
ECE220: Computer Systems & Programming Fall 2023 ZJUI

Machine Problem 7 due: Saturday 11 November, 11:59:59 p.m.

Testing and Debugging C Programs

Your task this week is to learn how to debug C programs. Specifically, you will use a debugger (the Gnu
debugger, GDB) to examine a C program and design test cases that expose bugs inside programs. You

will then debug the programs we provide and write a report on the debugging process. If you have yet to

try the tutorial in this week’s lab, we suggest that you do so to become familiar with GDB’s commands
before trying to solve the problems in the MP.

The objective for this week is for you to gain some experience with debugging programs in C, particularly

with GDB. This skill is critical for testing software.

Background

Testing is an important part of software development. Software needs to be tested to make sure that it

works as intended. Bugs may hide in not-well-tested code for years and cause disastrous events. Some of
the most costly bugs and their causes are listed below:

Ariane 5 Flight 501: https://en.wikipedia.org/wiki/Cluster_(spacecraft)#Launch_failure

The Ariane 5 rocket, Flight 501, launched on Tuesday, 4 June 1996, ended in failure due to an error in the
software design caused by assertions having been turned off, which in turn caused inadequate protection

from integer overflow. In essence, the software had tried to cram a 64-bit number into a 16-bit space. The

resulting overflow conditions crashed both the primary and backup computers (which were both running
the exact same software). The Ariane 5 cost nearly $8 billion to develop, and was carrying a $500 million

satellite payload when it exploded.

Morris worm: https://en.wikipedia.org/wiki/Morris_worm

The first internet worm (the so-called Morris Worm), developed by a Cornell University student for what
he said was supposed to be a harmless experiment, infected between 2,000 and 6,000 computers in less

than a day by taking advantage of a buffer overflow.

The specific code is a function in the standard input/output library routine called gets designed to get a

line of text over the network. Unfortunately, gets has no provision to limit its input, and an overly large

input allows the worm to take over any machine to which it can connect.

The graduate student, Robert Tappan Morris, was convicted of a criminal hacking offense and fined

$10,000. Costs for cleaning up the mess may have gone as high as $100 million.

Ping of death: https://en.wikipedia.org/wiki/Ping_of_death

A lack of sanity checks and error handling in the IP fragmentation reassembly code makes it possible to

crash a wide variety of operating systems by sending a malformed "ping" packet from anywhere on the
internet. Most obviously affected are computers running Windows, which lock up and display the so-

called "blue screen of death" when they receive these packets.

The Task

You need to identify bugs within several buggy programs by using GDB. You need to document the GDB

commands that you use and the results that GDB produces in the file report.txt.

https://en.wikipedia.org/wiki/Cluster_(spacecraft)#Launch_failure
https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Ping_of_death

1. reverse

The first program that you are required to debug is the print reverse program. This buggy program is in

the mp/mp7/printRev subdirectory of your repository. You may look at all of the code for this

particular program.

Your task is to document what the code does, how it works, and what arguments it takes. After doing so,

you must run the code repeatedly and identify at least three inputs for which the program does not work.

You must then fix the bug and document how you fixed it. You must document everything in

mp/mp7/report.txt.

To get started, you can make the program (type “make”), and then run it in GDB by typing

 gdb prev

Then type

 r <your favorite word>

This command will run the program with your favorite word as a command-line argument. Use the skills

you learned in reading and trying the GDB tutorial (the first part of this document) to debug the program.

You may find it useful to write the output of the program into a file using the redirection operator, “>”:

 ./prev "argument" > out.txt

View out.txt to see that the output of the program has been written to that file.

2. primeNumber

The next program to debug is the primeNumber program. The correct version of the program can be

found on the course website:

http://lumetta.web.engr.illinois.edu/220-F20/Ccode/primes.c

The buggy program is contained in the mp/mp7/primeNumber subdirectory in your repository. The

is_prime function has been rewritten in a more efficient way than in the original code. However, the

implementation of is_prime function contains a bug. You may not see the source code for the new

is_prime function.

Your task is to reason about how the is_prime function is implemented and the possible cause of the

bug. To help you get started, you can use the following command to generate the executable:

make

Then start GDB by typing:

 gdb primeNumber

Your task is to use GDB commands to figure out what the possible cause of the bug is inside the

is_prime function. Append your findings to the report.txt file that you created in part 1.

3. sort

The last program that you are required to debug is the sort program. This buggy program is in the

mp/mp7/sort subdirectory in your repository. You are given some of the code to look at, but the buggy

function is hidden. Your task is to first test this program, then describe the bug in your report.

The code implements a Heap Sort on an array of 32 bit integers. A Heap Sort is an in-place sorting

algorithm that is generally efficient. To learn about Heap Sort, you may want to read the description of

the algorithm at

https://en.wikipedia.org/wiki/Heapsort

To help you get started, use the following command to generate the executable:

make

You may then invoke GDB by:

gdb sort

and run the program by typing “run test1.txt” within GDB.

Then you should use GDB to analyze the program using runtime information. Because the buggy

function is hidden, you should use GDB to monitor the program when it calls into the functions that are

visible to you (those in sort.c).

In the report, document the GDB commands that you use and the erroneous intermediate values that you

find. Also, explain the possible cause of the bug.

Pieces

There are three buggy programs for this MP: printRev, primeNumber, and sort.

printRev: All source code for printRev is provided to you. You may play with the code, however

we will only grade the report.txt. Changes to the source code will not count toward your grade.

 prmain.c: The main file for printRev.

 pr_buggy.c: This file contains the print_reverse function.

primeNumber: The buggy function is_prime is hidden from you. You may play with the source

code provided, but we will only grade report.txt. Changes to the source code will not count toward

your grade.

 isPrime.h: This file contains the function definition for the is_prime function.

 primeNumber.c: This file contains the main function and the helper function

divides_evenly called by the is_prime function.

sort: The main function and the buggy function heapSort are both hidden from you. You are

provided with the source code for helper functions that are called by the heapSort function.

 sort.c: This file contains the helper functions.

 test1.txt: This file is a sample input file.

https://en.wikipedia.org/wiki/Heapsort

Specifics

For this MP, you are required to submit a file named mp/mp7/report.txt. For each of the three

buggy problems, you must first describe the error that the program produces. The description should at

least include test cases, the correct output, and the erroneous output.

After analyzing the program using test cases, you should analyze the program using GDB. In

report.txt, document the GDB commands you use to analyze the program, and also GDB output that

contains important information about the program status. Please note that you should not include all
output produced by GDB.

Finally, please describe briefly what the bug might be, and in the case of the printRev program, how to

fix it.

Compiling and Executing the Buggy Programs

You may use

make

to compile the buggy programs.

You may use

gdb {executable}

to use GDB to debug the buggy program.

Grading Rubric

We will only look at mp/mp7/report.txt to grade your MP.

Identifying the bug (30%)

For each buggy program, you need to report the test cases used to test the program, the desired output,

and the actual output of the program. You should report test cases for both correct executions and
erroneous executions.

Trace the bug (30%)

For each buggy program, you need to use GDB to trace erroneous executions of the buggy program. You

need to report the GDB commands you used and the results GDB produced. You should also analyze the
results GDB produced and the relationship between the results and the erroneous behavior.

Analysis of the bug (30%)

For each buggy program, you need to report what might be the root cause of the bug. For printRev,

you should also explain how to fix the bug.

Style (10%)

Your report should be formatted such that it is easy to read and follow.

