

And Some Patterns May Represent Nothing

Bit patterns **000** and **011** represent no color.

We Need to Choose a Model for Errors

Cannot handle "all" errors.

• Catastrophes are always possible.

• But catastrophes are (hopefully) uncommon!

Let's focus on frequent types of errors.

ECE 120: Introduction to Computing

 \odot 2015 Steven S. Lumetta. All rights reserved.

Examples from English: Erasures vs. Errors	Assume Small Numbers of Independent Bit Flips
	Bit flip error model: 0 becomes 1, 1 becomes 0
·hat ·oes t·is ·ay·	Each bit flips
What does this say?	• independently of all others • with some low probability (call it p)
Than foen thit xay.	For N bits ◦ chance of one error is Np (1 − p) ^{N-1} ◦ chance of two errors is ½ N(N-1)p ² (1 − p) ^{N-2}
That goes this way.	In practice, Np << 1 (Np is much less than 1) so chance of two errors << chance of one error

Example: 2-out-of-5 Code

A 2-out-of-5 code maps **decimal digits** into 5-bit patterns.

Each pattern has **exactly two 1 bits**.

1 ↔ 00011	6 ↔ 01100
2 ↔ 00101	7 ↔ 10001
3 ↔ 00110	8 ↔ 10010
4 ↔ 01001	9 ↔ 10100
5 ↔ 01010	0 ↔ 11000

Claim: Can Always Detect a Single Bit Error

Thought experiment:

What happens if a single bit flips in a digit coded using a 2-out-of-5 code?

None of these patterns means anything, so **we can always detect the error!**

ECE 120: Introduction to Computing

© 2015 Steven S. Lumetta. All rights reserved.

slide 13

ECE 120: Introduction to Computing

© 2015 Steven S. Lumetta. All rights reserved.

slide 14