

Overview of Our Task	Programs are Finite State Machines
Let the user type a number	Our first question:
• from 0 to 32767	What do we need to store?
• using the keyboard, and	In other words, what information do we need
• pressing <enter></enter> when done.	to have handy in order to solve the problem?
Read in the number, convert it to	Does this question remind you of FSMs?
2's complement , and store it in memory.	• Keys are inputs (including <enter>),</enter>
Give errors if	• error messages are outputs, and
1. a non-digit is pressed, or	• number typed is eventually read out.
2. overflow occurs (> 32767).	• Our program is like an FSM!

slide 3

What Information Do We Need to Store?		Let's Also Store	e the Value xFFD0	
 But back to the question: What do we need to store? In other words, what information do we need to have handy in order to solve the problem? 1. the key pressed (one at a time) 2. the current value of the user's number (from previous keystrokes) 		$\mathbf{xFFD0} = -\mathbf{x0030}$ When we want to	y idea why? = '0' (the 0 digit in ASCII) So? convert a digit typed in omplement value, tract x0030, subtract x0010	Dec Hx Oct Html Chr 32 20 040 6#32: 5pace 33 21 041 6#33: 1 34 22 042 6#34: 7 35 23 043 6#35: 8 36 24 044 6#36: 6 37 25 045 6#36: 6 39 27 047 6#38: 6 40 28 050 6#36: 6 41 29 051 6#40: 1 42 24 052 6#42: 7 43 28 053 6#42: 7 44 20 054 6#44: 7 45 20 055 6#42: 7 46 28 055 6#42: 7 47 27 057 6#47: 7 48 30 060 6#46: 0 49 31 061 6#49: 1 50 32 062 6#50: 2 51 33 065 6#51: 3 52 38 065 6#52: 5 53 38 065 6#52: 5 54 38 066 6#54: 5 55 37 067 6#52: 5 56 38 070 6#56: 6 57 39 071 6#57: 9
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.	slide 5	ECE 120: Introduction to Computing	\mathbbm{C} 2016 Steven S. Lumetta. All rights reserved.	slide 6

Assign a Register for Each Value that We Store Finally, we need a temporary value for computations. Let's assign registers. When we use GETC (TRAP x20) • to read a character, • the keystroke comes back in R0, so • use R0 for the key pressed. R1 can be the current value of the number. R2 can hold xFFD0. And R3 can be our temporary.	How Do We Update the Current Value? When the user presses a key, how do we update the "current value?" For example, suppose that • the user has typed 3, 2, 7, and 6, (in that order), • o the "current value" is 3276. If the user presses '7,' we should • use 3276 and 7 • to calculate 32767.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

Derive the Initial Value from the Update Form	nula	Code to Initialize Variables
Here is our formula for updating: new value = 10 × current value + new digit If the user • first presses 5, • we want new value to be 5, so 5 = 10 × current value + 5 What should "current value" be? 0 Ok, so we have to initialize R1 to 0.		 x3000 LD R2, For R2, we can load the desired value from memory. Where in memory? After the program. Where's that? We don't know yet.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.	slide 13	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

Code to Check for	a Digit		Code to Check for	a Digit	
x3000 LD R2, x3001 AND R1,R1,#0 x3002 TRAP x20 x3003 TRAP x21 x3004 ADD R3,R0,#-10 x3005 BRz x3006 ADD R0,R0,R2 x3007 BRn Where to go? Later.	Remember that R2 has negative ASCII digit 0 (xFFD0). If the result is below 0 (negative), the original character was less than x30, and thus not a digit.		x3000 LD R2, x3001 AND R1,R1,#0 x3002 TRAP x20 x3003 TRAP x21 x3004 ADD R3,R0,#-10 x3005 BRz x3006 ADD R0,R0,R2 x3007 BRn x3008 ADD R3,R0,#-10	Now R0 holds the key minus x30. If a digit, 0 to 9. What about keys greater than '9'? Let's subtract #10 (and discard the result).	
ECE 120: Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.	slide 23	ECE 120: Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.	slide 24

slide 31

© 2016 Steven S. Lumetta. All rights reserved.

ECE 120: Introduction to Computing

What's Next? Checking for Overflow

Download the Code or Printout to See the Overflo	w Checks	Code to Add the N	Jew Digit	
 How do we check for overflow? Unfortunately, it's not so easy. Checking for overflow requires checking all of the ADD instructions. We won't do that here. To see the overflow checks, look at the full version provided to you. 		x300A ADD R3,R1,R1 x300B ADD R3,R3,R3 x300C ADD R1,R1,R3 x300D ADD R1,R1,R1 x300E ADD R1,R1,R0 x300F BRnzp	Go get another digit! How? Use an unconditional branch. Let's figure out the offset later.	
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.	slide 33	ECE 120: Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.	slide 34

Code to End the I	Program		Code for Data		
x300A ADD R3,R1,R1 x300B ADD R3,R3,R3 x300C ADD R1,R1,R3 x300D ADD R1,R1,R1 x300E ADD R1,R1,R0 x300F BRnzp x3010 ST R1, x3011 TRAP x25	And then we're done! Use a HALT trap (number x25).		x300A ADD R3,R1,R1 x300B ADD R3,R3,R3 x300C ADD R1,R1,R3 x300D ADD R1,R1,R1 x300E ADD R1,R1,R0 x300F BRnzp x3010 ST R1, x3011 TRAP x25 x3012 xFFD0 x3013 place for number	But we still need a couple more things. First, we need the value xFFD0. Second, we need a place to store the number.	
ECE 120: Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.	slide 37	ECE 120: Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.	slide 38

Here's the Whole Progra	m
-------------------------	---

x3000 LD R2, x3001 AND R1,R1,#0 x3002 TRAP x20 x3003 TRAP x21 x3004 ADD R3,R0,#-10 x3005 BRz x3006 ADD R0,R0,R2 x3007 BRn x3008 ADD R3,R0,#-10	x300A ADD R3,R1,R1 x300B ADD R3,R3,R3 x300C ADD R1,R1,R3 x300D ADD R1,R1,R1 x300E ADD R1,R1,R0 x300F BRnzp x3010 ST R1, x3011 TRAP x25 x3012 xFFD0

Now for Some Real Fun!

It's time for... Well, yes, we'll turn them into bits. But I meant counting!

Almost as exciting as bits.

slide 39

ECE 120: Introduction to Computing

Help Me Count (Please!)	Help Me Count (Please!)
x3000 LD R2, *11 x300A ADD R3,R1,R1 x3001 AND R1,R1,#0 x300B ADD R3,R3,R3 x3002 TRAP x20 x300C ADD R1,R1,R3 x3003 TRAP x21 x300D ADD R1,R1,R1 x3004 ADD R3,R0,#-10 x300E ADD R1,R1,R0 x3005 BRz x300F BRnzp x3007 BRn x3010 ST R1, x3008 ADD R3,R0,#-10 x3012 xFFD0 x3009 BRzp x3013 place for number	x3000 LD R2, x11 x300A ADD R3,R1,R1 x3001 AND R1,R1,#0 x300B ADD R3,R3,R3 x3002 TRAP x20 x300C ADD R1,R1,R3 x3003 TRAP x21 x300D ADD R1,R1,R1 x3004 ADD R3,R0,#-10 x300E ADD R1,R1,R1 x3005 BRz XA x300F BRnzp x3007 BRn x3010 ST R1, x3008 ADD R3,R0,#-10 x3011 TRAP x25 x3009 BRzp x3013 place for number
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 41	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 42

