
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Error Correction, Hamming Codes,
and SEC-DED Codes

ECE 120: Introduction to Computing © 2015 Steven S. Lumetta. All rights reserved. slide 1

Error Detection May Not Be Enough

Detection of errors is not always enough.
For example, if your bank’s storage server
detects a bit flip in your account balance.
Say that the balance (with a bit flip) is $500.
Someone must choose a bit to flip back.
Choices, each flipping one bit, include:

$500 (change the parity bit)
-$500 (overdrawn! the bank’s favorite)
$9.223×1021 (your choice of bit, I’d think)

slide 2

Hopefully, You Never See This (Again)

EMERGENCY ALERT!
Your medical monitoring device has
suffered a bit error critical failure.

Your health is important to us!
Please stand by while we
contact the developer.

slide 3

critical failure.

Can We Use Redundancy to Correct Errors?

Yes, but the overhead—the number of
extra bits that we have to use—is higher.
Recall 3-bit 2’s complement with odd parity.

The Hamming distance of the code is 2.
Can the code correct an error?

slide 4

00010

01113

00101 01002

1000-4 1011-3 1101-2 1110-1

With H.D. 2, Some Errors are Not Correctable

If we observe 0011 after a bit error,
what was the original bit pattern?

Which answer
should we pick?

slide 5

00010

0010 1

0011
a possible bit flip

another possible bit flip

Larger Hamming Distance Allows Error Correction

But what if we have a
larger Hamming distance?
Consider the code shown here,
based on 2-bit unsigned:
Each code word consists
of three copies of the
original representation.

What is the Hamming distance
of this code?

slide 6

0000000

1111113

0101011 1010102

3

Larger Hamming Distance Allows Error Correction

What if one bit flips?
Changing one bit can only change
one of the three copies.
The other two copies
then “vote” for the
right answer.

And we can correct the error!

slide 7

1010102
a possible bit flip

100010

Error Correction Fails if Too Many Bits Have Flipped

What if two bits flip?
Changing two bits can change
two of the three copies.
The incorrect copies
may outvote the
right answer!

Correction fails if too many bits flip.

slide 8

1010102

100000
two possible bit flips

Important: You will not know that
correction has failed!

Define a Neighborhood Around Each Code Word

Let’s try to generalize.
Given a code word C, we can define a
neighborhood Nk(C) of distance k around C as
the set of bit patterns with Hamming

.
If up to k bits flip in a stored copy of C, the
final bit pattern falls within Nk(C).

slide 9

We Can Correct Errors if Neighborhoods are Disjoint

When can we correct errors?
Assume that up to k bits flip in a stored bit
pattern C to produce a final bit pattern F.
We know that F is in Nk(C).
When can we identify C, given only F?
Only when Nk(C) does not overlap
with neighborhood Nk(D) for
any other code word D.

slide 10

D

All Code Words’ Neighborhoods Must be Disjoint

If we want to correct k errors, we need the
neighborhoods Nk(C) and Nk(D) to be disjoint
for any pair of code words C and D.

slide 11

neighborhood Nk(C)

C
distance k

neighborhood Nk(D)

distance k

distance 1
D

Need Hamming Distance 2k+1 to Correct k Errors

In other words, to correct k errors, the
distance between code words must be
at least 2k + 1. But that’s Hamming distance!

slide 12

neighborhood Nk(C)

C
distance k

neighborhood Nk(D)

distance k

distance 1

H.D. of d Allows Correction of Floor ((d-1)/2) Bit Errors

In other words, a code with Hamming distance
d can correct k errors iff .
Solving for k, we obtain – 1) / 2.
Since k is an integer, we add a
floor function for clarity.
Thus, a code with Hamming distance d
allows correction of up to bit errors.

slide 13

Hamming Codes are Good for 1-Bit Error Correction

A Hamming code is
a general and efficient* code
with Hamming distance 3.

Hamming codes also provide simple
algorithms for correcting 1-bit errors.

