Lecture 15

n-ary Kelations

Definition: An n-ary relation R on sets A, ..., A, written as
R:Ai,..,Ap isasubset RC Ay x -+ X Ap.

@ The sets Ay, ..., A, are called the domains of R.

@ The degree of R is n.

@ R is functional in domain A; if it contains at most one n-tuple
(-+- ,aj,--) for any value a; within domain A;.

Transitive Relation and R"

Theorem: The relation R on a set A is transitive if and only if R” C R for
n=1,2,3,..

Proof:
o “if" part: In particular, R* C R. If (a,b) € R and (b, c) € R, then by
the definition of composition, we have (a,c) € R? C R.
o “only if: part: by induction
»n=1RCR
> Suppose R" C R:
* (a,c) € R" 2 R oR: there is a b € A such that (a,b) € R and
(b,c)ER"CR
* Since R is transitive, (a, b) € R and (b,c) € R" C R implies that
(ac)eR

Relational Databases

A domain A; is a primary key for the database if the relation R is
functional in A;.

Student_name ID_number Major GPA
Ackermann 231455 Computer Science 3.88
Adams 888323 Physics 345
Chou 102147 Computer Science 349
Goodfriend 453876 Mathematics 345
Rao 678543 Mathematics 3.90
Stevens 786576 Psychology 299

a composite key for the n-ary relation, assuming that no n-tuples are ever

Selection Operator

Let A be any n-ary domain A=Ay x --- X Ay, and let C: A— {T,F} be
any condition (predicate) on elements (n-tuples) of A.

The selection operator sc is the operator that maps any (n-ary) relation R
on A to the n-ary relation of all n-tuples from R that satisfy C.

VRC A sc(R)=Rn{acAlsc(a)=T}={a€ R|sc(a) =T}

Selection Operator: Example
Suppose that we have a domain

A = StudentName x Standing x SocSecNos
Suppose that we have a condition

UpperLevel(name, standing, ssn)
[(standing = junior) v/

Projection Operator (standing = senior)]

Let A= A; x --- x A, be any n-ary domain, and let {ix} = (i1..... im) be a
sequence of indices all falling in the range 1 to n. That is, where
1<i<nforalll<k<m

Then the projection operator on n-tuples P : A — A x -+ x Aj,

is defined by —
Pi(an,--an) = (ai, . ap,) Example Pr.

Stadent | Major Course

Glauser | Biology BI290

Glauser Biology MS 475

Glauser Biol PY 410 R

Marcus | Mathematics Mssi1 || Student | Major

Marcus Mathematics MS 603 Glauser Biulug_v

Marcus Mathematics €S 322

N " Marcus | Mathematics
Miller | Computer Science | MS 575 ‘
Miller | Computer Science | Csass || Miller Computer Science
Join Operator  J(Ry, Ry)
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Professor | Department Course_number | Room Time
Cruz Zoology 35 AIOD | 9:00awm
Cruz Zoology an A100 8:00 A
Farber Paychology 501 A100 3:00 pm,
Farber Psychology 617 A110 11:00 Am
Grammer | Physics 544 BS0S 200 b,
Rosen Computer Science 518 N521 2:00 pm.
Rosen Mathematics 575 Ns02 | 300 e

Zero-One Matrix

Reflexive

Symmetric
Join and Meet

Let A= [a] and B = [b;] be m x n zero—one matrices.

Antisymmetric

The join of A and B is the zero—one matrix with (i, j)-th entry a; V bj.
The join of A and B is denoted by AV B.

The meet of A and B is the zero-one matrix with (i,)-th entry aj A by.
The meet of A and B is denoted by AA B.

