
09/26/05
15:17:43 1letterfreqasm.asm

; (An assembly-language version of the original binary code.)

; Count the occurrences of each letter (A to Z)
; in an ASCII string terminated by a NUL character.
; Lower case and upper case should be counted 
; together, and a count also kept of all 
; non-alphabetic characters (not counting the
; terminal NUL).

; The string starts at x4000.

; The resulting histogram (which will NOT be
; initialized in advance) should be stored starting
; at x3100, with the non-alphabetic count at x3100,
; and the count for each letter in x3101 (A) through
; x311A (Z).

; R0 holds a pointer to the histogram (x3100)
; R1 holds a pointer to the current position in the string
;    and as the loop count during histogram initialization
; R2 holds the current character being counted
;    and is also used to point to the histogram entry
; R3 holds the additive inverse of ASCII ’@’ (0xFFC0)
; R4 holds the difference between ASCII ’@’ and ’Z’ (xFFE6)
; R5 holds the difference between ASCII ’@’ and ’‘’ (xFFE0)
; R6 is used as a temporary register

        .ORIG   x3000           ; starting address is x3000

        LEA R0,HIST             ; point R0 to the start of the histogram
        
        ; fill the histogram with zeroes 
        AND R6,R6,#0            ; put a zero into R6
        LD R1,NUM_BINS          ; initialize loop count to 27
        ADD R2,R0,#0            ; copy start of histogram into R2

        ; loop to fill histogram starts here
HFLOOP  STR R6,R2,#0            ; write a zero into histogram
        ADD R2,R2,#1            ; point to next histogram entry
        ADD R1,R1,#-1           ; decrement loop count
        BRp HFLOOP              ; continue until loop count reaches zero

        ; initialize R1, R3, R4, and R5 from memory
        LD R3,NEG_AT            ; R3 holds additive inverse of ASCII ’@’
        LD R4,AT_MIN_Z          ; R4 holds difference between ASCII ’@’ and ’Z’
        LD R5,AT_MIN_BQ         ; R5 holds difference between ASCII ’@’ and ’‘’
        LD R1,STR_START         ; point R1 to start of string

        ; the counting loop starts here
COUNTLOOP
        LDR R2,R1,#0            ; read the next character from the string
        BRz DONE                ; found the end of the string

        ADD R2,R2,R3            ; subtract ’@’ from the character
        BRp AT_LEAST_A          ; branch if > ’@’, i.e., >= ’A’
NON_ALPHA
        LDR R6,R0,#0            ; load the non-alpha count
        ADD R6,R6,#1            ; add one to it
        STR R6,R0,#0            ; store the new non-alpha count
        BRnzp GET_NEXT          ; branch to end of conditional structure
AT_LEAST_A
        ADD R6,R2,R4            ; compare with ’Z’
        BRp MORE_THAN_Z         ; branch if > ’Z’

; note that we no longer need the current character
; so we can reuse R2 for the pointer to the correct
; histogram entry for incrementing
ALPHA   ADD R2,R2,R0            ; point to correct histogram entry
        LDR R6,R2,#0            ; load the count
        ADD R6,R6,#1            ; add one to it
        STR R6,R2,#0            ; store the new count
        BRnzp GET_NEXT          ; branch to end of conditional structure

; subtracting as below yields the original character minus ’‘’
MORE_THAN_Z
        ADD R2,R2,R5            ; subtract ’‘’ - ’@’ from the character
        BRnz NON_ALPHA          ; if <= ’‘’, i.e., < ’a’, go increment non-alpha
        ADD R6,R2,R4            ; compare with ’z’
        BRnz ALPHA              ; if <= ’z’, go increment alpha count
        BRnzp NON_ALPHA         ; otherwise, go increment non-alpha

GET_NEXT
        ADD R1,R1,#1            ; point to next character in string
        BRnzp COUNTLOOP         ; go to start of counting loop

DONE    HALT                    ; done

; the data needed by the program
NUM_BINS        .FILL #27       ; 27 loop iterations
NEG_AT          .FILL xFFC0     ; the additive inverse of ASCII ’@’
AT_MIN_Z        .FILL xFFE6     ; the difference between ASCII ’@’ and ’Z’
AT_MIN_BQ       .FILL xFFE0     ; the difference between ASCII ’@’ and ’‘’
STR_START       .FILL STRING    ; string stored below for simplicity
HIST            .BLKW #27       ; space to store the histogram

STRING  .STRINGZ "This is a test of the counting frequency code.  AbCd...WxYz."

        .END


