

ECE 120: Introduction to Computing

The First Instruction is at Memory Address x3000

The Second Instruction is at Memory Address x3001

Let's Track Some Values for the Loop Body

Let's make a table of loop body executions.

What is R4 during the first execution?

loop body execution #	R4 during loop body	R4 at BRn
1	1	

The Next Instruction is at Memory Address x3010

ECE 120: Introduction to Computing

slide 39

The Next Instruction is at Memory Address x3011

Fill in the Value of R4 at the BRn

R4 has #-9 when we reach BRn.

Let's add it to our table.

loop body execution #	R4 during loop body	R4 at BRn
1	1	-9

The PC-Relative Addresses Do Not Change	Assume that Nothing Changed Address x30A0
<pre>Here is the RTL for the first three instructions. x3000 R3 ← M[M[PC + x009F]] x3001 R4 ← R3 + 1 x3002 M[M[PC + x009D]] ← R4 Since the values of PC • depend on the instruction addresses, • the same calculations are performed • each time this code executes.</pre>	Thus, we can simplify the RTL slightly. $x3000 \ R3 \leftarrow M[M[x30A0]]$ $x3001 \ R4 \leftarrow R3 + 1$ $x3002 \ M[M[x30A0]] \leftarrow R4$ Let's assume that the bits stored at memory address $x30A0$ have not changed. So we can also simplify by replacing M[x30A0] with $x4123$ in both LDI and STI.

ECE 120: Introduction to Computing

ECE 120: Introduction to Computing

Second Execution of the First Section of Code

Dx3000 LDI R3,x09F ADD R4,R3,x01 ADD R4,R3,x01 STI R4,x09D STI R4,x09D This part is left out—it's something R4 during we want to repeat 10 times. DD R4,R4,#-10 Dx3010 ADD R4,R4,#-10 BRn x1EE BRn x1EE Imagine that the LC-3 executes the Part of the secution #	The LC-3 Has Aga	un Reached the Loop	Body	Fill in the Value	e of R4 for th	ne Second Lo	oop Body Execu	ition
Imagine that the LC-3 executes the Imagine that the LC-3 executes the	0x3000 1010 011 010011111 LDI 0x3001 0001 100 011 1 00001 ADD 0x3002 1011 100 010011101 STI	R3,x09F) R4,R3,x01 R4,x09D		What is R loop	4 during th body execut	e second ion?		
Imagine that the LC-3 executes the	This part is left out we want to repeat 0x3010 0001 100 10110 ADD 0x3011 0000 100 11101110 BRn	it's something t 10 times.) R4,R4,#-10 ×1EE		loop body execution #	R4 during loop body	R4 at BRn		
loop body (the missing part) and PC eventually becomes x3010.	Imagine that the LC- loop body (the mis and PC eventually be	3 executes the ssing part) ecomes x3010.		2	2	-9		
0x4123 0000000000000 current value is x0002	0x4123 000000000000000000000000000000000000	ent value is x0002		L		I]		
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 65 ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 66	ECE 120: Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.	slide 65 EC	CE 120: Introduction to Computing	© 2016 Steven S. 1	Lumetta. All rights reserved.		slide 66

The PC-Relative Addresses Do Not Chang	ge
--	----

Here is the **RTL** for the code after the loop body.

x3010 R4 ~ R4 - #10

 $\textbf{x3011 nN: PC} \leftarrow \textbf{PC} + \textbf{xFFEE}$

Again, the **value of PC** (on the right)

- depends on the instruction address, so
- the same calculation is performed
- each time this code executes.

Ready to Execute the RTL on the Datapath

Thus, we can simplify the RTL slightly. x3010 R4 \leftarrow R4 - #10 x3011 nN: PC \leftarrow x3000

Let's go **execute these two instructions** on the datapath now.

slide 67

Second Execution of the Second Section of Code

We Have Returned to the Start of the Loop (Again!)

0x3000 0x3001 0x3002	1010 011 010011111 0001 100 011 1 00001 1011 100 010011101	LDI R3,x09F ADD R4,R3,x01 STI R4,x09D	
•	(something that we wan	Here's address x3000.	
0x3010	0001 100 100 1 10110	ADD R4,R4,#-10	
0x3011	0000 100 111101110	BRn x1EE	
	Let's take a lo	ok at our iteration table.	
0x30A0	0100000100100011		
•			
0x4123	0000000000000000	current value is x0002	
ECE 120: 1	Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.	slide 72

Let's Generalize Our Table Values			The Loop Ends After Ten Iterations				
R4 cor Wh	unts up with een does R4 oop body xecution # 1 2 10	the loop body get to 0 (no R4 during loop body 1 2 10	ly execution a pn-negative) R4 at BRn -9 -8 0	¥.)?	In other words, • after the tenth • the branch is no • and the PC rema Guess wh Executes a But we're going to	loop body iteration ot taken, ains x3012. hat the LC-3 does. nother instruction! stop.	
ECE 120: Intro	oduction to Computing	© 2016 Steven S. 1	umetta. All rights reserved.	slide 73	ECE 120: Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.	slide 74

 Some Questions for You Why is there a 0 stored at x4123? How many times does the loop body execute if we start M[x4123] at 5? How many times does the loop body execute if we start M[x4123] at -5? How many times does the loop body 	 More Questions for You 5. What if we leave M[x4123] as "bits" (set no value there)? 6. What happens if we change the value at x30A0 to x3141? 7. What happens if the loop body sets R4 to 0?
 How many times does the loop body execute if we start M[x4123] at 25? 	sets R4 to 0?
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 75	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 76

A Reference Copy of the Code

0x3000	1010 011 010011111	LDI R3,×09F	
0x3001	0001 100 011 1 00001	ADD R4,R3,x01	
0x3002	1011 100 010011101	STI R4,x09D	
÷	(something that we war	t to do ten times)	
0x3010	0001 100 100 1 10110	ADD R4,R4,#-10	
0x3011	0000 100 111101110	BRn x1EE	
÷			
0x30A0	0100000100100011	x4123 (data)	
÷			
0x4123	000000000000000	x0000 (data)	
ECE 120: I	Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.	slide 77