University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing

The Patt and Patel Control Unit

LC-3 State Transition Diagram Has Few Outgoing Arcs

Patt and Patel Appendix C provides details for a microprogrammed control unit.
Since the full LC-3 ISA includes interrupts and privilege, they use 6 -bit state IDs.

ECE 120: Introduction to Computing

Microprogrammed Control Treats States as Instructions

Interrupts and privilege add 14 bits of control signals, bringing the total to 39 .
The P\&P microinstructions also include 10 bits of sequencing information:

- J, a 6-bit next state ID
- COND, a 3-bit branch condition,
${ }^{\circ}$ and IRD, which indicates whether the current state is the decode state (\#32).

Microinstruction Branch Conditions for LC-3

COND	branch on signal	meaning
000	(none)	unconditional
001	R	memory ready
010	BEN	BR taken
011	IR[11]	JSR or JSRR
100	PSR[15]	privilege mode violation
101	INT	interrupt occurred

Grey entries were not covered in our class.

The Patt and Patel Microsequencer

Here is the P\&P microsequencer.
First states
of execution
are 0 through 15. are 0 through 15.

Decode is handled using IRD.

ECE 120: Introduction to Computing

Microsequencer Constrains the Choice of State Numbers

For example, the memory ready signal \mathbf{R}
ORs in the value 2 (bit \#1).
To wait for a memory access:

- COND must be 001 .
- The current state ID must have bit $1=0$.
- Next state J must be the same as current state.
- Next state after memory is ready
must be $\mathbf{J}+2$ (J OR 2, which is the same as +).
These constraints must be obeyed
because of the microsequencer design.

ECE 120: Introduction to Computing $\quad \bigcirc 2016$ Steven S. Lumetta. All rights reserved.
slide 6

Consider the BR Instruction as an Example

Let's look at an example.
The BR opcode is 0 , so the
BR execution state is also \#0.
State \#0 branches on BEN:

- when BEN is false, the branch is not taken, so the next state is fetch (\#18), and
- when BEN is true, the next state must be \#22 (18 OR 4), as the microsequencer ORs 4 with J when $\mathrm{COND}=2$ and $\mathrm{BEN}=1$.

How Does the LC-3 FSM Control Fetch and Decode?

Let's work out the microsequencing bits for instruction fetch and decode.

The figure to the right highlights these states.

What are the Microsequencing Bits for Fetch 1?

Fetch 1 branches on INT (interrupt).
The next states are fetch 2 (100001) and start of interrupt (110001).

state \#		\mathbf{J}	COND	IRD
010010	fetch 1	100001	101	0
100001	fetch 2			
100011	fetch 3			
100000	decode			

What are the Microsequencing Bits for Fetch 3?
Fetch 3 does not branch.
The next state is decode (100000).

state \#		J	COND	IRD
010010	fetch 1	100001	101	0
100001	fetch 2	100001	001	0
100011	fetch 3	100000	000	0
100000	decode			

What are the Microsequencing Bits for Fetch 2?

Fetch 2 branches on R (memory ready).
The next states are fetch 2 (100001) and fetch 3 (100011).

state \#		J	COND	IRD
010010	fetch 1	100001	101	0
100001	fetch 2	100001	001	0
100011	fetch 3			
100000	decode			

What are the Microsequencing Bits for Decode?

Decode goes to a state from 000000 to 001111, depending on the opcode IR [15:12].

state \#		J	COND	IRD
010010	fetch 1	100001	101	0
100001	fetch 2	100001	001	0
100011	fetch 3	100000	000	0
100000	decode	xxxxxx	xxx	1

How Does the LC-3 FSM Control LDI Execution?

Let's work out the microsequencing bits for executing an LDI instruction.
The figure to the right highlights these states.

What are the Microsequencing Bits for LDI2?

LDI2 branches on R (memory ready).
The next states are LDI2 (011000) and LDI3 (011010).

state \#		J	COND	IRD
001010	LDI1	011000	000	0
011000	LDI2	011000	001	0
011010	LDI3			
011001	LDI4			
011011	LDI5			

What are the Microsequencing Bits for LDI3?
LDI3 does not branch.
The next state is LDI4 (011001).

state \#		J	COND	IRD
001010	LDI1	011000	000	0
011000	LDI2	011000	001	0
011010	LDI3	011001	000	0
011001	LDI4			
011011	LDI5			

ECE 120: Introduction to Computing

What are the Microsequencing Bits for LDI4?

LDI4 branches on R (memory ready).
The next states are LDI4 (011001) and LDI5 (011011).

state \#		J	COND	IRD
001010	LDI1	011000	000	0
011000	LDI2	011000	001	0
011010	LDI3	011001	000	0
011001	LDI4	011001	001	0
011011	LDI5			

What are the Microsequencing Bits for LDI5?

LDI5 does not branch.
The next state is fetch 1 (010010).

state \#		J	COND	IRD
001010	LDI1	011000	000	0
011000	LDI2	011000	001	0
011010	LDI3	011001	000	0
011001	LDI4	011001	001	0
011011	LDI5	010010	000	0

