University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Computers are Dumb

Humans vs. Computers

The Church-Turing Hypothesis tells us:

- anything a human can compute - can also be computed by a computer - (and vice-versa).

So...
What's the difference between humans and computers?

The Answer

Humans are smart.
Computers are dumb.

What's this?

Some Problems are Hard to Solve Systematically

Computers have difficulty solving
that kind of problem.
Or, rather, programmers have difficulty

- knowing how their brains solve such problems,
- so they can't get a computer to solve such problems quickly.
That's why we can use such problems to check for human presence.

Beware of Anthropomorphism

I may have said (and may still say)
sentences like...
"The LC-3 only understands
2's complement."

But the LC-3 is not human.
The LC-3 "understands" nothing.
So what am I trying to say?

LC-3 Includes Operations on 2's Complement Values

"The LC-3 only understands 2's complement."
By the definition of the LC-3 ISA,
many constants and values are treated as 2's complement.
Any LC-3 microarchitecture needs hardware designed to support 2's complement.
For example, notice the numerous sign extension boxes in Patt and Patel's datapath.

Other Data Types Must Be Handled in Software

"The LC-3 only understands 2's complement."
In contrast, there are no instructions (nor hardware) for directly manipulating bits in other representations.
How do we use other data types with an LC-3 processor?
Translate operations on other data types into sequences of instructions.
In other words, write software to do it.

Another Example: Adding Strings

Here's a software representation for a string of text (the string is " 19 ").
The address of the first ASCII character in memory, x 4012 , is used to represent the string

$\mathbf{x 4 0 1 2}$	$\mathbf{x 0 0 3 1}$	'1'
$\mathbf{x 4 0 1 3}$	$\mathbf{x 0 0 3 9}$	'9'
$\mathbf{x 4 0 1 4}$	$\mathbf{x 0 0 0 0}$	NUL

- look at consecutive memory locations - until we find a 0 (an ASCII NUL character), ${ }^{\circ}$ which indicates the end of the string.

Can We Add Two Strings?

Here's another string.
What is it? " 23 "
Say that the LC-3 executes:

What is R3? xB1A8

4012	x0031	
x4013	x0039	'9
$\times 4014$	x0000	NUL
x7196	x0032	
x7197	x0033	
X7198	$\times 0000$	

What is stored at xB1A8? Bits!

You Understand Why Adding Addresses Doesn't "Work"

Obviously, if we want to add two strings that represent numbers, we need to do more work.
Unfortunately, many people

- who have never seen representations
nor how computers work
- make this kind of mistake
- and struggle to understand why the answer is not what they expect.

Lend Me Your Brains for a Minute?

I almost forgot!
I need to ask your help again!

Can you help me sort these numbers?

$$
\begin{array}{ccc}
\text { "41,962" "41321" " } 9874 " \\
\text { biggest middle smallest }
\end{array}
$$

Are You Sure About Your Answers?

Hmm. Are you sure?
I just ask because, well ...
I asked my computer, too.
And it gave different answers:

"41,962" "41321" "9874"			
humans biggest	middle	smallest	
computers	smallest	middle	biggest

A Side-by-Side Comparison of the Numbers

Let's compare them side by side.

What's bigger, " 4 " or " 9 ?"
Oh, so " 9874 " is the biggest!
Please be more careful when you help me!

A Side-by-Side Comparison of the Numbers

What's the next largest?

41,962	Compare these two.
41321	

9874
" 4 " is equal to " 4 ."
Comma (x2C)
" 1 " is equal to " 1 ."
is smaller than '3' (x33).
What's bigger, "," or " 3 ?"

So the Computer is Right?

It seems that the computer is right. At least, for some definition of "right." This type of answer is what you get if you sort strings in ASCII order (instead of alphabetical order).
"41,962" "41321" "9874"
humans biggest middle smallest computers smallest middle biggest

Remember: Computers are Dumb

Think it's just a silly example?

Take a look at the index of Patt and Patel.

Computers do exactly what they are told.

