University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Letter Frequency Planning

Time to Write Another Program

Let's say that we want to do the following:

- given an ASCII string (a sequence of characters terminated by a NUL, ASCII x00),
- count the occurrences of each letter (regardless of case), and
- count the number of non-alphabetic characters.

Let's Develop a Flow Chart

Ready?

My work here is done.
Now you can apply systematic decomposition.

What's a histogram?
A function on a set of categories.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.

120: Introduction to Computin
Steven S. Lumetta. All rights reserved

We Need to Count Each Kind of Letter

So we want a set of counts for a string:

- How many A's (either case)?
- How many B's?
-...
- How many Z's?
- How many non-alphabetic characters?

How would you perform this task?

Algorithm 1: Look Through String Once for Each Letter

Maybe something like this?
for each letter (and once for non-letters) count = 0
for each character in the string
if character matches letter (either case) count $=$ count +1
store count for the letter in histogram

Let's Do an Example

"Try this string as an example."
How many A's? 3
How many B's? 0
How many C's? 0
How many D's? 0
How many E's? 2

Ta. Alrights reserved.

Another Example: a Book

Second example: the Patt and Patel textbook.
How many A's? 61,341
How many B's? 10,821
How many C's? Do you really think
How many D's? I counted these?
How many E's?
Would you approach the problem differently with a longer string?
ECE 120: Introduction to Computing \quad © 2016 Steven S. Lumetta. All rights reserved.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 8

Algorithm 2: Look through String Once

For a longer string, maybe we
just want to look through it once?

initialize 27-bin histogram to all 0 s

for each character in the string
increment the appropriate histogram bin

But figuring out which bin to increment may be complicated.

Algorithm 3: Build a Bigger Histogram

What if we build a bigger histogram first:
initialize 128 -bin histogram to all 0 s
for each character in the string
increment bin for that character for each letter
add the two corresponding bins sum all non-letter bins
Now finding the bin is easy, but we need extra memory and computation.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 9
$\bigcirc 2016$ Steven S. Lumetta. All rights reserved.
slide 10

Let's Pick Algorithm 2

The answer depends on the context and the application of our program.
We're going to go with Algorithm 2:
initialize 27-bin histogram to all 0 s for each character in the string
increment the appropriate histogram bin
Why? Implementing the complex decision in the middle will be interesting.

Does our answer depend on the length of the string?
What if the string is sorted alphabetically?

ECE 120: Introduction to Computing

