University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Parity and Hamming Distance

A 2-out-of-5 Code Can Detect Any Single Bit Flip

A 2-out-of-5 code maps decimal digits into 5 -bit code words.
Each code word has exactly two 1 bits.
How many 1 bits are there if we flip a bit?

Result: Either ONE 1 bit or THREE 1 bits.

ECE 120: Introduction to Computing © 2015 Steven S. Lumetta. All rights reserved.

Generalize by Using Even and Odd Numbers of 1 Bits

What if we choose all code words with an ODD number of 1 bits?

Result: Any bit flip gives a non-code-word!

Add a Parity Bit to Any Representation!

starting with any representation

- Add one extra parity bit to each code word.
- Choose parity bit's value to make total number of 1 bits ODD (called odd parity).
For example, 3-bit unsigned with odd parity...

$0 \longleftrightarrow 0001$	$4 \longleftrightarrow 1000$
$1 \longleftrightarrow 0010$	$5 \longleftrightarrow 1011$
$2 \longleftrightarrow 0100$	$6 \longleftrightarrow 1101$
$3 \longleftrightarrow 0111$	$7 \longleftrightarrow 1110$

Hamming Distance: The Number of Bits that Differ

Let's define a way to measure distance

- between two bit patterns
- as the number of bits that must change/flip

We call this measure Hamming distance (after Richard Hamming, a UIUC alumnus).

Define the Hamming Distance for a Representation

Let's also define the Hamming distance for a representation (let's call a representation a code now):

- Given the set of code words (bit patterns) that have meaning,
- the Hamming distance of the code
\circ is the minimum Hamming distance
- between any two distinct code words.

Example: The Hamming Distance of BCD is 1

What is the Hamming distance (H.D.) of BCD?

- Choose two code words,
- say those representing digits 0 and 1.

H.D. of BCD is min. over all code word pairs.

Thus BCD has Hamming distance 1.

Example: The Hamming Distance of 2-out-of-5 is 2

What is the H.D. of a 2 -out-of-5 code?

- Choose two distinct code words, A and B.
- Each has two 1s (cannot be the same two).
- So A must have at least one 1
in a position where B has a 0 .
- And B must have at least one 1 in a position where \mathbf{A} has a 0 .
H.D. from \mathbf{A} to \mathbf{B} is thus at least 2 .

Thus a 2-out-of-5 code has H.D. 2.

Example: H.D. with Odd Parity

What is the H.D. of a code with odd parity?

- Choose two distinct code words, A and B.

A must differ from B in some location.

- Assume that the location is unique.
- A has odd parity, so B has even parity (contradiction, so location cannot be unique).

Example: H.D. with Odd Parity is at Least 2

There must be at least two locations in which A to B differ.

Thus H.D. with odd parity is at least 2.

H.D. of 2's Complement with Odd Parity is 2

Add an odd parity bit to 3-bit 2's complement:
$-4 \longleftrightarrow 1000$
$-4 \longleftrightarrow 0001$

With H.D. 2, Two-Bit Errors Can be Undetectable

What happens if two bit errors occur
when using 3 -bit 2 's complement with parity?

A Code with H.D. of d Allows Detection of (d-1) Errors

More generally...

- Start with a code with H.D. given by d
- Ask: How many errors can be detected?
H.D. of d implies
- Any code word is at least d flips from any other.
- Thus (d-1) bit errors cannot transform any code word into any other.
- Thus up to (d-1) bit errors can be detected.
- There exist code words A and B separated by d flips, so d bit errors can transform A into B.

