
ZJU-UIUC Institute Prof. Butala
ECE 313, Fall 2021

Final Examination

9:00 – 12:00, Wednesday, December 29, 2021

Name:

ID Number:

Question Points Score

1 24

2 9

3 15

4 10

5 10

6 12

7 8

8 12

Total: 100

Instructions

• You may not use any books, calculators, or notes other than three two-sided sheets
of A4 paper.

• You may not use a calculator, cell phone, or other electronic devices during the
exam.

• When you are asked to “calculate,” “determine,” or “find,” this means providing
closed-form expressions (i.e., without summation or integration signs).

• Neatness counts. If we are unable to read your work, we cannot grade it.

• Turn in your entire booklet once you are finished. No extra papers will be consid-
ered.

• You are NOT required to simplify your solutions. They must be in closed form
(e.g., no summations or integrals) unless stated otherwise. For example, you do not
have to simplify or reduce fractions, expand (n choose k) operations, etc.

• Show your work / process. A correct final answer does not guarantee full credit
and an incorrect final answer does not necessarily mean you will lose credit.
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1. (24 points) Select either True or False for each statement below and justify your
response (an answer without justification will receive no credit — your justification
does not have to be elaborate, a one sentence statement should be sufficient in most
cases). In order to discourage guessing, 1 point will be deducted for each incorrect
answer and/or justification (no penalty or gain for blank answers). A net negative
score will reduce your total exam score.

(a) (2 points) Consider the random variables X, Y , and Z. If X and Y are inde-
pendent, Y and Z are independent, and X and Z are independent, then X, Y ,
and Z are mutually independent. © True © False

Solution: False. Pairwise Independence does not imply mutual indepen-
dence.

(b) (2 points) Consider the random variables X, Y , and Z. If X, Y , and Z are
mutually independent then X and Y are independent, Y and Z are independent,
and X and Z are independent. © True © False

Solution: True. Mutual independence does imply pairwise independence.

(c) (2 points) Consider the discrete-type random variables X and Y . If they are
independent then P{X = a, Y = b} = P{X = a}P{Y = b} for all a ∈ R and
b ∈ R. © True © False

Solution: True. This is the definition of what it means for X and Y to be
independent.

(d) (2 points) If X and Y are continuous-type random variables, then P{X =
a, Y = b} = P{X = a}P{Y = b} for all a ∈ R and b ∈ R. © True
© False

Solution: True. Since X and Y are continuous-type then P{X = a, Y =
b} = P{X = a} = P{Y = b} = 0.

(e) (2 points) Consider the random variables X and Y . If X and Y are uncorrelated
then E[XY ] = 0. © True © False

Solution: False. If X and Y are uncorrelated then Cov(X, Y ) = E[XY ]−
E[X] E[Y ] = 0 which does not imply that E[XY ] = 0.

(f) (2 points) If Cov(X, Y ) = 0 and the random variables (X, Y ) are jointly Gaus-
sian, then X and Y are independent. © True © False

Solution: True. If X and Y are jointly Gaussian and uncorrelated then
they are independent.

(g) (2 points) A triple modular redundant (TMR) system is always more reliable
than a simplex system. © True © False
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Solution: False. A simplex system has greater reliability than a TMR sys-
tem if the component reliability is less than 1

2
.

(h) (2 points) The central limit theorem only applies to normal random variables.
© True © False

Solution: False. The central limit theorem applies to independent, identi-
cally distributed random variables.

(i) (2 points) A ML decision rule to decide between hypotheses H0 and H1 can

always be written in the form f(x) =

{
H0 x > α

H1 otherwise
where x is the observation

and α is a constant. © True © False

Solution: True. A ML decision rule can always be written as a likelihood
ratio test with α = 1.

(j) (2 points) A MAP decision rule to decide between hypotheses H0 and H1 can

always be written in the form g(x) =

{
H0 x > β

H1 otherwise
where x is the observation

and β is a constant. © True © False

Solution: True. A MAP decision rule can always be written as a likelihood
ratio test with α = π0

π1
.

(k) (2 points) ML and MAP decision rules can be equivalent. © True © False

Solution: True. The ML and MAP decision rules are equal when π0 = π1 =
1
2
.

(l) (2 points) The pdf of the random variable X is a symmetric function, i.e., there
exists a value x0 such that fX(x0 + δ) = fX(x0− δ) for all δ ∈ R. We can always
conclude that the median of X is equal to x0. © True © False

Solution: The answer is True.

