Minimization

Lecture Topics

- K-maps
- Minimization

Reading assignments

- Lumetta Set 2.1: Optimizing Logic Expressions

Karnaugh maps

- Karnaugh map, or K-map, is an alternative representation of truth table
- Lists cells in Gray code order
- Each cell corresponds to a minterm (row of the truth table)
- Two-variable Boolean function example:
- four possible minterms, which can be arranged into a Karnaugh map

Conventional truth table for 2-variable function

\mathbf{x}	\mathbf{y}	$\mathbf{f (x , y)}$
0	0	m_{0}
0	1	m_{1}
1	0	m_{2}
1	1	m_{3}

- Now we can easily see which minterms contain common literals.
- Minterms in column 0 and 1 contain y' and y respectively.
- Minterms in row 0 and 1 contain x^{\prime} and x respectively.
- Imagine a two-variable sum of minterms: $x^{\prime} y^{\prime}+x^{\prime} y$
- Both of these minterms appear in the top row of a Karnaugh map, which means that they both contain the literal x^{\prime}
y
$0 \quad 1$
x

- What happens if you simplify this expression using Boolean algebra?
- $x^{\prime} y^{\prime}+x^{\prime} y=x^{\prime}\left(y^{\prime}+y\right)=x^{\prime} \bullet 1=x^{\prime}$
- Another example expression is $x^{\prime} y+x y$
- Both minterms appear in the right side, where the literal y is common
- Thus, we can reduce $x^{\prime} y+x y$ to just y
y

- Another example $x^{\prime} y^{\prime}+x^{\prime} y+x y$
- We have $x^{\prime} y^{\prime}, x^{\prime} y$ in the top row, combine along row to get x^{\prime}
- There is also $x^{\prime} y, x y$ in the right side, combine along column to y
- This whole expression can be reduced to $x^{\prime}+y$

- Similarly, we can obtain K-maps for 3- and 4-variable Boolean functions

- Some examples of 3-variable functions represented with K-maps
yz

- Observation: product terms correspond to rectangles

Rectangles	Cells	Literals in term
2×2 or 1×4	4	1
2×1 or 1×2	2	2
1×1	1	3

- Some examples of 4-variable functions represented with K-maps

- Product terms correspond to rectangles

Rectangles	Cells	Literals in term
4×2 or 2×4	8	1
4×1 or 2×2 or 1×4	4	2
2×1 or 1×2	2	3
1×1	1	4

- Sum terms correspond to rectangles too:

- Why Grey code ordering?
- With this ordering, any group of $2,4,8,16, \ldots$ adjacent cells on the map contains common literals that can be factored out.
- "Adjacency" includes wrapping around the left and right sides.

Function simplification

- K-maps is a great tool for simplifying Boolean expressions
- A product term is an implicant of a function if the function has the value 1 for all minterms of the product term
- In terms of K-map, implicants correspond to all legal loops
- An implicant is a prime implicant if it is not contained within a larger implicant
- In terms of K-map, prime implicants correspond to all biggest loops
- If a minterm is included in only one prime implicant, then it is an essential prime implicant
- In other words, a prime implicant is essential if it covers some 1-cell for which no other prime implicants cover that cell
- Example:

Prime implicants
yz

$w^{\prime} y^{\prime}, x y^{\prime} z, w x z, w y z ', w x y$

Essential prime implicants

$w^{\prime} y^{\prime}, w y z '$

- An SOP (or POS) expression is minimal if
- It has the minimum number of product (sum) terms, and
- Among expressions with minimum number of terms, it has fewest literals
- A minimal SOP expression is a sum of prime implicants. It consists of
- All the essential prime implicants, and
- As few as possible other prime implicants
- Procedure for finding minimal SOP representation
- Find all essential prime implicants
- For each 1 which has not yet been circled:
- Is it covered by only one prime implicant? (i.e., there is no choice how to circle that 1?)
- If yes, that prime implicant is essential and must be a term in any minimal SOP representation
- Cover the remaining 1's using as few prime implicants as possible
- In other words, find minimum number of rectangles to cover all 1's in K-map, each rectangle as large as possible
- Minimal SOP examples:

(all essential PIs)

$x^{\prime} y+w^{\prime} z^{\prime}+w x y^{\prime}+w x z$
$\min \mathrm{SOP}$ is not unique, there is another way to
cover $\mathrm{m}_{12}, \mathrm{~m}_{13}, \mathrm{~m}_{15}$:

$$
x^{\prime} y+w^{\prime} z^{\prime}+x y^{\prime} z^{\prime}+w x z
$$

- Note that min SOP may not be unique

(all essential PIs)
yz

$\underline{x^{\prime} z^{\prime}}+w^{\prime} x y^{\prime}+w x z+w y z^{\prime}$
there are 4 min SOP
solutions in this case
($\underline{x}^{\prime} z^{\prime}$ is essential PI)
- Minimal POS examples:

