to U), denoted by Aistheset U—- A, A={xec U | x ¢ A}

Difference: Let A and B be sets. The difference of A and B, denoted by
A — B, is the set containing the elements of A that are not in B.
A-B={x|xeAAx¢ B} =ANB.

Principle of inclusion—exclusion: |[AU B| = |A| + |B| — |AN B|
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Set Identities

ANU=A Identity laws

AU =A

AVUU =U Domination laws
ANP=0

AUA=A Idempotent laws
ANA=A

(A?) =A Complementation law
AUB=BUA Commutative laws
ANB=BNA
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Set Identities

AUBUC)=(AUBYUC Associative laws
ANBNC)=(ANB)NC

AUBNC)=(AUB)N(AUC) Distributive laws
ANBUC)=(ANBYUANC)

ANB=AUB De Morgan’s laws
AUB=ANB

AUANB)=A Absorption laws
AN(AUB)=A

AUA=U Complement laws
ANA=9
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Proof of Set Identities

Prove that ANB =AU B
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Proof of Set Identities

Prove that ANB=AUB

Proof 1: Using membership tables. Consider an arbitrary element x: 1, x
isin A; 0, x is not in A.

A| B|A| B|ANB|/AUB
1 1 0 0 0 0
1{o]o]1 1 1
0 1 1 0 1 1
0 0 1 1 1 1
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Proof of Set Identities

Prove that ANB =AU B

Proof 1: Using membership tables. Consider an arbitrary element x: 1, x
isin A; 0, x is not in A.
Proof 2: by showing that ANBC AUBand AUBC ANB

e ANBC AUB:

v

\{

v
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Proof of Set Identities

Prove that ANB=AUB

Proof 1: Using membership tables. Consider an arbitrary element x: 1, x
isin A; 0, x is not in A.
Proof 2: by showing that ANBC AUBand AUBC ANB
e ANBC AUB:
» Suppose that x € AN B. By the definition of complement, x ¢ AN B.
Using the definition of intersection, =((x € A) A (x € B)) is true.
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Proof of Set Identities

Prove that ANB=AUB

Proof 1: Using membership tables. Consider an arbitrary element x: 1, x
isin A; 0, x is not in A.
Proof 2: by showing that ANBC AUBand AUBC ANB
e ANBC AU B:
» Suppose that x € AN B. By the definition of complement, x ¢ AN B.
Using the definition of intersection, =((x € A) A (x € B)) is true.
» By applying De Morgan's law, —=(x € A) V =(x € B)). Thus, x ¢ A or
x & B. Using the definition of the complement of a set, x € A or
x € B.
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Proof of Set Identities

Prove that ANB=AUB

Proof 1: Using membership tables. Consider an arbitrary element x: 1, x
isin A; 0, x is not in A.
Proof 2: by showing that ANBC AUBand AUBC ANB
e ANBC AU B:
» Suppose that x € AN B. By the definition of complement, x ¢ AN B.
Using the definition of intersection, =((x € A) A (x € B)) is true.
> By applying De Morgan's law, =(x € A) V =(x € B)). Thus, x ¢ A or

x ¢ @ Using the definition of the complement of a set, x € A or
x € B.

» By the definition of union, we see that x € AUB.Thus, AN B - AUB.
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Proof of Set Identities

Prove that ANB=AUB

Proof 1: Using membership tables. Consider an arbitrary element x: 1, x
isin A; 0, x is not in A.
Proof 2: by showing that ANBC AUBand AUBC ANB
e ANBC AU B:
» Suppose that x € AN B. By the definition of complement, x ¢ AN B.
Using the definition of intersection, =((x € A) A (x € B)) is true.
> By applying De Morgan's law, =(x € A) V =(x € B)). Thus, x ¢ A or
x ¢ @ Using the definition of the complement of a set, x € A or
x € B.

» By the definition of union, we see that x € AUB.Thus, AN B - AUB.
e AUBCANB
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Proof of Set Identities

Prove that ANB=AUB
Proof 1: using membership tables.

Proof 2: by showing that ANBC AUBand AUBCANB
Proof 3: Using set builder and logical equivalences
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Proof of Set Identities

Prove that ANB =AU B

Proof 1: using membership tables.

