University of Illinois at Urbana-Champaign

Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

$$
\begin{aligned}
& \text { Counting to Ten } \\
& \text { (LC-3 Style!) }
\end{aligned}
$$

What is an Instruction Set Architecture (ISA)?

An ISA answers three questions:

1. What operations are possible with instructions?
2. On what operands can each operation be performed?
3. What bits/representation is used to encode instructions?

The answers to these questions define the ISA.

We Discussed Five Aspects of the LC-3 ISA

1. opcodes: ADD, AND, NOT

LD/ST, LDİ/STI, LDR/STR, LEA
BR, JMP, TRAP
2. data types: 2's complement (only)
3. addressing modes: register, immediate, PC-relative, indirect, base+offset
4. condition codes: negative, zero, positive
5. encoding: see P\&P p. 119, back of P\&P, or LC-3 handout

Let's Count to Ten Together (Using LC-3)

Let's do something exciting with LC-3.
Let's count to 10 !
The handout has three versions: - PC-relative addressing (LD/ST), - indirect addressing (LDI/STI), and - base+offset addressing (LDR/STR).

Let's do the indirect addressing version together.
Do the others on your own.

Here's the Code with Indirect Addressing

ECE 120: Introduction to Computing

Some Parts of the Datapath for Illustration

Where is the First Instruction?

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.

The First Instruction is at Memory Address x3000

ECE 120: Introduction to Computing

Execute the LDI Instruction

opcode				destination register				9-bit 2's complement offset								
1	0	1	0	0	1	1	1	0	1	0	0	1	1	1	1	1
LDI				R3,				x09F								
$\mathrm{R} 3 \leftarrow \mathrm{M}[\mathrm{M}[\mathrm{PC}+\mathrm{x009F}]]$																

What is the first memory address?

Read the Value of the PC

Execute the LDI Instruction

destination

opcode				destination register			9-bit 2's complement offset								
1	0	1	0	0	1	1	0	1	0	0	1	1	1	1	1
LDI				R3,			x09F								

What is the first memory address? $x 3001+x 009 F$ gives us x30A0.

Read Memory at x30A0

PC $\times 3001$

CE 120: Introdution to Computi
© 2016 Steven S. Lumetta. All rights reserved.

Execute the LDI Instruction

opcode				destination register			9-bit 2's complement offset								
1	0	1	0	0	1	1	0	1	0	0		1	1	1	1
LDI				R3,			x09F								
$\mathrm{R} 3 \leftarrow \mathrm{M}[\mathrm{M}[\mathrm{PC}+\mathrm{x009F}]]$															
$\mathrm{M}[\mathrm{PC}+\mathrm{x009F}]$ returns $\times 4123$.															

Next, read memory address $x 4123$.

Read Memory at x4123

PC $\times \mathbf{x} 3001$

Execute the LDI Instruction

destination

		CO			is	ster				2			mpl	m			
1	0	0	10	0	1	1	1	0	1	0		0	1	1	1	1	1
LDI				R3,				x09F									
$\mathrm{R} 3 \leftarrow \mathrm{M}[\mathrm{M}[\mathrm{PC}+\mathrm{x009F}]]$																	
$\mathrm{M}[\mathrm{M}[\mathrm{PC}+\mathrm{x009F}]]$ returns x 0000 .																	
Finally, write x0000 into R3.																	

Write x0000 into R3

Time for Another Instruction Fetch!
 $\times 3001$

The Second Instruction is at Memory Address x3001

$$
0 \times 4123 \quad 0000000000000000
$$

[^0]
Decode the Instruction at x3001

$$
\mathrm{R} 4 \leftarrow \mathrm{R} 3+1
$$

Write the Decoded Instruction onto Our Sheet

0x3000	1010011010011111	LDI R3, x09F	
0x3001	0001100011100001	ADD R4,R3, $\times 01$	
0x3002	1011100010011101	Now, let's execute it!	
	(something that we want	to do ten times)	
0x3010	0001100100110110		
0x3011	0000100111101110		
0x30AO	0100000100100011		
:			
0x4123	0000000000000000		
ECE 120: In	Introduction to Computing	O2016 Steven S. Lumetta. All rights reserved.	slide 22

Execute the ADD Instruction

$$
R 4 \leftarrow R 3+1
$$

What's in R3?