MR1UR2 MR1 Vv MR:

MR,nr, = MR, A MR,

Zero-One Matrix: Composite of Relations
Let A = [a;] be an m x k zero-one matrix and B = [b;] be a k x n

zero—one matrix. Then, the Boolean product of A and B, denoted by
A® B, is the m x n matrix with (/,j)-th entry c; where

cij = (ain A byj) V (a2 A bj) V -+ V (ajk A by).
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A=[0 1], B:L') } (1)]
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Mso.r = Mg © Ms.
The ordered pair (a;, ¢;) belongs to So R if and only if there is an element
by such that (a;, bx) belongs to R and (b, ¢j) belongs to S.

ALGORITHM 1 A Procedure for Computing the Transitive Closure.

procedure transitive closure (M : zero-one n x n matrix)
A=Mpg

return B(B is the zero-one matrix for R*}

@ n—1 Boolean products
o Each of these Boolean products use n%(2n — 1) bit operations.
o O(n*) bit operations.

16

Definition: A relation R on a set A is called an equivalence relation if it is
reflexive, symmetric, and transitive.

Equivalence Class
o

Equivalence Relation

1 0 1 010
Mg=|1 1 0 and  Mg=|0 0 1
00 0 101
1 11
Msop =MpOMs= |0 1 1
0 0 0
Closures of Relations
Let R = {(1,1),(1,2),(2,1),(3,2)} on A= {1,2,3}.
Is this relation R reflexive?
No. (2,2) and (3,3) are not in R.
The question is what is the minimal relation S O R that is reflexive?

How to make R reflexive by minimum number of additions?
Add (2,2) and (3,3)

Then S = {(1,1),(1,2),(2,1),(3,2),(2.2),(3.3)} 2 R.
The minimal set S D R is called the reflexive closure of R.

The set S is called the reflexive closure of R if it:
© contains R
o is reflexive
o is minimal (is contained in every reflexive relation @ that contains R
(RC Q) ie, SCQ)

Relations can have different properties:

o reflexive We define:
@ symmetric o reflexive closures
o transitive ® symmetric closures

@ transitive closures
S is the minimal set containing R satisfying the property P.

Example: R = {(1,2),(2,3),(2,2)} on A= {1,2,3}. What is the

symmetric closure S of R?
$={(1,2),(2,3),(2,2),(2,1),3,2)}-
What is the transitive closure S of R?
$=1{(1,2),(2,2),(2,3),(1,3)}.

Transitive Closure

Example: R = {(1,2),(2,2),(2,3)} on A= {1,2,3}. Transitive closure:
$={(1,2),(2,2),(2,3),(1,3)}

Paths in Directed Graphs

Definition: A path from a to b in the directed graph G is a sequence of

edges (xo,x1), (X1,%2), . . . , (Xo—1,Xa) in G, where n is nonnegative and

Xp = aand x, = b.

A path of length n > 1 that begins and ends at the same vertex is called a

circuit or cycle.

Theorem: Let R be relation on a set A. There is a path of length n from

ato bif and only if (a,b) € R".

Connectivity Relation

Definition: Let R be a relation on a set A. The connectivity relation R*

consists of all pairs (a, b) such that there is a path (of any length)
between a and b in R:

A={1,2,3,4}

R=1{(1,2),(1,3),(1,4),(2,3),(3,4)}, R = {(1,3),(2,4),(1,4)}
R ={(1,4)}, R*=0

R =1{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}

Lemma: Let A be a set with n elements, and R a relation on A. If there is
a path from a to b with a # b, then there exists a path of length < n— 1.
Proof (by intuition): There are at most n different elements we can visit

on a path if the path does not have loops:

>
xm=b

Loops may increase the length but the same node is visited more than
once

s0=a  x1 X2

Proof: Suppose there is a path from a to b in R. Let m be the length of
the shortest such path. Suppose that xg, x1,x2, ..., Xm, where xop = a and
Xm = b, is such a path.

Suppose that a # b and that m > n. The m+ 1 vertices are from n

elements. According to the pigeonhole principle and a # b, at least two of

the vertices xg, X1, ..., Xm—1 are equal.