Proof 2: by showing that ANBC AUBand AUBCANB
Proof 3: Using set builder and logical equivalences

ANB={x|x¢ ANB} by
={x |- e(ANBKB))} by
={x|—-(x€AAxeB)} by
={x|-(x e A)Vv—(xeB)} by
={x|x¢ AVvx ¢ B} by
={x|xeAvxeB) by
={x|xcAUB} by
=AUB by

definition of complement

definition of does not belong symbol

definition of intersection

the first De Morgan law for logical equivalences
definition of does not belong symbol

definition of complement

definition of union

meaning of set builder notation
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Function

Let A and B be two sets. A function from A to B, denoted by f : A — B,
is an assignment of exactly one element of B to each element of A.

ZJU-UIUC INSTITUTE
LRSS A CEAFRRREETR

o =3 = = E 4

Meng Zhang @ ZJUI MATH 213



Function

Let A and B be two sets. A function from A to B, denoted by f : A — B,
is an assignment of exactly one element of B to each element of A.
@ One-to-one (injective) function:
» A function f is called one-to-one or injective if and only if f(x) = f(y)
implies x = y for all x,y in the domain of f.
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Function

Let A and B be two sets. A function from A to B, denoted by f : A — B,
is an assignment of exactly one element of B to each element of A.
@ One-to-one (injective) function:
» A function f is called one-to-one or injective if and only if f(x) = f(y)
implies x = y for all x,y in the domain of f.
e Onto (surjective) function:

» A function f is called onto or surjective if and only if for every b € B
there is an element a € A such that f(a) = b.
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Function

Let A and B be two sets. A function from A to B, denoted by f : A — B,
is an assignment of exactly one element of B to each element of A.
@ One-to-one (injective) function:
» A function f is called one-to-one or injective if and only if f(x) = f(y)
implies x = y for all x,y in the domain of f.
e Onto (surjective) function:

» A function f is called onto or surjective if and only if for every b € B
there is an element a € A such that f(a) = b.

@ One-to-one (bijective) correspondence
» One-to-one and onto
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Proof for One-to-One and Onto

Suppose that f : A — B.

To show that | Show that if f(x) = f(y) for all x,y € A, then
f is injective | x =y

To show that f| Find specific elements x, y € A such that x # y
is not injective | and f(x) = f(y)

To show that | Consider an arbitrary element y € B and find an
f is surjective| element x € A such that f(x) =y

To show that f| Find a specific element y € B such that f(x) # y
is not surjective| for all x € A
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Inverse Function and Composition of Functions

Inverse function: Let f be a one-to-one correspondence (bijection) from
the set A to the set B. The inverse function of f is the function that
assigns to an element b belonging to B the unique element a in A such
that f(a) = b.
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Inverse Function and Composition of Functions

Inverse function: Let f be a one-to-one correspondence (bijection) from
the set A to the set B. The inverse function of f is the function that
assigns to an element b belonging to B the unique element a in A such
that f(a) = b.

Let f be a function from B to C and let g be a function from A to B.
The composition of the functions f and g, denoted by f o g, is defined by

(fog)(x) = f(g(x))-
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Inverse Function and Composition of Functions

Inverse function: Let f be a one-to-one correspondence (bijection) from
the set A to the set B. The inverse function of f is the function that
assigns to an element b belonging to B the unique element a in A such
that f(a) = b.

Let f be a function from B to C and let g be a function from A to B.
The composition of the functions f and g, denoted by f o g, is defined by

(fog)(x) = f(g(x))-

The floor function assigns a real number x the largest integer that is < x,
denoted by |x]. E.g., |3.5] = 3.
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Inverse Function and Composition of Functions

Inverse function: Let f be a one-to-one correspondence (bijection) from
the set A to the set B. The inverse function of f is the function that
assigns to an element b belonging to B the unique element a in A such
that f(a) = b.

Let f be a function from B to C and let g be a function from A to B.
The composition of the functions f and g, denoted by f o g, is defined by

(fog)(x) = f(g(x))-

The floor function assigns a real number x the largest integer that is < x,
denoted by |x]. E.g., |3.5] = 3.

The ceiling function assigns a real number x the smallest integer that is
> x, denoted by [x]. E.g., [3.5] = 4.
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Sequences

A sequence is a function from a subset of the set of integers (typically the
set {0,1,2,...} or {1,2,3,...}) to aset S.

We use the notation a, to denote the image of the integer n. {a,}
represents the ordered list {a;, ap, as, ...}

Recursively Defined Sequences: provide

@ One or more initial terms

@ A rule for determining subsequent terms from those that precede
them.
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Cardinality of Sets

A set that is either finite or has the same cardinality as the set of positive
integers Z ™ is called countable.