What's in R3?

Execute the ADD Instruction

opcode				destination register			source register 1			mode	5-bit 2's complement				
0	0	0	1	1	0	0	0	1	1	1	0	0	0	0	1
ADD				R4,			R3,			$\times 01$					

$$
R 4 \leftarrow R 3+1
$$

What's in R3? x0000
Add 1 to get $x 0001$, then write it to $R 4$.

Write x0001 into R4

Time for Another Instruction Fetch!

$\times 3002$

The Third Instruction is at Memory Address x3002

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 28

Execute the STI Instruction

opcode				source register			9-bit 2's complement offset								
1	0	1	1	1	0	0	0	1	0	0	1	1	1	0	1
	STI			R4,			x09D								

$$
M[M[P C+x 009 D]] \leftarrow R 4
$$

What is the first memory address?

Read the Value of the PC

Execute the STI Instruction

opcode				source register			9-bit 2's complement offset								
1	0	1	1	1	0	0	0	1	0	0	1	1	1	0	1
STI				R4,			x09D								

What is the first memory address?
$\mathrm{x} 3003+\mathrm{x} 009 \mathrm{D}$ again gives us x30A0.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 33
3

ECE 120: Introduction to Computing

Store the Bits from R4 at Memory Address x4123

PC $\times 3003$

Time for Another Instruction Fetch!

PC $\times 3003$

ECE 120: Introduction to Computing
2016 Steven S. Lumetta. All rights reserved.
side 37

The LC-3 Has Reached the Loop Body

Let's Track Some Values for the Loop Body

Let's make a table of loop body executions.
What is R4 during the first execution?

| loop body
 execution \# | R4 during
 loop body | R4 at BRn |
| :---: | :---: | :---: | (1

[^1]© 2016 Steven S. Lumetta. All rights reserved
slide 39

The Next Instruction is at Memory Address x3010

0x3000	1010011010011111	LDI R3,x09F
0x3001	0001100011100001	ADD R4, R3, x01
0x3002	1011100010011101	STI R4,x09D
\therefore	(something that we wan	to do ten times)
0×3010	0001100100110110	
0×3011	0000100111101110	Here's address x3010. Let's decode this instruction.
0x30AO	0100000100100011	
0x4123	0000000000000000	current value is $\times 0001$

ECE 120: Introduction to Computing \quad O 2016 Steven S. Lumetta. All rights reserved.
slide 40

Decode the Instruction at x3010

opcode				destination register			source register 1			mode	5-bit 2's complement				
0	0	0	1	1	0	0	1	0	0	1	1	0	1	1	0
ADD				R4,			R4,				\#-10				
				R4							"\#" means decimal in LC-3 tool notation				

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved
slide 41
$3-2$

ECE 120: Introduction to Computing	© 2016 Steven S. Lumetta. All rights reserved.	slide 42

Write the Decoded Instruction onto Our Sheet

0×3000	1010011010011111	LDI R3, xO9F
0×3001	0001100011100001	ADD R4,R3, x01
0×3002	1011100010011101	STI R4, xO9D
\vdots	(something that we want to do ten times)	
0×3010	0001100100110110	ADD R4,R4,\#-10
0×3011	0000100111101110	NOW, let's execute it!
\vdots		
0×30 A0	0100000100100011	
\vdots		
0×4123	0000000000000000	current value is $\times 0001$

[^2]
Execute the ADD Instruction

$\mathrm{R} 4 \leftarrow \mathrm{R} 4-\# 10$
What's in R4?

Execute the ADD Instruction

opcode				destination register			source register 1				5-bit 2's complement				
0	0	0	1	1	0	0	1	0	0	1	1	0	1	1	0
ADD				R4,			R4,				\#-10				
$\mathrm{R} 4 \leqslant \mathrm{R} 4-$ \#10															

What's in R4? x0001
Subtract 10 to get \#-9 then write it back to R4.