There is a circuit that can be deleted until the length is < n.

Lemma: Let A be a set with n elements, and R a relation on A. If there is
a path from a to b with a # b, then there exists a path of length < n— 1.

Lemma: If there is a path of length at least one in R from a to b, then
there is such a path with length not exceeding n.

Theorem: The transitive closure of a relation R equals the connectivity

relation R*:
o
R =JR
k=1

@ R*is transitive
If (a,b) € R* and (b, c) € R*, then there are paths from a to b and

from b to ¢ in R. Thus, there is a path from a to c in R. This means

that (a,c) € R*.
@ R* C S whenever S is a transitive relation containing R
» Suppose that S is a transitive relation containing R.
» S" C S for integer n > 1. (Recall S is transitive iff S" C S).
> We have 5* C 5.
> If RC S, then R* C S*, because any path in R is also a path in S.
> Thus, R* CS*CS.
Find Transitive Closure

Recall that if there is a path of length at least one in R from a to b, then
there is such a path with length not exceeding n. Thus,

R*=RURPUR*U---UR".
Theorem: Let Mg be the zero-one matrix of the relation R on a set with
n elements. Then the zero-one matrix of the transitive closure R* is
Mg = Mg v MBI ME Y v M),

where MY = Mg © Mg ©---© Mg
UrOMRO O Mg

n Mys

Let R be an equivalence relation on a set A. The set of all
elements that are related to an element a of A is called the equivalence
class of a, denoted by [a]g. When only one relation is considered, we use
the notation [a].

lalr = {b: (a,b) € R}
Theorem: Let R be an equivalence relation on a set A. The following
statements are equivalent:
()aRb (i) [a) = [b]
Partition of a Set S
Definition: Let S be a set. A collection of nonempty subsets of S, i.e Ay,
Az, . . ., Ay, is called a partition of S if:

(i) la] [6] # 0

«
ANA=0,i#jand S=[JA

i=1
Theorem: Let R be an equivalence relation on a set A. Then, union of all
the equivalence classes of R is A:

A= U[-?]R

a€A

Theorem: The equivalence classes form a partition of A.

Theorem: Let {Ay, Ay, ..., Aj, ...} be a partition of S. Then, there is an
equivalence relation R on S, that has the sets A; as its equivalence classes.
Partial Ordering

Definition: A relation R on a set S is called a partial ordering, or partial
order, if it is reflexive, antisymmetric, and transitive.

A set S together with a partial ordering R is called a partially ordered set,

or poset, denoted by (S, R). Members of S are called elements of the

poset.

5=1{1,2,3,4,5,6}, R denotes the “|
o Is R reflexive? Yes

relation

o Is R antisymmetric? Yes

o Is R transitive? Yes HH
rabili

R is a partial ordering Compa ab ty

The notation a < b is used to denote that (a, b) € R in an arbitrary poset
(S,R)-

The notation a < b denotes that a < b, but a # b.

Definition: The elements a and b of a poset (S, <) are comparable if
either a < b or b < a. Otherwise, 2 and b are called incomparable.

Example: S = {1,2,3,4,5,6}, R denotes the *|" relation.

2,4 are comparable, 3,5 are incomparable.

Total Ordering

Definition: If (S, <) is a poset and every two elements of S are
comparable, S is called a totally ordered or linearly ordered set, and < is
called a total order or a linear order. A totally ordered set is also called a
chain.

Example: S ={1,2,3,4,5,6}, R denotes the “>" relation S is a chain.

Well-Ordered Set
(5,=) is a well-ordered set if it is a poset such that < is a total ordering
and every nonempty subset of S has a least element.

Example: The set of ordered pairs of positive integers, Z* x Z*, with
(a1, a2), (b1, b2) if a1 < by, or if ap = by and a3 < b, (the lexi i

Remove the loops (a, a) present at every vertex due to the reflexive
property.

