
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Microprogrammed Control Unit Design

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 1

LC-3 State Transition Diagram Has Few Outgoing Arcs

Take another look at
Patt and Patel’s
LC-3 state transition
diagram (Figure C.2).

Does it remind 
you of anything?

Like a flow chart,
each state (except
for decode) has only
one or two arcs
leaving it.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 2

Microprogrammed Control Treats States as Instructions

Can we treat a state diagram as a program?

Each state has specific RTL
expressed as control words
(a set of control signals for a state),
which we can think of as microinstructions.

Let’s store the microinstructions in a ROM,
and use the state ID as an address 
to read the microinstruction for that state.

This approach is called microprogrammed 
control unit design.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 3

Let’s Assume 5-Bit State IDs for LC-3

Ignoring interrupts and privilege, and
including the extension mentioned earlier*
to handle JSR(R) logic with PCMUX
(one extra control signal, so 26 total),
we need fewer than 32 states 
for the LC-3 FSM.

So state IDs require only 5 bits.
*Without changing the datapath or keeping an 

old JSRR bug, the FSM requires 33 states.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 4



Microprogrammed Control Allows a Smaller ROM

The control ROM is thus 25×26-bit.

Each cycle, the microprogrammed control unit
applies the 5-bit state ID 
to the control ROM address, and
uses the 26 bits read from the control ROM
to drive the datapath.

Notice that IR is not used as part of the 
address, so the control ROM is much smaller 
than that needed for hardwired control.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 5

Microsequencing Manages the Order of Microinstructions

But how do we handle 
transitions between states?

That problem is called microsequencing
(or sometimes just sequencing).

Let’s look again at the 
state transition diagram.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 6

Almost All States Have Only One or Two Outgoing Arcs

Most states have
only a single arc.

Some states (such
as memory access)
have two arcs.

Let’s add two
state IDs to each
microinstruction.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 7

Basic Organization for Microprogrammed Control

A microinstruction
thus consists of

26 bits of control 
signals,
one 5-bit 
next state ID, and
a second 5-bit 
next state ID.

A microprogram branch
control signal determines
which next state to use.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 8



Branches Occur for Two Reasons in the LC-3 FSM

What is the microprogram
branch control?

Looking at the state diagram, there are only 
two reasons* for branches:

memory ready signal R
branch enable signal BEN

*We removed the branch on IR[11] for JSR(R) with our datapath
extension, and we are ignoring interrupts and privilege.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 9

Branch Control Requires a Comparison and a Mux

Simple logic thus
suffices for 
microprogram 
branch control.

For the branch state, we use 
BEN to decide the next state.

For all others, we use R.

When no branch is needed, both next state IDs 
are the same, so the R value doesn’t matter.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 10

Choose State Numbers to Simplify Decode Branching

What’s left?  Decode!
We handle decode using
a trick from Patt and Patel:

use states 0 through 15
as the first execution state
for the corresponding
opcode.

For example, ADD is state 1.

And AND is state 5.
See the blue extensions.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 11

Assign State IDs to Complete the Design

All that’s left is to assign state IDs
in the range 16 to 31
to the fetch, decode, and 
later execution states.

Then calculate all the bits and 
put them into the control ROM.

Note that the control ROM totals 1152 bits, 
about 30% as many as needed with 
our smallest hardwired design.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 12