If there is a one-to-one function from A to B, the cardinality of A is less
than or equal to the cardinality of B, denoted by |A| < |B].

Theorem: If there is a one-to-one correspondence between elements in A
and B, then the sets A and B have the same cardinality.

Theorem: If A and B are sets with |A| < |B| and |B| < |A|, then
Al = |B].
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Lecture Schedule

1 Logic and Mathematical Proofs 3 Complexity of Algorithms

2 Sets and Functions 4 Number Theory
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Big-O Notation

Let f and g be functions from the set of integers or the set of real

numbers to the set of real numbers.We say that f(x) is O(g(x)) if there
are constants C and k such that

[f()] < Clg(x)],

whenever x > k. [This is read as "f(x) is big-oh of g(x)."]
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Big-O Notation

Let f and g be functions from the set of integers or the set of real

numbers to the set of real numbers.We say that f(x) is O(g(x)) if there
are constants C and k such that

[f()] < Clg(x)],

whenever x > k. [This is read as "f(x) is big-oh of g(x)."]

ceg(x)

/f(x)
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Big-O Estimates for Some Functions

4096
2048
1024
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Big-Omega Notation

Let f and g be functions from the set of integers or the set of real

numbers to the set of real numbers.We say that f(x) is Q(g(x)) if there
are positive constants C and k such that

[£(x)| = Clg(x)|

whenever x > k. [This is read as “f(x) is big-Omega of g(x)."]
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Big-Omega Notation

Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers.We say that f(x) is Q(g(x)) if there
are positive constants C and k such that

[f(x)] = Clg(x)|
whenever x > k. [This is read as “f(x) is big-Omega of g(x)."]

Let f and g be functions from the set of integers or the set of real
numbers to the set of real numbers.We say that f(x) is ©(g(x)) if

e f(x)is O(g(x)) and
e f(x)is Q(g(x)).
When f(x) is ©(g(x)), we say that f(x) is big-Theta of g(x), that f(x) is

of order g(x), and that f(x) and g(x) are of the same order.
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Lecture Schedule

1 Logic and Mathematical Proofs 3 Complexity of Algorithms

2 Sets and Functions 4 Number Theory
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Division

Divisibility: We say that a divides b if there is an integer ¢ such that
b = ac, or equivalently b/a is an integer.

e If a, b, ¢ are integers, where a # 0, such that a|b and alc, then
a|(mb + nc) whenever m and n are integers.
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Division

Divisibility: We say that a divides b if there is an integer ¢ such that
b = ac, or equivalently b/a is an integer.

e If a, b, ¢ are integers, where a # 0, such that a|b and alc, then
a|(mb + nc) whenever m and n are integers.

Congruence Relation: If a and b are integers and m is a positive integer,

then a is congruent to b modulo m if m divides a — b, denoted by
a=b (mod m).
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Division

Divisibility: We say that a divides b if there is an integer ¢ such that
b = ac, or equivalently b/a is an integer.
e If a, b, ¢ are integers, where a # 0, such that a|b and alc, then
a|(mb + nc) whenever m and n are integers.

Congruence Relation: If a and b are integers and m is a positive integer,
then a is congruent to b modulo m if m divides a — b, denoted by
a=b (mod m).

The integers a and b are congruent modulo m if and only if there is an
integer k such that

a= b+ km.
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Congruence: Properties

Theorem: Let m be a positive integer. If a= b (mod m) and
¢ = d (mod m), then

a+c=b+d (mod m)

ac = bd (mod m)
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Congruence: Properties

Theorem: Let m be a positive integer. If a= b (mod m) and
¢ = d (mod m), then

a+c=b+d (mod m)

ac = bd (mod m)

Corollary: Let m be a positive integer and let a and b be integers. Then,
(a+ b) mod m = ((a mod m) + (b mod m)) mod m

ab mod m = ((a mod m)(b mod m)) mod m
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Primes

A integer p that is greater than 1 is called a prime if the only positive
factors of p are 1 and p.

e If nis composite, then n has a prime divisor less than or equal to \/n.
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Primes

A integer p that is greater than 1 is called a prime if the only positive
factors of p are 1 and p.

e If nis composite, then n has a prime divisor less than or equal to \/n.
Let a and b be integers, not both 0. The largest integer d such that d|a

and d|b is called the greatest common divisor of a and b, denoted by
ged(a, b). Let a = pi*p3?...p2" and b = pflpgz...p,’,’". Then,

gcd(a, b) — pmin(al,bl)pmin(ag,bz)mpmin(a,hb,,)
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Primes
A integer p that is greater than 1 is called a prime if the only positive
factors of p are 1 and p.

