University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Error Correction, Hamming Codes,
and SEC-DED Codes

Error Detection May Not Be Enough

Detection of errors is not always enough.

For example, if your bank’s storage server
detects a bit flip in your account balance.

Say that the balance (with a bit flip) is $500.
Someone must choose a bit to flip back.

Choices, each flipping one bit, include:

> $500 (change the parity bit)

©-$500 (overdrawn! the bank’s favorite)
©$9.223x1021 (your choice of bit, I'd think)

ECE 120: Introduction to Computing © 2015 Steven S. Lumetta. All rights reserved. slide 1

Hopefully, You Never See This (Again)

Can We Use Redundancy to Correct Errors?

Yes, but the overhead—the number of
extra bits that we have to use—is higher.

Recall 3-bit 2’s complement with odd parity.
-4<+—»1000 0<«—>0001
-3<4—» 1011 1 <«—»0010
2<4+—»1101 2<—»0100
-l]e—»1110 3<«e—»0111

The Hamming distance of the code is 2.

Can the code correct an error?

If we observe 0011 after a bit error,
what was the original bit pattern?

)<+e—> 0001
|
Which answer
0011 should we pick?

T another possible bit flip

0010 «—=—>»1

ut what 1t we have a
larger Hamming distance?

Consider the code shown here,

based on 2-bit unsigned: & 560000

Each code word consists 1e—> 010101

of three copies of the
original representation. 2 <+==101010

3e—»111111

What is the Hamming distance
of this code? 3

slide 5

What if one bit flips?

Changing one bit can only change
one of the three copies.

The other two copies 2<—» 101010

then “vote” for the
right answer.
100010

And we can correct the error!

slide 6

What if two bits flip?

Changing two bits can change
two of the three copies.

The incorrect copies 2<—» 101010

may outvote the
right answer!
100000

Correction fails if too many bits flip.
Important: You will not know that
correction has failed!

slide 7

slide 8

et’s try to generalize.

€n can we correct errors?

Given a code word C, we can define a Assume that up to k bits flip in a stored bit
neighborhood N, (C) of distance k around C as pattern C to produce a final bit pattern F.
the set of bit patterns with Hamming We know that F is in Ny (C).

distance < k from C.
. . . o
If up to k bits flip in a stored copy of C, the ElEntc kel AC R elolALE

final bit pattern falls within N, (C). Only when N, (C) does not overlap
with neighborhood N, (D) for
any other code word D.

we want to correct k errors, we need the n other words, to correct k errors, the
neighborhoods N, (C) and N, (D) to be disjoint distance between code words must be

for any pair of code words C and D. at least 2k + 1. But that’s Hamming distance!
neighborhood N, (C) neighborhood N, (D) neighborhood N, (C) neighborhood N, (D)

distance 1

-
———————

distance 1

-
———————

d can correct k errors iff d > 2k + 1.
Solving for k, we obtain k < (d - 1)/ 2.

Since k is an integer, we add a
floor function for clarity.

Thus, a code with Hamming distance d

allows correction of up to l%] bit errors.

oa general and efficient* code
owith Hamming distance 3.

Hamming codes also provide simple
algorithms for correcting 1-bit errors.

*All bit patterns are part of the
1-neighborhood of some code word.

b

onumber the bits from 1 upwards, and

> make all powers of two even parity bits.
Each parity bit P (a power of 2) is based on
o the bits with indices k

o for which the bit P appears as a 1 in k.
o In other words, (k AND P) = P.

The binary number formed by writing the parity
bits in error as 1s then identifies any bit error.

9

The 7 is the number of bits in each code word.
And the 4 represents the number of data bits.
The other 3 bits are parity bits.

We can write a code word X as X;XgX;X X3X,X;.
Notice that there is no x,,.

The parity bits are x,, x,, and x,.

1>, .
odd-numbered indices. In other words,
X, =X3 D x5 ® xy.

Parity bit x, is parity over bits with indices in
which the 2s place is a 1. In other words,

X, = X3 @ x4 @ x;.

Parity bit x, is parity over bits with indices in
which the 3rd place 1s a 1. In other words,

X, = X5 ® x4 © x,.

rite data bits into areas 7, 6, 5, and 3.

* Choose bit for area 4 such that the blue
circle has even parity.

* Do the same for the yellow and red
circles.

To check parity bits:
* Check that each circle has even parity.

To correct an error:

* Find the circles with odd parity.

* Flip the bit in the area corresponding the
intersection of those circles.

e graphical approach generalizes,

obut one needs (N — 1)-dimensional
hyperspheres

ofor N parity bits.

They are hard to draw on paper

when N > 3.

’

Let’s say that we want to store the value 1001.
We place our bits into the data bit positions.

So X = x;XX;X,X3X,X,; = 100x,1x,X,,
where the remaining bits must be calculated:

X =%30x0x,=10001=0

X =X30x,Dx,=10001=0

,=X%0x,P0x,=00001=1
Putting the parity bits in place gives X = 1001100.

What was X? To correct the error,
o we calculate an error bit for each parity bit

o by XORing the observed parity bit with the
correct answer: In that case,

e =x,0x,0x,0x,=0010001=0 call e; values are 0

Can we accidentally “correct” an
already correct bit?

(all parity bits are correct),
°s0 e,e,e,= 000, and we
know that no error occurred.

e =X0x:;0x,0x,=1010001=1
=X, Px,Px;Px,=10000D1=0
Writing e e,e;= 010 identifies the error as x,.

parity bit to a Hamming code? If a single bit flip occurs, we can correct it.

In general,
cadding a parity bit
°to any code with
odd Hamming distance d

oproduces a code with
Hamming distance d + 1.

However, we cannot correct
two bit flips (l%] =1).

So we obtain a code with Hamming distance 4.

We call such a code a SEC-DED code.

