ZJUI SP 2024

ECE 313

Homework 7

Due Date: Wednesday, April, 3, 2024

Write your name and NetID on top of all the pages. Show your work to get partial credit.

Problem 1 – Jobs arriving to a compute server have been found to require CPU time T that can be modeled by an exponential distribution with parameter $1/120 \text{ ms}^{-1}$. Assume the number of job requests arriving at a Web server in an interval of t ms, N_t , with parameter 1/120t. The CPU scheduling discipline is quantum-oriented so that a job not completing within a quantum of 100ms will be routed back to the tail of the queue of waiting jobs.

- a) Find the probability that an arriving job is forced to wait until the second quantum using the CDF of T.
- b) Of the 800 jobs coming in during a day, how many are expected to finish within the first quantum?
- c) For a job to wait until the second quantum, how many jobs should arrive in an interval of 100ms? Solve the question in part b) using the CDF of N_t .

Problem 2 – The lifetime of the memory chips produced by a factory is exponentially distributed with parameter $\lambda = 0.1 (\text{years}) - 1$. Suppose John bought a computer with a memory chip produced by this factory and after five years it is still working. What is the conditional probability it will still work for at least three more years?

Problem 3 – The number of errors produced by an operating system in a day is described with the random variable X that has the following pmf:

No. of Failures	0	1	2	3	4	5	6
Probability	0.18	0.28	0.25	0.18	0.06	0.04	0.01

- a) Find the expected number of failures in a day.
- b) Find the variance of the number of failures in a day.

Problem 4 – Assume the number of students arriving to the class in an interval of t minutes, N_t , is Poisson distributed with mean rate of 2 students per minute. Let T represent the inter-arrival times of students.

- a) Write the probability mass function (pmf) of N.
- b) What distribution best describes the inter-arrival times of the students? Write the probability density function (pdf) of T.

ZJUI SP 2024

- c) Calculate the expected number of students arriving in a period of 10 minutes.
- d) Calculate the expected number of minutes until the arrival of the next student.

Problem 5 – The weekly consumption of gasoline in a factory, in thousands of gallons, is a continuous random variable X having the following probability density function. Find E[X], $E[X^2]$, and Var[X].

$$f(x) = \begin{cases} 0.5(x-1), & 1 < x < 3 \\ 0, & elsewhere \end{cases}$$

Problem 6 – Let the random variable *X* be uniform on the open unit interval (0, 1). Let Y = g(X) = -ln(X).

- a) Find the pdf of Y.
- b) Calculate the E[Y] using $f_Y(y)$.
- c) Now, calculate the E[Y] using $E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$