e If nis composite, then n has a prime divisor less than or equal to /n.
Let a and b be integers, not both 0. The largest integer d such that d|a

and d|b is called the greatest common divisor of a and b, denoted by
ged(a, b). Let a= pftp2...p2n and b = pPp2 .. pbr. Then,

gcd(a, b) _ pmin(al,bl)pmin(a2,b2)mpmin(amb,,)

The least common multiple of a and b is the smallest positive integer that
is divisible by both a and b, denoted by lcm(a, b).Let a = p;*p52...p3" and
b= pflpgz...pf,’". Then,

lem(a, b) = pmax(anbi) pmax(az,ba) | nmax(an,bn)
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Euclidean Algorithm

Computing the greatest common divisor of two integers directly from the
prime factorizations can be time consuming since we need to find all
factors of the two integers.

For two integers 287 and 91, we want to find gcd(287,91).

Step 1: 287 =91-3+ 14
Step2: 91=14-6+7
Step3: 14=7-2+0

ged(287,91) = ged(91,14) = ged(14,7) =7
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GCD as Linear Combinations

Bezout’S Theorem: If a and b are positive integers, then there exist
integers s and t such that

ged(a, b) = sa + tb.

This equation is called Bezout's identity.
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GCD as Linear Combinations

Bezout’S Theorem: If a and b are positive integers, then there exist
integers s and t such that

ged(a, b) = sa + tb.
This equation is called Bezout's identity.

We can use extended Euclidean algorithm to find Bezout's identity.
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GCD as Linear Combinations

Bezout’S Theorem: If a and b are positive integers, then there exist
integers s and t such that

ged(a, b) = sa + tb.
This equation is called Bezout's identity.
We can use extended Euclidean algorithm to find Bezout's identity.

Lemma: If a, b, ¢ are positive integers such that ged(a, b) =1 and a|bc,
then alc.
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GCD as Linear Combinations

Bezout’S Theorem: If a and b are positive integers, then there exist
integers s and t such that

ged(a, b) = sa + tb.
This equation is called Bezout's identity.
We can use extended Euclidean algorithm to find Bezout's identity.

Lemma: If a, b, ¢ are positive integers such that ged(a, b) =1 and a|bc,
then alc.

Lemma: If p is prime and p|a;az...a,, then p|a; for some i.
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Linear Congruences

A congruence of the form ax = b (mod m), where m is a positive integer,
a and b are integers, and x is a variable, is called a linear congruence.
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Linear Congruences

A congruence of the form ax = b (mod m), where m is a positive integer,
a and b are integers, and x is a variable, is called a linear congruence.

The solutions to a linear congruence ax = b (mod m) are all integers x
that satisfy the congruence.
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Linear Congruences

A congruence of the form ax = b (mod m), where m is a positive integer,
a and b are integers, and x is a variable, is called a linear congruence.

The solutions to a linear congruence ax = b (mod m) are all integers x
that satisfy the congruence.

Modular Inverse: An integer 3 such that 3a = 1 (mod m) is said to be
an inverse of a modulo m.
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Linear Congruences

A congruence of the form ax = b (mod m), where m is a positive integer,
a and b are integers, and x is a variable, is called a linear congruence.

The solutions to a linear congruence ax = b (mod m) are all integers x
that satisfy the congruence.

Modular Inverse: An integer 3 such that 3a = 1 (mod m) is said to be
an inverse of a modulo m.

Solve the congruence ax = b (mod m) by multiplying both sides by 3.

x = ab (mod m).
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Modular Inverse

Modular Inverse: An integer 3 such that 3a = 1 (mod m) is said to be
an inverse of a modulo m.

When does inverse exist?
Theorem: If a and m are relatively prime integers and m > 1, then an
inverse of a modulo m exists. The inverse is unique modulo m. That is,

@ there is a unique positive integer 3 less than m that is an inverse of a
modulo m and

@ every other inverse of a modulo m is congruent to 3 modulo m.
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Modular Inverse

Modular Inverse: An integer 3 such that 3a = 1 (mod m) is said to be
an inverse of a modulo m.

When does inverse exist?
Theorem: If a and m are relatively prime integers and m > 1, then an
inverse of a modulo m exists. The inverse is unique modulo m. That is,
@ there is a unique positive integer 3 less than m that is an inverse of a
modulo m and

@ every other inverse of a modulo m is congruent to 3 modulo m.