Remove all edges (x, y) for which there is an element z € S s.t.

x <z and z < y. These are the edges that must be present due to
the transitive property.

Arrange each edge so that its initial vertex is below the terminal
vertex. Remove all the arrows, because all edges point upwards
toward their terminal vertex.

Maximal and Minimal Elements

Definition: a is a maximal (resp. minimal) element in poset (S, <) if

there is no b € S such that a < b (resp. b < a).

Example: Which elements of the poset ({2,4,5,10,12,20,25}, |) are
maximal, and which are minimal?

The maximal elements are 12, 20, and 25.

The minimal elements are 2 and 5.

A poset can have more than one maximal element and—vﬂe{ﬂzm%
minimal element. ) :

Greatest and Least Elements

Definition: a is the greatest (resp. least) element of the poset (S, <) if
b= a(resp. ag b) forallbe S.

b c d d e d d

Upper and Lower Bound

Definition: Let A be a subset of a poset (S, <).
o u€ Sis called an upper bound (resp. lower bound) of A if a < u
(resp. ux a) forallac A
@ x € Sis called the least upper bound (resp. greatest lower bound) of
A'if x is an upper bound (resp. lower bound) that is less than any
other upper bounds (resp. lower bounds) of A
Find the greatest lower bound and the least upper bound of {b, d, g}, if
they exist.

g is the least upper bound, b is the greatest lower bound.

Lattices

Definition: A partial ordered set in which every pair of elements has both
a least upper bound and a greatest lower bound is called a lattice.
Determine whether the posets ({1,2,3,4,5},|) and ({1,2,4,8,16},|) are
lattices.

Solution: Because 2 and 3 have no upper bounds, they certainly do not
have a least upper bound. Hence, the first poset is not a lattice.

Every two elements of the second poset have both a least upper bound
and a greatest lower bound.
o The least upper bound of two elements in this poset is the larger of
the elements

@ The greatest lower bound of two elements is the smaller of the
elements

Hence, this second poset is a lattice.

Topological Sorting

Topological Sorting for Finite Posets

Find a compatible total ordering for the poset ({1,2,4,5,12,20}, |).

Minimal
ciement s 2 s x 2
chosen

ordering), is a well-ordered set.

The set Z, with the usual < ordering, is not well-ordered because the set
of negative integers, which is a subset of Z, has no least element.
Partial Ordering
» reflexive, antisymmetric, and transitive.
> eg, < |
> a < b denotes (a,b) € R in a poset (S, R); (S, <)
Comparable
» ifeitherax borb<a
> eg, S=1{1,23,4,56}, R denotes the “|" relation: 2,4 are
comparable, 3,5 are incomparable.

Total Ordering
is a poset and every two elements of S are comparable

> (5%)
‘<" is a total order,
Well-ordered set
> total ordering; every nonempty subset of S has a least element
> e.g., a< b= c..; exists an a such that (a,b) € Rforall be S

The Principle of Well-Ordered Induction

The Principle of Well-Ordered Induction: Suppose that (S,<) is a
well-ordered set. Then P(x) is true for all x € S, if

is not a totally order

Inductive Step: For every y € S, if P(x) is true for all x € S with x < y,
then P(y) is true.

Note: Suppose xo is the least element of a well ordered set, the inductive
step tells us that P(xo) is true. We do not need a basis step.

Proof: Suppose it is not the case that P(x) is true for all x € S. Then
there is an element y € S such that P(y) is false.

Consequently, the set A = {x € S|P(x)is false} is nonempty. Because S is
well ordered, A has a least element a.

By the choice of a as a least element of A, we know that P(x) is true for
all x € S with x < a. By the inductive step, P(a) is true.

This contradiction shows that P(x) must be true for all x € S.