Write \#-9 to R4

Time for Another Instruction Fetch!

The Next Instruction is at Memory Address x3011

[^3]shide 48

Decode the Instruction at x3011

$$
\begin{aligned}
& \text { opcode } \quad \mathrm{n} \text { z } \quad \mathrm{p} \quad \text { 9-bit 2's complement offset }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{nN}: \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{xFFEE}
\end{aligned}
$$

Write the Decoded Instruction onto Our Sheet

Execute the BR Instruction

$$
\mathrm{nN}: \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{xFFEE}
$$

What was last written to the register file? R4, with value \#-9. That's negative.

Fill in the Value of R4 at the BRn

R4 has \#-9 when we reach BRn.
Let's add it to our table.

| loop body
 execution \# | R4 during
 loop body | R4 at BRn |
| :---: | :---: | :---: |$|$| 1 | 1 |
| :---: | :---: |
| | |
| | |
| | |

Execute the BR Instruction

$$
\begin{aligned}
& \text { opcode } \quad \mathrm{n} \text { z p 9-bit 2's complement offset }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{nN}: \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{xFFEE}
\end{aligned}
$$

So the branch is taken (the PC changes).
What is the current value of PC?

Read the Value of the PC

$\times 3012$

CE 120: Introduction to Computin
slide 54

Execute the BR Instruction

$$
\begin{aligned}
& \text { opcode n z p 9-bit 2's complement offset }
\end{aligned}
$$

$\mathrm{nN}: \mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{xFFEE}$

What is the current value of PC? x3012
Adding xFFEE, we get x3000.
So we write x3000 to the PC.

Set the PC to x3000

PC $\times 3012$
 $\times 3000$

Time for Another Instruction Fetch!

PC $\times 3000$

We Have Returned to the Start of the Loop

0×3000	1010011010011111	LDI R3, x09F
0×3001	0001100011100001	ADD R4,R3, x01
0×3002	1011100010011101	STI R4, x09D
\vdots	(something that we want to Here's address x3000.	
0×3010	0001100100110110	ADD R4,R4,\#-10
0×3011	0000100111101110	BRn $\times 1$ EE

But we know that code already!

0x30A0 0100000100100011
current value is $\times 0001$
ECE 120: Introduction to Computing $\quad \odot 2016$ Steven S. Lumetta. All rights reserved. slide 58

The PC-Relative Addresses Do Not Change

Here is the RTL for the first three instructions.

```
x3000 R3 \leftarrowM[M[PC + x009F]]
x3001 R4 \leftarrow R3 + 1
x3002 M[M[PC + x009D]] \leftarrowR4
```

Since the values of PC

- depend on the instruction addresses,
- the same calculations are performed
- each time this code executes.

Assume that Nothing Changed Address x30A0

Thus, we can simplify the RTL slightly.

```
x3000 R3 \leftarrowM[M[x30A0]]
x3001 R4 \leftarrow R3 + 1
x3002 M[M[x30A0]] \leftarrowR4
```

Let's assume that the bits stored at memory address x30A0 have not changed.

So we can also simplify by replacing M [x30A0] with x4123 in both LDI and STI.

Ready to Execute the RTL on the Datapath

Simplifying the RTL again, we obtain:

$$
\begin{aligned}
& x 3000 R 3 \leftarrow M[x 4123] \\
& x 3001 R 4 \leftarrow R 3+1 \\
& x 3002 M[x 4123] \leftarrow R 4
\end{aligned}
$$

Let's go execute these three instructions on the datapath now.