If we obtain an arbitrary inverse of a modulo m, how to obtain the inverse
that is less than m?
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Modular Inverse

How to find inverses?

Using extended Euclidean algorithm:

Example: Find an inverse of 101 modulo 4620. That is, find 3 such that
3-101 =1 (mod 4620).

With extended Euclidean algorithm, we obtain gcd(a, b) = sa + tb, i.e.,
1 =-35-4620 + 1601 - 101. It tells us that —35 and 1601 are Bezout
coefficients of 4620 and 101. We have

1 mod 4620 = 1601 - 101 mod 4620.

Thus, 1601 is an inverse of 101 modulo 4620.
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The Chinese Remainder Theorem

Systems of linear congruences have been studied since ancient times.
SEYARES ==82 - AR F= HtE R AYLE

About 1500 years ago, the Chinese mathematician Sun-Tsu
asked: “There are certain things whose number is unknown.
When divided by 3, the remainder is 2; when divided by 5,
the remainder is 3; when divided by 7, the remainder is 2.
What will be the number of things?”

e x =2 (mod 3)
e x =3 (mod 5)
e x=2(mod7)
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The Chinese Remainder Theorem

Theorem (The Chinese Remainder Theorem): Let my, my, ., m, be

pairwise relatively prime positive integers greater than 1 and ag, a», . . .,
an arbitrary integers. Then, the system

x = a; (mod my)

x = ap (mod my)

x = ap (mod my)
has a unique solution modulo m = myms...m,,.

(That is, there is a solution x with 0 < x < m, and all other solutions are
congruent modulo m to this solution.)
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The Chinese Remainder Theorem

Proof: To show such a solution exists: Let My = m/my for k =1,2,....,n
and m = mymy...m,. Thus, My = my..mg_1myy1...mp.
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The Chinese Remainder Theorem

Proof: To show such a solution exists: Let My = m/my for k =1,2,....,n
and m = mymy...m,. Thus, My = my..mg_1myy1...mp.

Since ged(myg, Mk) = 1, there is an integer yj, an inverse of My modulo
my, such that My, = 1 (mod my). Let

x = aiMiy1 + aaMoys + ... + anMpy,.

It is checked that x is a solution to the n congruences:
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The Chinese Remainder Theorem

Proof: To show such a solution exists: Let My = m/my for k =1,2,....,n
and m = mymy...m,. Thus, My = my..mg_1myy1...mp.

Since ged(myg, Mk) = 1, there is an integer yj, an inverse of My modulo
my, such that My, = 1 (mod my). Let

x = aiMiyr + a2Mays + ... + anMpyp.

It is checked that x is a solution to the n congruences:

x mod my = (a1 Myy1 + aaMays + ... + apM,y,) mod my
Since My = m/my, we have x mod my = axMyy, mod my. Since
My =1 (mod my), we have agMyyx mod my = ax mod my. Thus,
X = ag (mod mk).
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The Chinese Remainder Theorem

How to prove the uniqueness of the solution modulo m?

Proof: Suppose that x and x’ are both solutions to all the congruences.
As x and x’ give the same remainder, when divided by mj, their difference
x — x" is a multiple of each my for all k =1,2,...,n.
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The Chinese Remainder Theorem

How to prove the uniqueness of the solution modulo m?

Proof: Suppose that x and x’ are both solutions to all the congruences.
As x and x’ give the same remainder, when divided by mj, their difference
x — x" is a multiple of each my for all k =1,2,...,n.

As my, mp, . . ., mp, be pairwise relatively prime positive integers, their
product m divides x — x’, and thus x and x’ are congruent modulo m, i.e.,
x = x' (mod m).
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The Chinese Remainder Theorem

How to prove the uniqueness of the solution modulo m?

Proof: Suppose that x and x’ are both solutions to all the congruences.
As x and x’ give the same remainder, when divided by mj, their difference
x — x" is a multiple of each my for all k =1,2,...,n.

As my, mp, . . ., m, be pairwise relatively prime positive integers, their
product m divides x — x’, and thus x and x’ are congruent modulo m, i.e.,
x = x" (mod m).