2. (9 points) The campus has a contract with two vendors: one has red beverage vend-
ing machines and the other vendor has blue machines. Unfortunately, the machines
are prone to error and one type will dispense a beverage successfully only 70% of the
time and the other type is far worse, dispensing successfully only 40% of the time.
You cannot recall which vendor has the more reliable vending machines.

You leave your dorm room to purchase a beverage. You decide to use a red vending
machine by flipping a fair coin.
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(a) (3 points) What is the probability that the red machine will have an error and
not successfully dispense your beverage after a single attempt?

Solution: Let V be the event that the machine successfully dispenses the
beverage on the first attempt and let R be the event that the red machine
is the more reliable type. Then

P{V } = P{V | R}P{R}+ P{V | Rc}P{Rc}

=

(
7

10

)(
1

2

)
+

(
4

10

)(
1

2

)
=

11

20

(b) (3 points) Suppose you were successful on your third attempt. What is the
probability that the red machine is the less reliable type?

Solution: Let V3 be the event that the machine successfully dispenses the
beverage on the third attempt:

P{V3} = P{V3 | R}P{R}+ P{V3 | Rc}P{Rc}

=

(
3

10

)(
3

10

)(
7

10

)(
1

2

)
+

(
6

10

)(
6

10

)(
4

10

)(
1

2

)
=

42 + 144

2000
=

186

2000
=

93

1000

Then

P{Rc | V3} =
P{V3 | Rc}P{Rc}

P{V3}

=

(
6
10

)2( 4
10

)(
1
2

)
93

1000

=

(
144

2000

)(
2000

186

)
=

144

(2)(186)
=

12

31

(c) (3 points) What is the expected number of attempts required before the red
machine will dispense a beverage?

Solution: Let A be the number of attempts before the machine successfully
dispenses a beverage.

E[A] = E[A | R] P{R}+ E[A | Rc] P{Rc}

=

(
10

7

)(
1

2

)
+

(
10

4

)(
1

2

)
=

55

28

3. (15 points) Alice, Bob, and Chris are roommates and share an apartment. They

Page 5



decide on the following game to determine who has to clean the apartment this week.
Each tosses a fair coin. If two of the coins show the same face and the third coin
shows a different face, the tosser of the third coin cleans the apartment. Otherwise,
it must be that all three coins are showing heads or they all are showing tails, in
which case another round of coin tossing occurs.

(a) (3 points) What is the probability that at least three rounds of tosses are re-
quired to determine who cleans?

Solution:

P{HHH ∪ TTT} =
1

8
+

1

8
=

1

4

P{X = 1} =
3

4

P{X = 2} =

(
1

4

)(
3

4

)
=

3

16

=⇒ P{X ≥ 3} = 1− 3

4
− 3

16
=

16− 12− 3

16
=

1

16

(b) (3 points) What is the probability that the decision of who cleans is made on
an even-numbered round?

Solution:
P{X = 2 ∪X = 4 ∪X = 6 ∪ . . . }

=

(
1

4

)(
3

4

)
+

(
1

4

)3(
3

4

)
+

(
1

4

)5(
3

4

)
+ . . .

=

(
3

4

) ∞∑
i=0

(
1

4

)2i+1

=

(
3

4

)(
1

4

) ∞∑
i=0

(
1

16

)
=

(
3
4

)(
1
4

)
1−

(
1
16

) =

(
3

16

)(
16

15

)
=

1

5

(c) (3 points) What is the probability that at least three rounds were required given
that the decision of who cleans was made on an even numbered round?
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Solution:

P{X ≥ 3 | X is even} =
P{X ≥ 3, X is even}

P{X is even}

=
P{X = 4, X = 6, . . . }

P{X = 2, X = 4, X = 6, . . . }

=
1
5
−
(
1
4

)(
3
4

)
1
5

= 1− (5)(3)

16
=

1

16

(d) (3 points) Chris thinks it is unfair that he cleaned the apartment every week
last month, and decides to attempt to improve his chances by secretly replacing
his fair coin with a two-headed coin. The others continue to toss fair coins.
What is the probability that Chris has to clean the apartment this week?

Solution: Note the possible outcomes (C=Chris, A=Alice, B=Bob):

C A B Outcome
H T T Chris cleans
H H T Bob cleans
H T H Alice cleans
H H H Flip again

When someones cleans, there is only one outcome with Chris cleaning. There
are 3 outcomes when someone cleans and each of these possibilities are
equally likely.