Help Me Count (Please!)	Help Me Count (Please!)
x3000 LD R2, x11 x300A ADD R3,R1,R1 x3001 AND R1,R1,#0 x300B ADD R3,R3,R3 x3002 TRAP x20 x300C ADD R1,R1,R3 x3003 TRAP x21 x300D ADD R1,R1,R1 x3004 ADD R3,R0,#-10 x300E ADD R1,R1,R1 x3005 BRz xA x300F BRnzp x3006 ADD R0,R0,R2 x3010 ST R1, x3008 ADD R3,R0,#-10 x3011 TRAP x25 x3009 BRzp x3013 place for number	x3000 LD R2, x11 x3001 AND R1,R1,#0 x3002 TRAP x20 x3003 TRAP x21 x3004 ADD R3,R0,#-10 x3005 BRz xA x3006 ADD R0,R0,R2 x3007 BRn xC x3008 ADD R3,R0,#-10 x3009 BRzp XA x3008 ADD R3,R0,#-10 x3009 BRzp XA x3008 ADD R3,R0,#-10 x3010 ST R1, x3010 ST R1, x3012 xFFD0 x3013 place for number
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 43	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 44

Help Me Count (Please!)	Help Me Count (Please!)
x3000 LD R2, x11 x300A ADD R3,R1,R1 x3001 AND R1,R1,#0 x300B ADD R3,R3,R3 x3002 TRAP x20 x300C ADD R1,R1,R3 x3003 TRAP x21 x300D ADD R1,R1,R1 x3004 ADD R3,R0,#-10 x3005 BRz xA x3006 ADD R0,R0,R2 x3010 ST R1, x3007 BRn xC x3011 TRAP x25 x3009 BRzp xA x3013 place for number PC will point here	x3000 LD R2, x11 x300A ADD R3,R1,R1 x3001 AND R1,R1,#0 x300B ADD R3,R3,R3 x3002 TRAP x20 x300C ADD R1,R1,R3 x3003 TRAP x21 x300D ADD R1,R1,R1 x3004 ADD R3,R0,#-10 x300E ADD R1,R1,R0 x3005 BRz xA x300F BRnzp x-E x3006 ADD R0,R0,R2 x3010 ST R1, X2 x3007 BRn xC x3010 ST R1, X2 x3007 BRn xC x3011 TRAP x25 x3008 ADD R3,R0,#-10 x3012 xFFD0 x3009 BRzp xA x3013 place for number PC will point here
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.	slide 45 ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 46

Now We Can Write Bits!			
x3000 LD R2, x11	x300A ADD R3.R1.R1		
x3001 AND R1,R1,#0	x300B ADD R3,R3,R3		

nooco lib iti, nii	100001111010 100,101,101
x3001 AND R1,R1,#0	x300B ADD R3,R3,R3
x3002 TRAP x20	x300C ADD R1,R1,R3
x3003 TRAP x21	x300D ADD R1,R1,R1
x3004 ADD R3,R0,#-10	x300E ADD R1,R1,R0
x3005 BRz xA	x300F BRnzp x-E
x3006 ADD R0,R0,R2	x3010 ST R1, x2
x3007 BRn xC	x3011 TRAP x25
x3008 ADD R3,R0,#-10	x3012 xFFD0
x3009 BRzp xA	x3013 place for number

Encode the Instruction at x3000 into Bits

A Binary File Starts with the Starting Addres	SS	Encode the Instruction at x3001 into Bits
Also, the starting address, x3000 , goes first. For example 0011 0000 0000 0000 ; start at x3000 0010 010 000010001 ; LD R2, x11 ; and so forth		x3001 AND R1,R1,#0 destination source 5-bit opcode register register 1 2's complement 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 AND R1, R1, #0
opcode destination register 9-bit 2's complement offset 0 0 1 0 0 1 0 0 1 0 0 1 LD R2, x11 x11 x11 x11 x11 x11		
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.	slide 49	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 50

The Rest is Left to You

I'll leave the rest for you.

I think you can manage it.

Look at the LC-3 encoding table, and write the bits.

Compare your answers with the code provided on the web page.

slide 51