Lexicographic Ordering

Definition: Given two posets (A1, <1) and (A2, <), the lexicographic
ordering on A; x Ay is defined by specifying that (ay, a2) is less than
(b1, b2), i.e., (a1,a2) < (b1, b2), either if ay <y by or if a; = by then
a <2 by,

Example: Consider strings of lowercase English letters. A lexicographic
ordering can be defined using the ordering of the letters in the
alphabet. This is the same ordering as that used in dictionaries.

o discreet < discrete

o discreet < discreetness

This produces the total ordering

1<5<2<4<20<12
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Definition of a Graph

Definition: A graph G = (V, E) consists of a nonempty set V of vertices
(or nodes) and a set E of edges. Each edge has either one or two vertices
associated with it, called its endpoints. An edge is said to be incident to
(or connect) its endpoints.

simple graph: A graph in which each edge connects two different
vertices and where no two edges connect the same pair of vertices.
Multigraph: Graphs that may have multiple edges connecting the
same vertices.

Pseudograph: Graphs that may include loops, and possibly multiple
edges connecting the same pair of vertices or a vertex to itself.

Directed and Undirected Graph
A directed graph (or digraph) (V, E) consists of a nonempty set of
vertices V and a set of directed edges (or arcs) E. The directed edge
associated with the ordered pair (u, v) is said to start at u and end at v.
Undirected Graphs
Definition: Two vertices u, v in an undirected graph G are called
adjacent (or neighbors) in G if there is an edge e between u and v. Such
an edge e is called incident with the vertices u and v and e is said to
connect u and v.
Definition: The set of all neighbors of a vertex v of G = (V, E), denoted
by N(v), is called the neighborhood of v.
If A'is a subset of V, we denote by N(A) the set of all vertices in G that
are adjacent to at least one vertex in A.
Definition: The degree of a vertex in an undirected graph is the number
of edges incident with it, except that a loop at a vertex contributes two to
the degree of that vertex. The degree of the vertex v is denoted by deg(v).
Theorem (Handshaking Theorem): If G = (V, E) is an undirected graph
with m edges, then

2m =" deg(v)

vev

(Note that this applies even if multiple edges and loops are present.)
Theorem: An undirected graph has an even number of vertices of odd
degree.

Proof: Let V; be the vertices of even degrees and V; be the vertices of
odd degree.

2m=Y" deg(v) =) deg(v)+ > deg(v)
vev vev; vevy
Directed Graphs

Definition: An directed graph G = (V/, E) consists of V/, a nonempty set
of vertices, and E, a set of directed edges.

Each edge is an ordered pair of vertices. The directed edge (u, v) is said to
start at u and end at v.



Directed Graphs

Definition: The in-degree of a vertex v, denoted by deg~(v) .is the
number of edges which terminate at v. The out-degree of v, denoted by
deg*(v), is the number of edges with v as their initial vertex.

Theorem: Let G = (V, E) be a graph with directed edges. Then ,
|E] =" deg (v) =Y deg*(v)
vev vev
Complete Graphs

A complete graph on n vertices, denoted by K, is the simple graph that
contains exactly one edge between each pair of distinct vertices .

AN
Cycles

A cycle C, for n > 3 consists of n vertices vi, va, . . . ,
{v,w} {va s} o Ve, va} {va w1}

YAN

Cy
Wheels
A wheel W, is obtained by adding an additional vertex to a cycle C,
N-dimensional Hypercube
An n-dimensional hypercube or n-cube, Qn is a graph with 2" vertices

representing all bit strings of length n, where there 1s an edge between two
vertices that differ in exactly one bit position

Cy

Cy

-

w

Bipartite Graphs

Definition A simple graph G is bipartite if V can be partitioned into two
disjoint subsets V4 and V5 such that every edge connects a vertex in V;
and a vertex in V5

An equivalent definition of a bipartite graph is a graph where it is possible
to color the vertices red or blue so that no two adjacent vertices are of the
same color

e
/Wy
v

Complete Bipartite Graphs

Definition: A complete bipartite graph K., is a graph that has its vertex
set partitioned into two subsets V4 of size m and V5 of size n such that
there is an edge from every vertex in Vi to every vertex in V5 .

