
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Instruction Processing

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 1

The Control Unit Executes Instructions on the Datapath

You saw some examples of LC-3 instructions.
The FSM executes those instructions using
the LC-3 datapath (through control signals).
But the datapath can only do so much!
Consider the memory:

one read in a cycle, OR
one write in a cycle, but NOT both!
In fact, memory might take many cycles
for one operation (remember the R signal)?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

How Can We Fetch and Perform a Load or a Store?

Now think back to the instructions.

The instructions are in memory.

We need to use memory to fetch
each instruction.

You saw load and store instructions.

Each requires a memory operation.

What should we do?!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

Break Instruction Processing into Steps

Don’t panic!
There’s nothing new here.
For a peanut butter sandwich, we open the jar,
then get the peanut butter out.
To open a car, we press once to unlock the driver’s
door, and a second time for the other doors.
We just need to break instruction processing
into more than one step.
The FSM will use a separate state
for each step.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

Types of Activities for Processing Instructions

What kinds of things do we need to do?
1. FETCH an instruction.
2. DECODE it (look at the opcode).
3. EVALUATE ADDRESS to calculate

the address of any memory access.
4. FETCH OPERANDS from the

register file.
5. EXECUTE the operation requested.
6. STORE RESULT back to the

register file or to memory.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

always

some-
times

Focus on the Steps that are Always Needed

Don’t worry too much about the categories.
Each instruction requires a specific set of
steps for execution on a datapath.
What steps are required depends
on the datapath.
We will look more carefully at the P&P
datapath in a few weeks (see Notes Sec. 4.1).
For now, let’s focus on the parts that
always happen: FETCH and DECODE.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

Fetch Must Copy Bits from Memory to the IR

Let’s think about
instruction fetch.
Where are the bits
of the instruction?

In memory.
Where do we want
those bits to be?

In the IR.
Figure is Patt and Patel Fig. C.3.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

How Can We Move Bits into the IR? Use the Bus

Now, let’s go in reverse.

What’s the last step?

Memory can’t write
to the IR.

But memory can
write to the MDR,
which can be copied
through the bus
to the IR.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

Building Backwards from Our Goal: Instruction Bits in IR

So the last step in fetch is the following:

and the previous step fills MDR.

In other words, we perform a read operation.

But what is the address for a read?

Memory must use the MAR. Thus…

MDR M[MAR]

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

Building Backwards from Our Goal: Instruction Bits in IR

Here’s the end of our FETCH sequence:

state N: MDR M[MAR]

How do we set MAR?

Let’s go back to the datapath.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

Copy PC into MAR Across the Bus

Where is the next
instruction?

In the PC.

So we need to copy
PC to the MAR.

How?

We can do so
across the bus.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

Increment PC in the Same Cycle

In the same cycle,
let’s add 1 to PC.
Then PC will point
to the instruction
after the one we
have fetched (the
new “next”
instruction).
(Note that incrementing
PC does not use the bus.)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

Now We Have the Full FETCH Sequence

PC + 1
state 2: MDR M[MAR]

Remember that RTL actions happen in
parallel, so the value of PC sent to MAR
is the value before fetch.
But when the LC-3 executes an

instruction’s address PLUS 1.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13

Let’s Go Forward and Look at Control Signals

Now, let’s go forward
and see how each of
the three states needed
to FETCH an
instruction can be
accomplished with
control signals in the
datapath.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

In the First State of FETCH … (Control Signals)

PCMUX is set to
select its PC + 1 input.

And LD.PC is set to
store PC+1 back to PC.

GatePC is set to
copy PC on to the bus.

LD.MAR is also set,
storing PC from the
bus into MAR.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15

In the Second State of FETCH … (Control Signals)

The memory is
enabled by setting
MIO.EN to 1.
Notice that
MIO.EN also
controls this mux.
A read operation
is requested using
R.W.
LD.MDR is set to
store the bits read
from memory to
the MDR.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

I/O
logic

In the Third State of FETCH … (Control Signals)

Gate.MDR is set to
write MDR on to the
bus.

And LD.IR is set to
store MDR from the
bus into the IR.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 17

After FETCH, the FSM Must DECODE the Opcode

Each type of instruction uses a distinct
sequence of FSM states for execution.

To enter the correct sequence, we
need an FSM transition (a clock cycle).

But the FSM cannot decode the opcode
until the opcode is in IR[15:12]*.

So we have state #4: DECODE
(transition to an opcode-specific state).

*Bits 15, 14, 13, and 12 of the IR.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 18

5+ States for Processing an Instruction on P&P’s Datapath

Instruction processing on P&P’s LC-3
datapath thus requires the following
for each instruction:

PC + 1

state 2: MDR M[MAR]

state 4: DECODE

(variable): execute the instruction

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 19

FETCH

Some States (Accessing Memory) Require Many Cycles

What’s the relationship between
FSM states and cycles?

Each state requires at least one cycle.

However, some states may have self-loops,
allowing the FSM to stay in those states
indefinitely.

In particular, memory is slow
relative to the processor.

Memory access states, such as the second fetch
state, typically require more than one cycle.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 20

FSM State Diagram (Patt and Patel Figure C.2)

FETCH (3 states)
DECODE (1 state)
EXECUTE:

one sequence
per opcode
one to five states
in length, with
some overlap
between opcode
sequences.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 21

A Computer Simply Executes Instructions

After finishing any execution sequence,
the FSM returns to the first FETCH state.
So the FSM does the following
1. Fetch an instruction.
2. Decode the instruction.
3. Execute the instruction.
4. Go back to Step #1.

Forever.
That’s a computer!

A Closing Thought on the FSM

Think back to the start of class.

If I had asked you: how many bits
do you need to control a computer?

Because I couldn’t have asked, “How many bits of
state do you need for the (high-level) FSM?

What would you have guessed?

For Patt and Patel’s microarchitecture,
the answer is 6 bits.

I think that’s pretty amazing.

