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Error Detection May Not Be Enough

Detection of errors is not always enough.
For example, if your bank’s storage server 
detects a bit flip in your account balance.
Say that the balance (with a bit flip) is $500.
Someone must choose a bit to flip back.
Choices, each flipping one bit, include:

$500 (change the parity bit)
-$500 (overdrawn!  the bank’s favorite)
$9.223×1021 (your choice of bit, I’d think)
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Hopefully, You Never See This (Again)

EMERGENCY ALERT!
Your medical monitoring device has 
suffered a bit error critical failure.

Your health is important to us!
Please stand by while we 
contact the developer.
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critical failure.

Can We Use Redundancy to Correct Errors?

Yes, but the overhead—the number of 
extra bits that we have to use—is higher.
Recall 3-bit 2’s complement with odd parity.

The Hamming distance of the code is 2.
Can the code correct an error?
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With H.D. 2, Some Errors are Not Correctable

If we observe 0011 after a bit error,
what was the original bit pattern?

Which answer 
should we pick?
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00010

0010 1

0011
a possible bit flip

another possible bit flip

Larger Hamming Distance Allows Error Correction

But what if we have a 
larger Hamming distance?
Consider the code shown here,
based on 2-bit unsigned:
Each code word consists
of three copies of the
original representation.

What is the Hamming distance
of this code?
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Larger Hamming Distance Allows Error Correction

What if one bit flips?
Changing one bit can only change 
one of the three copies.
The other two copies 
then “vote” for the 
right answer.

And we can correct the error!
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1010102
a possible bit flip

100010

Error Correction Fails if Too Many Bits Have Flipped

What if two bits flip?
Changing two bits can change 
two of the three copies.
The incorrect copies
may outvote the
right answer!

Correction fails if too many bits flip.
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1010102

100000
two possible bit flips

Important: You will not know that
correction has failed!



Define a Neighborhood Around Each Code Word

Let’s try to generalize.
Given a code word C, we can define a 
neighborhood Nk(C) of distance k around C as 
the set of bit patterns with Hamming 

.
If up to k bits flip in a stored copy of C, the 
final bit pattern falls within Nk(C).
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We Can Correct Errors if Neighborhoods are Disjoint

When can we correct errors?
Assume that up to k bits flip in a stored bit 
pattern C to produce a final bit pattern F.
We know that F is in Nk(C).
When can we identify C, given only F?
Only when Nk(C) does not overlap 
with neighborhood Nk(D) for 
any other code word D.
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D

All Code Words’ Neighborhoods Must be Disjoint

If we want to correct k errors, we need the 
neighborhoods Nk(C) and Nk(D) to be disjoint 
for any pair of code words C and D.
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Need Hamming Distance 2k+1 to Correct k Errors

In other words, to correct k errors, the 
distance between code words must be 
at least 2k + 1.  But that’s Hamming distance!
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H.D. of d Allows Correction of Floor ((d-1)/2) Bit Errors

In other words, a code with Hamming distance 
d can correct k errors iff .
Solving for k, we obtain – 1) / 2.
Since k is an integer, we add a 
floor function for clarity.
Thus, a code with Hamming distance d 
allows correction of up to bit errors.
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Hamming Codes are Good for 1-Bit Error Correction

A Hamming code is
a general and efficient* code
with Hamming distance 3.

Hamming codes also provide simple 
algorithms for correcting 1-bit errors.

*All bit patterns are part of the
1-neighborhood of some code word.
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Defining and Using Hamming Codes

To define a Hamming code on N bits,
number the bits from 1 upwards, and
make all powers of two even parity bits.

Each parity bit P (a power of 2) is based on
the bits with indices k
for which the bit P appears as a 1 in k.
In other words, (k AND P) = P.

The binary number formed by writing the parity 
bits in error as 1s then identifies any bit error.
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(7,4) Hamming Code: Four Data Bits and Three Parity Bits

Let’s do an example: a (7,4) Hamming code.
The 7 is the number of bits in each code word.
And the 4 represents the number of data bits.
The other 3 bits are parity bits.
We can write a code word X as x7x6x5x4x3x2x1.
Notice that there is no x0.
The parity bits are x1, x2, and x4. 
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Calculation of Parity Bits for a 7-Bit Hamming Code

Parity bit x1 is even parity on the bits with
odd-numbered indices.  In other words,

x1 = x3 x5 x7.
Parity bit x2 is parity over bits with indices in 
which the 2s place is a 1.  In other words,

x2 = x3 x6 x7.
Parity bit x4 is parity over bits with indices in 
which the 3rd place is a 1.  In other words,

x4 = x5 x6 x7.
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Graphical View of the (7,4) Hamming Code

1 2

4

To find parity bits:
• Write data bits into areas 7, 6, 5, and 3.
• Choose bit for area 4 such that the blue 

circle has even parity.
• Do the same for the yellow and red 

circles.
To check parity bits:
• Check that each circle has even parity.
To correct an error:
• Find the circles with odd parity.
• Flip the bit in the area corresponding the 

intersection of those circles.

3

5 6
7

Can We Generalize This Approach to Error Detection?

The graphical approach generalizes,
but one needs (N – 1)-dimensional 
hyperspheres 
for N parity bits.

They are hard to draw on paper 
when N > 3.
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Algebraic Encoding for a 7-Bit Hamming Code

We can also work algebraically, of course.
Let’s say that we want to store the value 1001.
We place our bits into the data bit positions.
So X = x7x6x5x4x3x2x1 = 100x41x2x1, where the remaining bits must be calculated:

x1 = x3 x5 x7 = 1 0 1 = 0
x2 = x3 x6 x7 = 1 0 1 = 0
x4 = x5 x6 x7 = 0 0 1 = 1

Putting the parity bits in place gives X = 1001100.
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Correcting a Bit Error is Easy with a Hamming Code

A bit flips, and we later find Y = 1001110.
What was X?  To correct the error,

we calculate an error bit for each parity bit 
by XORing the observed parity bit with the 
correct answer:

e1 = x1 x3 x5 x7 = 0 1 0 1 = 0
e2 = x2 x3 x6 x7 = 1 1 0 1 = 1
e4 = x4 x5 x6 x7 = 1 0 0 1 = 0

Writing e4e2e1= 010 identifies the error as x2.
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An Error Syndrome of Exactly 0 Means No Error Occurred

What if no error occurs?
Can we accidentally “correct” an 
already correct bit?
In that case,

all e1 values are 0 
(all parity bits are correct),
so e4e2e1= 000, and we 
know that no error occurred.
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Adding a Parity Bit to a Hamming Code Gives H.D. 4

What happens if we add a 
parity bit to a Hamming code?
In general,

adding a parity bit 
to any code with 
odd Hamming distance d
produces a code with 
Hamming distance d + 1. 

So we obtain a code with Hamming distance 4.
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What Can We Do with Hamming Distance 4?

Let’s think about Hamming distance 4.
If a single bit flip occurs, we can correct it.
However, we cannot correct 
two bit flips ( = 1).
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Hamming Distance of 4 is a SEC-DED Code

However, if two bit flips occur,
the resulting bit pattern is not in 
a 1-neighborhood of the code word
so we can avoid “correcting” the errors.

In other words, we have
Single Error Correction and
Double Error Detection.

We call such a code a SEC-DED code.
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