Bipartite Graphs and Matchings

Theorem (Hall's Marriage Theorem) - The bipartite graph G = (V, E)
with bipartition (V4, V5) has a complete matching from V4 to V5 if and
only if |N(A)| > |A| for all subsets A of V;

Subgraphs

Definition: A subgraph of a graph G = (V, E) is a graph (W, F) where
WCVand FCE.

A subgraph H of G is a proper subgraph of G if H # G

a a

AL
A\
</ s /

\
« c <
Union of Graphs
Definition: The union of two simple graphs G; = (V4, £1) and

Gy = (Va, ;) is the simple graph with vertex set V3 U V; and edge set
ELUE, denoted by G, U G,

~
~

e

& g ¢ 1 e )
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. MEFANREZIFFHAED, BAXFAN T Radjacent (EEIRE
neighbors

* N(v): MReRG = (V, E)yFEI—1TRR, FBAN(v)RSvIBLBHITR
RS,
© N(A):MRARG = (V, B)FI—DFE, BAN(ARSAHHIRS
TESBAITRRIE S,
* deg(v): TAERIdegree RIS SvIBBAITIRRY MY, BR—MIFX
degreefI5k 22,
Theorem (Handshaking Theorem)

If G = (V, E) is an undirected graph with m edges, then
2m = Zdeg(v)
wev
WR—AEEEEmFID, BARNEFFERRRIEHZHH2m
(RMfERBZTONEIE) .

Theorem

An undirected graph has an even number of vertices of odd degree.
—EMES, EHRFMAIRSH NS,

ERR:

BIRVoa BB EHUIRIIEIAREVES , Veen I EHBHEIR
RROEE, BBA

2m = ;deg(v) = u;: deg(v) + VEZV: deg(v)

EFIMEIBY, Yooy, deglo) BRIBY, FEAY v, deg(o) REE

1B, Y vy, deg(v) RFFEEHISHATRSRIEHZM, FIAZE

FEHEIREE N R

Job assignments

BT —MERNERSIETFSEERT, FE=mTIERS,

A

edges.
—N

Isomorphism of Graphs ([E#4)

Directed Graph

EN: EEBEG: = (Vi, E)HG2 = (Va, By)Risomorphich], MRFE

—LENFNCS

— I NVIEIVRRIES, HEFHENTFVRRHESE NS, oflb2
adjacentHIZ BN f(a)F1f(b)Radjacenttl, XEFRIFEELfHFRS

somorphism,

o BRDER— BRI (u,v), XFDHGERNIEY 54617, FEFNE Risomorphichd

Bi&(u,v)2G = (V, E)Pi—518, BbAuRinitial vertexFFE

adjacenttov, vi2terminal venexﬂzﬁadjacent from u

* deg (v):in-degree of v, IEMWAVIAAISS

deg*(v): out-degree of v, MvtHAHNOHISE
FA3in-degreeflout-degreefISTHkER 1

Theorem

Let G = (V, E) be a graph with directed edges. Then,

1Bl = Y deg (v) = 3 deg(v)
eV veV

BEENLNSEEETFIEIRin-degreeZ#, tBEFFHIEINSA
out-degree 2,

Bipartite Graphs and Matchings

Matching RIFIB—MEARITTHRINB —MEA PRI TTRIITER,
—Pmatching 2INEN—NFE, EEESRFLEFSE— TS
KEX, MREIES, —PmatchingZIDEN—NFE, BENR{s, )0
{u, v}Ematchingf)PZIL, BPAs, ¢, u, vEBRAEHI,

TETIRIRT, WERR TR )14

hingisa ‘hing with the largest number of

m 21 hing, THIDERZ.

