

slide 4

We Need to Count Each Kind of Letter		Let's Do an Exa	ample	
So we want a set of counts for a string: • How many A's (either case)? • How many B's? • • How many Z's? • How many non-alphabetic characters?		"Try this string as a How many A's? 3 How many B's? 0 How many C's? 0 How many D's? 0 How many E's? 2	an example."	
How would you perform this task?		U U		
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.	slide 5	ECE 120: Introduction to Computing	$\mathbb C$ 2016 Steven S. Lumetta. All rights reserved.	slide 6

Algorithm 1: Look Through String Once for Each Letter	Another Example: a Book
Maybe something like this?	Second example: the Patt and Patel textbook. How many A's? 61,341
<pre>for each letter (and once for non-letters) count = 0 for each character in the string if character matches letter (either case) count = count + 1 store count for the letter in histogram</pre>	How many B's? 10,821 How many C's? Do you really think How many D's? I counted these? How many E's? Would you approach the problem differently with a longer string?
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

Algorithm 2: Look through String Once	Algorithm 3: Build a Bigger Histogram		
For a longer string, maybe we just want to look through it once?	What if we build a bigger histogram first: initialize 128-bin histogram to all 0s for each character in the string		
initialize 27-bin histogram to all 0s for each character in the string increment the appropriate histogram bin	increment bin for that character for each letter add the two corresponding bins sum all non-letter bins		
But figuring out which bin to increment may be complicated.	Now finding the bin is easy, but we need extra memory and computation.		
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10		

Which approach is better?

What is the metric?

- Number of instructions executed?
- Number of clock cycles (time) required?
- Amount of memory needed?

Does our answer depend on the length of the string?

What if the string is sorted alphabetically?

Let's Pick Algorithm 2

The answer depends on the context and the application of our program.

We're going to go with Algorithm 2:

initialize 27-bin histogram to all 0s for each character in the string increment the appropriate histogram bin

Why? Implementing the complex decision in the middle will be interesting.

slide 11