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A Processor’s Control Unit Processes Instructions

What does the control unit do?

Forever.

It’s pretty exciting.
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And ever. And ever.

One Approach: Use a Counter to Drive the State Sequence

How can we implement a control unit?

What if we assume that each task 
requires a fixed number of cycles.

In that case, we can use a counter!
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Hardwired Control Uses Combinational Logic

The control unit FSM then does the following:
given as inputs
the counter value,
the IR (for execution only), and
signals from the datapath,

generate the datapath control signals 
(outputs) using combinational logic.

Such an approach is called 
hardwired control.
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Single-Cycle Hardwired Control is Rare

For a simple enough ISA, a powerful datapath
might be able to process an instruction in 
every cycle.

In such a case, the control unit is said to be a 
single-cycle, hardwired control unit.

But that approach requires a complex 
datapath, and usually a slow clock.
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Consider Multi-Cycle Hardwired Control for LC-3

Let’s use Patt and Patel’s LC-3 datapath and 
state transition diagram as an example.

That datapath can neither fetch nor execute 
an instruction in a single cycle.

But we can still use combinational logic.

In this case, the control unit design approach 
is called multi-cycle, hardwired control.
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A 3-Bit Binary Counter Suffices for an LC-3 Design

How many cycles do we need 
to process an instruction?

Fetch requires three states.

The longest instruction execution
sequence is five states (LDI and STI).

So the total is eight states.

We can use a 3-bit binary counter.
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Counter Values for LC-3 Multi-Cycle Hardwired Control
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counter value meaning

0 first fetch state
1 second fetch state
2 third fetch state
3 first execute state
4 second execute state
5 third execute state
6 fourth execute state
7 fifth execute state



What Happened to Decode?

Patt and Patel use a different control unit 
design strategy that requires an explicit state 
for decode.  We’ll discuss that strategy later.

A multi-cycle, hardwired control unit
does not require a decode state.

Instead, the combinational logic uses 
the IR bits directly as inputs, and IR has 
the instruction bits after fetch completes.
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What About the Shorter Instructions?

Executing an ADD only takes one cycle.

But we allocated five cycles for instruction 
execution to allow for LDI and STI.

Do we need to wait for four cycles after
an ADD to start the next instruction?

No!  Add a RESET signal to the counter.

Resetting the counter starts a new fetch.

And RESET is just another control signal.
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What About Memory Accesses?

Memory access may be slow!
Does the clock speed need to be slow enough 
to allow memory to complete an access?

No!  Add a PAUSE signal to the counter.
When reading or writing memory, 
use PAUSE until memory finishes.
PAUSE is another control signal.

And the clock can run 
at the speed of the logic.
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Illustration of Multi-Cycle Hardwired Control

(N = 8 for the LC-3 design.)
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The datapath may 
use IR and PC, too.



Combinational Logic Seems Too Complex to Build

How complex is the combinational logic?
For the LC-3 ISA, the PC
does not directly affect control.
So we have as FSM inputs:

3 bits of counter state,
16 bits of IR, and
datapath status signals.

Maybe around 24 bits.
Get your K-map pens ready!
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Human Ingenuity to the Rescue!

Here’s where human ingenuity 
comes to the rescue.

Patt and Patel carefully designed 
the LC-3 ISA to simplify control.

You have seen many examples already when 
we examined the control signals.

So what inputs do we really need for the 
combinational logic?
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Careful Design Reduces the Input Bits to 10

A careful examination of FSM states gives:
3 bits of counter state,
the opcode (IR[15:12]),
IR[11] for JSR(R)
(an instruction for ECE220), and
two datapath signals:
memory ready signal R, and
branch enable signal BEN.

So only 10 bits of input.
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We Need to Compute 27 10-Input Functions

How many control signals are there?
25 from the P&P datapath
counter RESET
counter PAUSE

27 10-input functions is still a bit 
challenging with pencil and paper.

Is there an easier way?
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Use a Memory to Replace Combinational Logic

Instead of designing the logic, we can
use a read-only memory (ROM):

The 10 bits of input act as an address.
When we read from the memory, 
we need 27 control signals.
So we need 27-bit addressability.

In other words, a 210×27-bit memory.

That’s only 27,648 bits.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta.  All rights reserved. slide 17

Can We Reduce the Size of the Control Memory?

But smaller memories are faster, 
so let’s think a little.

The datapath in Patt and Patel 
was designed for their control unit.

If we change the datapath slightly, 
we can reduce the control ROM size.

Let’s see how.
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Let’s Calculate PAUSE in the Datapath

In the state transition diagram,
the memory ready signal R
is used to stall the FSM (self-loops)
until memory finishes an access.

The current design uses R as an FSM input.

FSM states that access memory 
use R to generate PAUSE.

Let’s move the logic for calculating PAUSE 
out of the control ROM and into the datapath.
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Adding PAUSE Logic Cuts the Control ROM Size in Half

First, add a control signal, WAIT-MEM, 
that indicates a need to wait for memory.
FSM states that stall set WAIT-MEM = 1.
Then add logic: PAUSE = R’ · WAIT-MEM.
The number of control signals is still 27 
(added WAIT-MEM but removed PAUSE).
But the number of inputs is now only 9!

So the control ROM size is 
reduced by half: 29×27-bit.
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Another Opportunity: Use of BEN to Calculate RESET

The branch enable signal BEN
is used to return to fetch
when a branch is not taken.

Again, the initial design performs this 
computation implicitly in the control ROM.

The first BR execution state sets 
counter RESET = 1 when BEN = 0.

All instruction types set counter RESET = 1 
when they have finished execution.
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Adding Logic for RESET Compution Cuts ROM in Half

Let’s add two new control signals:
BR-RESET: reset the counter to avoid 
changing the PC with an untaken branch
INST-DONE: reset the counter 
(instruction execution is done).

Then we can add logic to the datapath for the 
counter’s RESET input:

RESET = INST-DONE + BEN’ · BR-RESET

And memory again shrinks to 28×28-bit.
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Adding IR[11] Logic to the PCMUX Also Shrinks ROM

Finally, IR[11] is used only for JSR(R).
Let’s connect SR1 to PCMUX’s fourth input.
Then we can use IR[11] directly in the 
datapath (via another control signal) to 
control PCMUX when appropriate.
The control ROM then shrinks to 
27×29-bit, or 3,712 bits total.

Less than one-seventh 
of the original design!
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Some Details on the Last Change

With the extra logic, we can execute
JSR(R) with a single FSM state.

PC crosses the bus to be stored in R7.

The address generation adder 
calculates the address for JSR.

The new PCMUX input carries 
the BaseR value for JSRR.
When the new control signal is high (only in the 
JSR(R) execution state), IR[11] is used to select 
the correct PCMUX input.
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