A matching M in a bipartite graph G = (V, E) with bipartition (V1, V2)

is a complete matching from V; to V; if every vertex in V; is the
endpoint of an edge in the matching, or equivalently, if | M| = |V;|.
—Pmatching ME—Ncomplete matching, INEMENVIEIVH]
matching, FEVIPHIENREERMP—FIDMRS, HESMN

i, SORIM| = Vil

Theorem (Hall’s Marriage Theorem): The bipartite graph G = (V, E)

with bipartition (Vi, V2) has a complete matching from V; to Vz if and
onlyif |[N(A)| > |A|for all subsets A of V.

Hall’s Marriage Theorem : #IR—1N"HEG = (V,E), BAIR=E
WIS AP FEVFV:, BPAGHE— P NViZIVafJcomplete
matching, BERIFFVIHIESFEA, [N(4)| > Al

ErE=R
* adjacency list (3BiE%K)
* adjacency matrix ($BEEAERF)
* incidence matrix (XEXAEMF)
Adjacency List ($P1£38)

BN adjacency list (SPER)AILARERN—NEEESILNE, B8
ET B MR,

Adjacency Matrix ($512488%)
TR EREIROSRIERERE

EX: BRG = (V, E)R—1EEE, V| =n, ERMHECHM=SL
K, vi,v9, V00 GHadjacency matrix AgR—"n x nfifo-1%B8E,

uy

1y

us ) Uy V3
G H

SUESFELETLAR f (w1) = v, F(uz) = va, f(ug) = v3, f(ua) = vao

Zltt, FAIHDEE— T/ Pisomorphic invariants

* number of vertices (JRZBI1NEK)

* number of edges (IDAY5E4)

degree sequence (E£{F5))

existence of simple circuits of various lengths (< J9kfsimple
circuitfI7F7E)

Path: Undirected Graph

Hamilton Paths and Circuits

Euler path 28 MNAERET R
Hamilton path 28N TREERET—R

Necessary Conditions for Hamilton Circuits and
Paths

BRI RE SR F K7 EHamilton circuitsipath.
{BRB—Lsufficient conditions

* Dirac’s Theorem: SIRGE—MERE, V| >3, FEGHEIN
EHEHEHATFETF Y, IBAGE—Hamilton circuit,

* Ore’s Theorem: SIRGE—NMEFE, |V| > 3, HENTFCHNE
BB iy, wvBERZAEATESTV|, BA
GB—"Hamilton circuit,
¥ iEBAK,BHamilton circuit

Hamilton path/BJZ2NP-completez ]

Planar Graphs

Definition: A graph is called planar if it can be drawn in the plane
without any edges crossing. Such a drawing is called a planar
representation of the graph.

BN R ANERILEFE LBk, MEQENES, BAXNE
Rplanarfll, REAEHRIME MNEplanar representation,

K FEAplanar representation, BJLURIKEB—MAGHIZSHR,

Definition: Let n be a nonnegative integer and G an
A path of length n from u to vin G is a sequence of n edges
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Path: Directed Graph

Definition: Let n be a nonnegative integer and G an directed graph. A
path of length n from u to vin G is a sequence of n edges ey, ez, - e
of G for which there exists a sequence @ = u, 1, - - Zn_1, 2n = vOf
vertices such that e; is associated with initial vertex z; ; and terminal
vertex zifori=1,--,n.
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Ag = [ay], where

1 if v; and v; are adjacent
0 if v and v; are not adjacent
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Incidence Matrix (BXAERF)
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Connectedness in Directed Graphs
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Cut Vertices and Cut Edges

Sometimes the removal from a graph of a vertex and all incident edges
disconnect the graph.
Such vertices are called cut vertices. Similarly we may define cut edges.
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Counting Paths between Vertices
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Euler Paths and Circuits
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Necessary Conditions for Euler Circuits and Paths
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The Degree of Regions
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Four-color theorem
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Chromatic number
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Trees
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Rooted Trees
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Balanced m-ary Trees: — & /9hflIrooted m-ary treef2balanced
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