Second Execution of the First Section of Code

Second Execution of the First Section of Code

Second Execution of the First Section of Code

PC $\times \mathbf{x} 3003$

The LC-3 Has Again Reached the Loop Body

$0 \times 30001010011010011111$ LDI R3, x09F	
$0 \times 30010001100011100001$ ADD R4,R3, 201	
0x3002 1011100010011101 STIR4, xO9D	
This part is left out-it's something we want to repeat 10 times.	
0x30A Imagine that the LC-3 executes the loop body (the missing part) and PC eventually becomes x3010.	
$0 \times 41230000000000000000$ current value is $\times 0002$	

Fill in the Value of R4 for the Second Loop Body Execution
What is R4 during the second loop body execution?

loop body execution \#	R4 during loop body	R4 at BRn
1	1	-9
2	2	

ECE 120: Introduction to Computing \quad © 2016 Steven S. Lumetta. All rights reserved.
slide 66

The PC-Relative Addresses Do Not Change

Here is the RTL for the code after the loop body.

$$
\begin{aligned}
& \text { x3010 R4 } \leftarrow \text { R4 - \#10 } \\
& \text { x3011 nN: PC } \leftarrow \mathrm{PC}+\mathrm{xFFEE}
\end{aligned}
$$

Again, the value of PC (on the right) - depends on the instruction address, so

- the same calculation is performed
- each time this code executes.

Ready to Execute the RTL on the Datapath

Thus, we can simplify the RTL slightly.

```
x3010 R4 \leftarrow R4 - #10
x3011 nN: PC \leftarrow x3000
```

Let's go execute these two instructions on the datapath now.

Second Execution of the Second Section of Code

PC $\quad \mathbf{\times 3 0 1 1}$

Fill in the Value of R4 at the BRn

R4 has \#-8 when we reach BRn.
Let's add it to our table.

| loop body
 execution \# | R4 during
 loop body | R4 at BRn |
| :---: | :---: | :---: |$|$| 1 | 1 | -9 |
| :---: | :---: | :---: |
| 2 | 2 | -8 |
| | | |
| | | |

Second Execution of the Second Section of Code

PC $\begin{array}{r}\times 3012 \\ \times 3000\end{array}$
ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved
slide 71

We Have Returned to the Start of the Loop (Again!)

Let's take a look at our iteration table.

0x30A0 0100000100100011
$0 \times 41230000000000000000 \quad$ current value is $\times 0002$
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.
slide 72

Let's Generalize Our Table Values

R4 counts up with the loop body execution \#.
When does R 4 get to 0 (non-negative)?

loop body execution \#	R4 during loop body	R4 at BRn
1	1	-9
2	2	-8
\ldots	\ldots	\ldots
10	10	0

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.

Some Questions for You

1. Why is there a 0 stored at $x 4123$?
2. How many times does the loop body execute if we start $\mathrm{M}[\mathrm{x} 4123]$ at 5 ?
3. How many times does the loop body execute if we start M[x4123] at -5?
4. How many times does the loop body execute if we start $\mathrm{M}[\mathrm{x} 4123]$ at 25 ?

The Loop Ends After Ten Iterations

In other words,

- after the tenth loop body iteration
- the branch is not taken,
- and the PC remains x3012.

Guess what the LC-3 does.
Executes another instruction!

But we're going to stop.

More Questions for You

5. What if we leave M[x4123] as "bits"
(set no value there)?
6. What happens if we change the value at x30A0 to x3141?
7. What happens if the loop body sets R4 to 0 ?

A Reference Copy of the Code

$\begin{aligned} & 0 \times 3000 \\ & 0 \times 3001 \end{aligned}$	1010011010011111	LDI R3,x09F
	0001100011100001	ADD R4, R3, x01
0×3002	1011100010011101	STI R4, x09D
-	(something that we wa	to do ten times)
0x3010	0001100100110110	ADD R4,R4,\#-10
0x3011	0000100111101110	BRn $\times 1$ EE
:		
0x30AO	0100000100100011	$\times 4123$ (data)
0x4123	0000000000000000	$\times 0000$ (data)

[^0]: ECE 120: Introduction to Computing

[^1]: ECE 120: Introduction to Computing

[^2]: CE 120: Introduction to Computing

[^3]: ECE 120: Introduction to Computing
 © 2016 Steven S. Lumetta. All rights reserved.