This implies that given a solution x with 0 < x < m, all other solutions are
congruent modulo m to this solution.
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The Chinese Remainder Theorem: Example

x =2 (mod 3)
x =3 (mod 5)
x =2 (mod 7)
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The Chinese Remainder Theorem: Example

x =2 (mod 3)
x =3 (mod 5)
x =2 (mod 7)

Q@ Let m=3-5-7=105 M; =m/3 =35 M, =m/5=21, and
M3=m/7=15.
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The Chinese Remainder Theorem: Example

x =2 (mod 3)
x =3 (mod 5)
x =2 (mod 7)

Q@ Let m=3-5-7=105 M; =m/3 =35 M, =m/5=21, and
M3 = m/? = 15.
@ Compute the inverse of M, modulo my:
» 35-2=1(mod 3) y; =2
»21=1(mod5) y, =1
» 15=1(mod7) y3=1
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The Chinese Remainder Theorem: Example

x =2 (mod 3)
x =3 (mod 5)
x =2 (mod 7)

Q@ Let m=3-5-7=105 M; =m/3 =35 M, =m/5=21, and
M3 = m/? = 15.
@ Compute the inverse of M, modulo my:
» 35-2=1(mod 3) y; =2
»21=1(mod5) y, =1
» 15=1(mod7) y3=1
© Compute a solution x:
x=2-35-243-21-142-15-1 =233 =23 (mod 105)
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The Chinese Remainder Theorem: Example

x =2 (mod 3)
x =3 (mod 5)
x =2 (mod 7)

Q@ Let m=3-5-7=105 M; =m/3 =35 M, =m/5=21, and
M3 = m/7 = 15.
@ Compute the inverse of M, modulo my:
» 35-2=1(mod 3) y; =2
»21=1(mod5) y, =1
» 15=1(mod7) y3=1
© Compute a solution x:
x=2-35-243-21-142-15-1 =233 =23 (mod 105)
@ The solutions are all integers x that satisfy x = 23 (mod 105).
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Back Substitution

We may also solve systems of linear congruences with pairwise relatively
prime moduli my, my,...mp, by back substitution.
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Back Substitution

We may also solve systems of linear congruences with pairwise relatively
prime moduli my, my,...mp, by back substitution.

Example:

(1) x=1 (mod 5)
(2) x =2 (mod 6)
(3) x=3 (mod 7)
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Back Substitution

We may also solve systems of linear congruences with pairwise relatively
prime moduli my, my,...mp, by back substitution.

Example:

(1) x=1 (mod 5)

(2) x =2 (mod 6)

(3) x=3 (mod 7)

According to (1), x =5t + 1, where t is an integer.

ZJU-UIUC INSTITUTE

HIAFFFIEFAFCEATRRERAFR

Meng Zhang @ ZJUI MATH 213

Fall 2022 47 /49



Back Substitution

We may also solve systems of linear congruences with pairwise relatively
prime moduli my, my,...mp, by back substitution.

Example:

(1) x=1 (mod 5)

(2) x =2 (mod 6)

(3) x=3 (mod 7)

According to (1), x =5t + 1, where t is an integer.

Substituting this expression into (2), we have 5t + 1 = 2 (mod 6), which
means that t =5 (mod 6). Thus, t = 6u + 5, where u is an integer.
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Back Substitution

We may also solve systems of linear congruences with pairwise relatively
prime moduli my, ma,...m, by back substitution.

Example:

(1) x=1 (mod 5)

(2) x =2 (mod 6)

(3) x=3 (mod 7)

According to (1), x = 5t + 1, where t is an integer.

Substituting this expression into (2), we have 5t + 1 = 2 (mod 6), which
means that t =5 (mod 6). Thus, t = 6u + 5, where u is an integer.

Substituting x =5t + 1 and t = 6u + 5 into (3), we have
30u + 26 = 3 (mod 7), which implies that v = 6 (mod 7). Thus,
u=7Tv + 6, where v is an integer.
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Back Substitution

We may also solve systems of linear congruences with pairwise relatively
prime moduli my, ma,...m, by back substitution.

Example:

(1) x=1 (mod 5)

(2) x =2 (mod 6)

(3) x=3 (mod 7)

According to (1), x = 5t + 1, where t is an integer.

Substituting this expression into (2), we have 5t + 1 = 2 (mod 6), which
means that t =5 (mod 6). Thus, t = 6u + 5, where u is an integer.

Substituting x =5t + 1 and t = 6u + 5 into (3), we have
30u + 26 = 3 (mod 7), which implies that v = 6 (mod 7). Thus,
u=7Tv + 6, where v is an integer.

Thus, we must have x = 210v + 206. Translating this back into a
congruence, =3 ZJU-UIUC INSTITUTE
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