=⇒ P{Chris cleans} =
1

3

(e) (3 points) Bob also decides to secretly replace his fair coin with a two-tailed
coin. Note that now only Alice is tossing a fair coin. What is the probability
that Chris has to clean the apartment this week?

Solution: Note the possible outcomes:

B C A Outcome
T H H Bob cleans
T H T Chris cleans

There are only two equally likely outcomes. Therefore,

=⇒ P{Chris cleans} =
1

2

4. (10 points) The lifetime of batteries are independent exponential random variables,
each with parameter λ. A flashlight needs two batteries to function. Suppose you
have a flashlight and a stockpile of n batteries. Let T be the total time that that
flashlight can operate. What is the distribution of T?
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Solution: Two batteries are inserted into the flashlight. The time to failure is
given by the series connection of two independent components with exponential
lifetimes. Therefore, the time to the first battery failure is T1 ∼ Exp(2λ).

The dead battery is removed from the flashlight and a new one is inserted. By
the memoryless property, the time to failure of the battery that remained in the
flashlight remains exponential with rate λ. So, the time to the second battery
failure is T2 ∼ Exp(2λ) and is independent of T1.

This process (remove a dead battery and replace with a fresh one from the stock-
pile) continues for a total of n− 1 iterations.

Therefore, T =
∑n−1

i=1 Ti ∼ Erlang(n− 1, 2λ).

5. (10 points) Consider the following cooling system for a server rack composed of two
subsystems S1 and S2. Subsystem S1 is composed of two coolers A and B, and
subsystem S1 fails if either A or B fail. Subsystem S2 has a single cooler C which
acts as a backup of subsystem S1 and will be powered up only if subsystem S1 fails.
The overall system fails if both S1 and S2 fail.

Assume failure detection and subsystem switching is perfect. Model the lifetimes of
the coolersA, B, and C with three independent random variablesX1 ∼ Exponential(λ),
X2 ∼ Exponential(λ), and X3 ∼ Exponential(3λ), respectively.

(a) (5 points) What is the lifetime of the overall system?

Solution: The lifetime of S1 is the series connection of two iid components
with exponential lifetimes. Therefore, the lifetime of S1 is FS1(t) = 1− e−2λ.
The lifetime of S2 is FS2(t) = 1 − e−3λ. The lifetime of the overall system
is the sum of independent subsystem lifetimes, each of which is exponential
with different rates. Therefore, the system lifetime is hypoexponential with
parameters 2λ and 3λ. Therefore:

FS(t) =

{
1− 3λ

3λ−2λe
−2λt + 2λ

3λ−2λe
−3λt, t ≥ 0

0, otherwise

=

{
1− 3e−2λt + 2e−3λt, t ≥ 0

0, otherwise

(b) (5 points) What is the failure rate function of the overall system?
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Solution: The system lifetime pdf is

fS(t) =


6λ2

2λ−3λ

(
e−3λt − e−2λt

)
, t ≥ 0

0, otherwise

=

6λ

(
e−2λt − e−3λt

)
, t ≥ 0

0, otherwise

Therefore, the overall system failure rate function is given by

hS(t) =
6λ
(
e−3λ − e−2λ

)
3e−3λt − 2e−2λt

, t ≥ 0

6. (12 points) Suppose X and Y are zero-mean, unit-variance jointly Gaussian random
variables with correlation coefficient ρ = 0.8 = 4

5
.

(a) (4 points) Determine Var(5X − 3Y ).

Solution:

Var(5X − 3Y ) = Cov(5X − 3Y, 5X − 3Y )

= 25 Var(X)− 2(15) Cov(X, Y ) + 9 Var(Y )

= 25(1)− 2(15)

(
4

5

)
+ 9 = 34− 2(3)(4) = 10

(b) (4 points) Determine P{(5X − 3Y )2 ≥ 40}.

Solution: Note that Z = 5X−3Y is Gaussian because X and Y are jointly
Gaussian.

µX = E[5X − 3Y ] = 0

=⇒ Z ∼ N(0, 10)

P{Z2 ≥ 40} = P
{
{Z ≥

√
40} ∪ {Z ≤ −

√
40}
}

= 2Q

(√
40− 0√

10

)
= 2Q(2)

(c) (4 points) Determine E[Y | X = 2].
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Solution:

E[Y | X = 2] = µY + σY ρX,Y

(
X − µX
σX

)
= (0) + (1)

(
4

5

)(
2− 0

1

)
=

8

5

7. (8 points) Let Y ∼ Uniform(−1, 1) and X = Y 2.