*All bit patterns are part of the
1-neighborhood of some code word.

slide 14

Defining and Using Hamming Codes

To define a Hamming code on N bits,
number the bits from 1 upwards, and
make all powers of two even parity bits.

Each parity bit P (a power of 2) is based on
the bits with indices k
for which the bit P appears as a 1 in k.
In other words, (k AND P) = P.

The binary number formed by writing the parity
bits in error as 1s then identifies any bit error.

slide 15

(7,4) Hamming Code: Four Data Bits and Three Parity Bits

Let’s do an example: a (7,4) Hamming code.
The 7 is the number of bits in each code word.
And the 4 represents the number of data bits.
The other 3 bits are parity bits.
We can write a code word X as x7x6x5x4x3x2x1.
Notice that there is no x0.
The parity bits are x1, x2, and x4.

slide 16

Calculation of Parity Bits for a 7-Bit Hamming Code

Parity bit x1 is even parity on the bits with
odd-numbered indices. In other words,

x1 = x3 x5 x7.
Parity bit x2 is parity over bits with indices in
which the 2s place is a 1. In other words,

x2 = x3 x6 x7.
Parity bit x4 is parity over bits with indices in
which the 3rd place is a 1. In other words,

x4 = x5 x6 x7.

slide 17

Graphical View of the (7,4) Hamming Code

1 2

4

To find parity bits:
• Write data bits into areas 7, 6, 5, and 3.
• Choose bit for area 4 such that the blue

circle has even parity.
• Do the same for the yellow and red

circles.
To check parity bits:
• Check that each circle has even parity.
To correct an error:
• Find the circles with odd parity.
• Flip the bit in the area corresponding the

intersection of those circles.

3

5 6
7

Can We Generalize This Approach to Error Detection?

The graphical approach generalizes,
but one needs (N – 1)-dimensional
hyperspheres
for N parity bits.

They are hard to draw on paper
when N > 3.

slide 19

Algebraic Encoding for a 7-Bit Hamming Code

We can also work algebraically, of course.
Let’s say that we want to store the value 1001.
We place our bits into the data bit positions.
So X = x7x6x5x4x3x2x1 = 100x41x2x1, where the remaining bits must be calculated:

x1 = x3 x5 x7 = 1 0 1 = 0
x2 = x3 x6 x7 = 1 0 1 = 0
x4 = x5 x6 x7 = 0 0 1 = 1

Putting the parity bits in place gives X = 1001100.

slide 20

Correcting a Bit Error is Easy with a Hamming Code

A bit flips, and we later find Y = 1001110.
What was X? To correct the error,

we calculate an error bit for each parity bit
by XORing the observed parity bit with the
correct answer:

e1 = x1 x3 x5 x7 = 0 1 0 1 = 0
e2 = x2 x3 x6 x7 = 1 1 0 1 = 1
e4 = x4 x5 x6 x7 = 1 0 0 1 = 0

Writing e4e2e1= 010 identifies the error as x2.

slide 21

An Error Syndrome of Exactly 0 Means No Error Occurred

What if no error occurs?
Can we accidentally “correct” an
already correct bit?
In that case,

all e1 values are 0
(all parity bits are correct),
so e4e2e1= 000, and we
know that no error occurred.

slide 22

Adding a Parity Bit to a Hamming Code Gives H.D. 4

What happens if we add a
parity bit to a Hamming code?
In general,

adding a parity bit
to any code with
odd Hamming distance d
produces a code with
Hamming distance d + 1.

So we obtain a code with Hamming distance 4.

slide 23

What Can We Do with Hamming Distance 4?

Let’s think about Hamming distance 4.
If a single bit flip occurs, we can correct it.
However, we cannot correct
two bit flips (= 1).

slide 24

Hamming Distance of 4 is a SEC-DED Code

However, if two bit flips occur,
the resulting bit pattern is not in
a 1-neighborhood of the code word
so we can avoid “correcting” the errors.

In other words, we have
Single Error Correction and
Double Error Detection.

We call such a code a SEC-DED code.

slide 25

