

Hopefully, You Never See This (Again)

EMERGENCY ALERT!

Your medical monitoring device has suffered a bit error critical failure.

Your health is important to us!

Please stand by while we contact the developer.

Can We Use Redundancy to Correct Errors?

Yes, but the **overhead**—the number of extra bits that we have to use—is higher.

Recall **3-bit 2's complement** with odd parity.

-4 + 1000	0 ↔ 0001
-3 ↔ 1011	1 ↔ 0010
-2 ↔ 1101	2 ↔ 0100
-1 ↔ 1110	3 ↔ 0111

The Hamming distance of the code is 2. Can the code correct an error?

slide 4

Define a Neighborhood Around Each Code Word

Let's try to generalize.

Given a code word C, we can define a neighborhood $N_k(C)$ of distance k around C as the set of bit patterns with Hamming distance $\leq k$ from C.

If **up to k bits flip** in a stored copy of **C**, the final bit pattern falls within $N_k(C)$.

We Can Correct Errors if Neighborhoods are Disjoint

When can we correct errors?

Assume that up to \mathbf{k} bits flip in a stored bit pattern \mathbf{C} to produce a final bit pattern \mathbf{F} .

We know that **F** is in $N_k(C)$.

When can we identify **C**, given only **F**?

Only when $N_k(C)$ does not overlap with neighborhood $N_k(D)$ for any other code word **D**.

All Code Words' Neighborhoods Must be Disjoint

If we want to correct \mathbf{k} errors, we need the neighborhoods $N_k(\mathbf{C})$ and $N_k(\mathbf{D})$ to be disjoint for any pair of code words \mathbf{C} and \mathbf{D} .

Need Hamming Distance 2k+1 to Correct k Errors

In other words, to correct \mathbf{k} errors, the distance between code words must be at least $2\mathbf{k} + 1$. But that's Hamming distance!

H.D. of d Allows Correction of Floor ((d-1)/2) Bit Errors

In other words, a code with Hamming distance **d** can correct **k** errors iff $d \ge 2k + 1$.

Solving for **k**, we obtain $\mathbf{k} \leq (\mathbf{d} - 1) / 2$.

Since \mathbf{k} is an integer, we add a floor function for clarity.

Thus, a code with Hamming distance d allows correction of up to $\left\lfloor \frac{d-1}{2} \right\rfloor$ bit errors.

Hamming Codes are Good for 1-Bit Error Correction

A **Hamming code** is • a general and efficient* code • with Hamming distance 3.

Hamming codes also provide **simple** algorithms for correcting 1-bit errors.

*All bit patterns are part of the 1-neighborhood of some code word.

Defining and Using Hamming Codes

To define a Hamming code on **N** bits, • number the bits from 1 upwards, and • make all powers of two even parity bits. Each parity bit **P** (a power of 2) is based on • the bits with indices **k** • for which the bit **P** appears as a **1** in **k**. • In other words, (**k** AND **P**) = **P**. The binary number formed by writing the parity

bits in error as 1s then identifies any bit error.

(7,4) Hamming Code: Four Data Bits and Three Parity Bits

Let's do an example: **a** (7,4) Hamming code. The 7 is the number of bits in each code word. And the 4 represents the number of data bits. The other 3 bits are parity bits. We can write a code word X as $x_7x_6x_5x_4x_3x_2x_1$. Notice that there is no x_0 . The **parity bits are** x_1 , x_2 , and x_4 .

Calculation of Parity Bits for a 7-Bit Hamming Code

Parity bit \mathbf{x}_1 is even parity on the bits with odd-numbered indices. In other words,

$\mathbf{x}_1 = \mathbf{x}_3 \oplus \mathbf{x}_5 \oplus \mathbf{x}_7.$

Parity bit \mathbf{x}_2 is parity over bits with indices in which the 2s place is a 1. In other words,

$\mathbf{x}_2 = \mathbf{x}_3 \oplus \mathbf{x}_6 \oplus \mathbf{x}_7.$

Parity bit \mathbf{x}_4 is parity over bits with indices in which the 3rd place is a 1. In other words,

 $\mathbf{x}_4 = \mathbf{x}_5 \oplus \mathbf{x}_6 \oplus \mathbf{x}_7.$

Graphical View of the (7,4) Hamming Code

To find parity bits:

- Write data bits into areas 7, 6, 5, and 3.
- Choose bit for area 4 such that the blue circle has even parity.
- Do the same for the yellow and red circles.

To check parity bits:

• Check that each circle has even parity.

To correct an error:

- Find the circles with odd parity.
- Flip the bit in the area corresponding the intersection of those circles.

Can We Generalize This Approach to Error Detection?

The graphical approach generalizes, \circ but one needs (N - 1)-dimensional

- hyperspheres
- for **N** parity bits.

They are hard to draw on paper when N > 3.

Algebraic Encoding for a 7-Bit Hamming Code

We can also work algebraically, of course. Let's say that we want to **store the value 1001**. We place our bits into the data bit positions.

So $X = x_7 x_6 x_5 x_4 x_3 x_2 x_1 = 100 x_4 1 x_2 x_1$, where the remaining bits must be calculated:

 $\begin{aligned} \mathbf{x}_1 &= \mathbf{x}_3 \oplus \mathbf{x}_5 \oplus \mathbf{x}_7 = \mathbf{1} \oplus \mathbf{0} \oplus \mathbf{1} = \mathbf{0} \\ \mathbf{x}_2 &= \mathbf{x}_3 \oplus \mathbf{x}_6 \oplus \mathbf{x}_7 = \mathbf{1} \oplus \mathbf{0} \oplus \mathbf{1} = \mathbf{0} \\ \mathbf{x}_4 &= \mathbf{x}_5 \oplus \mathbf{x}_6 \oplus \mathbf{x}_7 = \mathbf{0} \oplus \mathbf{0} \oplus \mathbf{1} = \mathbf{1} \end{aligned}$ Putting the parity bits in place gives $\mathbf{X} = \mathbf{1001100}$.

An Error Syndrome of Exactly 0 Means No Error Occurred

What if no error occurs?

Can we accidentally "correct" an already correct bit?

In that case, • all **e**₁ values are 0 (all parity bits are correct),

 \circ so $e_4e_2e_1=000$, and we know that no error occurred.

Adding a Parity Bit to a Hamming Code Gives H.D. 4

What happens if we add a parity bit to a Hamming code?

In general,

- adding a parity bit
- to any code with odd Hamming distance d
- **produces** a code with Hamming distance d + 1.

So we obtain a code with Hamming distance 4.

What Can We Do with Hamming Distance 4?

Let's think about Hamming distance 4. If a single bit flip occurs, we can correct it. However, we cannot correct two bit flips $\left(\left|\frac{4-1}{2}\right| = 1\right)$.

Hamming Distance of 4 is a SEC-DED Code

However, **if two bit flips occur**, • the resulting bit pattern is **not in a 1-neighborhood** of the code word • so **we can avoid "correcting"** the errors.

In other words, we have

• Single Error Correction and

• Double Error Detection.

We call such a code a **SEC-DED code**.