(a) (2 points) What is the MMSE estimator of X given Y = v?

Solution: Clearly E[X | Y = v] = v2.

(b) (2 points) What is the MMSE estimator of Y given X = u?

Solution: If we are given that X = u, then Y could have been equal to√
u or −

√
u. If 0 < Y < 1, then we should conclude that Y =

√
u. If

−1 < Y < 0, then we should conclude that Y = −
√
u. In other words, the

distribution of Y conditioned on X = u is the probability mass function

pY |X=u(v|u) =


1
2
, v =

√
u

1
2
, v = −

√
u

0, otherwise

Therefore, E[Y | X = u] = 0.

(c) (2 points) What is the LMMSE estimator of X given Y = v?

Solution: The covariance of X and Y is Cov(X, Y ) = E[Y 3]− E[Y 2] E[Y ].
Since the distribution of Y is symmetric and centered at 0, all odd moments
are equal to 0 ⇒ E[Y 3] = E[Y ] = 0⇒ Cov(X, Y ) = 0. Therefore,

Ê[X | Y = v] = µX = E[Y 2] = Var(Y ) + E[Y ]2 =
(b− a)2

12
+ 0 =

1

3

(d) (2 points) What is the LMMSE estimator of Y given X = u?

Solution: The MMSE estimator is already in the form of a linear estimator,
i.e., Ê[Y | X = u] = 0.
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8. (12 points) Consider the game of darts. Suppose each thrown dart lands a distance
Xi from the target center where Xi is a random variable with the Rayleigh distribu-
tion, i.e., the pdf of Xi is

fXi(xi) =

xi
θ
e−

x2i
2θ xi ≥ 0

0 otherwise

and θ > 0 is the distribution scale parameter.

(a) (6 points) If dart throws are independent and you measure the result of n trials,
i.e., X1 = x1, . . . , Xn = xn, what is the maximum likelihood estimate for the
scale parameter θ?

Solution: The joint pdf is given by

fX1,...,Xn(x1, . . . , xn) =


∏n

i=1
xi
θ
e−

x2i
2θ x1 ≥ 0, . . . , xn ≥ 0

0 otherwise

The likelihood function is then

l(θ;x1, . . . , xn) =
n∏
i=1

xi
θ
e−

x2i
2θ

and the log-likelihood function by

ln l(θ;x1, . . . , xn) =
n∑
i=1

[
ln
xi
θ
− x2i

2θ

]
=

n∑
i=1

lnxi − n ln θ − 1

2θ

n∑
i=1

x2i

Differentiating the log-likelihood we find

d ln l(θ;x1, . . . , xn)

dθ
= −n

θ
+

1

2θ2

n∑
i=1

x2i

Finally, equating to 0 we obtain

θ̂ML =
1

2n

n∑
i=1

x2i

(b) (6 points) Suppose the scale parameter for a professional player is equal to θp
and is equal to θa = 10θp for an amateur player. After n independent dart throws
with X1 = x1, . . . , Xn = xn, what is the maximum likelihood decision rule to
determine if a player is a professional or an amateur? Simplify your solution.
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Solution: There are two hypotheses: H0 the player is professional and H1

the player is an amateur. We then have

f0(x1, . . . , xn) =
n∏
i=1

xi
θp

exp

(
− x2i

2θp

)
, x1 ≥ 0, . . . , xn ≥ 0

f1(x1, . . . , xn) =
n∏
i=1

xi
θa

exp

(
− x2i

2θa

)
, x1 ≥ 0, . . . , xn ≥ 0

=
n∏
i=1

xi
10θp

exp

(
− x2i

20θp

)
The likelihood ratio is given by

Λ(x1, . . . , xn) =
f1(x1, . . . , xn)

f0(x1, . . . , xn)

=
1

10

n∏
i=1

exp

(
− x2i

20θp
+

x2i
2θp

)
=

1

10

n∏
i=1

exp

(
9x2i
20θp

)
Finally, the maximum likelihood decision rule is

Λ(x1, . . . , xn)
H1

≷
H0

1

n∑
i=1

x2i
H1

≷
H0

20θp ln 10

9
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