
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

From FSM to Computer

ECE 120: Introduction to Computing © 2016-2018 Steven S. Lumetta. All rights reserved. slide 1

We Can Perform Any Computation with an FSM

Let’s build an FSM to implement
a piece of C code.

We’ll use components
to store the variables, and
to execute the statements.

The FSM states will use the components:
the FSM’s outputs
are control signals for the components.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

What does
this mean?

Find the Minimum Value Among Ten Integers

int values[10];
int idx;
int min = values[0];

for (idx = 1; 10 > idx;
idx = idx + 1) {

if (min > values[idx]) {
min = values[idx];

}
}

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

What does
this mean?

This Declaration Creates an Array of Ten Integers

int values[10];

The variable declaration above creates
ten 32-bit 2’s complement numbers (ten ints).

Such a group is called an array,
and the declaration names
this particular group “values”.
Individual ints are then called
values[0] through values[9].

An array is the software analogue
of a memory.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

The first array
element is used

here.

Which element is accessed here
depends on the value of variable idx.

int values[10];
int idx;
int min = values[0];

for (idx = 1; 10 > idx;
idx = idx + 1) {

if (min > values[idx]) {
min = values[idx];

}
}

The Array “Address” is Specified within Brackets

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

The variable min is initialized to the
value of the first of the ten integers.

These values must
be filled in before
the code executes.

int values[10];
int idx;
int min = values[0];

for (idx = 1; 10 > idx;
idx = idx + 1) {

if (min > values[idx]) {
min = values[idx];

}
}

How Does the Code Work?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

idx ranges from
1 to 9 in the for loop.

How Does the Code Work?

int values[10];
int idx;
int min = values[0];

for (idx = 1; 10 > idx;
idx = idx + 1) {

if (min > values[idx]) {
min = values[idx];

}
}

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

Each integer is
compared with min
and may replace it.

How Does the Code Work?

int values[10];
int idx;
int min = values[0];

for (idx = 1; 10 > idx;
idx = idx + 1) {

if (min > values[idx]) {
min = values[idx];

}
}

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

When loop ends, min holds the minimum integer.

Let’s
draw
a flow
chart.

Flow Chart with Colors by Statement

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

min =
values[0]

START

idx = 1

idx =
idx + 1

min =
values[idx]

TRUE

FALSE

min >
values
[idx]?

TRUE

DONE
FALSE

10 > idx?

What Components Do We Need?

Now, let’s think about how to turn
the code/flow chart into an FSM.
What components should we use ...

… for the array?
… for other variables?

… for the if statement
(min > values[idx])?

Let’s use a serial comparator
(to again illustrate hierarchy in an FSM).
So we also need shift registers to feed it bits,
and a counter to keep track of its progress.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

a memory
registers/
counters

a comparator

FSM States Must Execute in a Fixed Number of Cycles

We have to implement each high-level
FSM state in a fixed number of cycles
(or at least a controllable number of cycles).

Simple components imply more cycles
(slower, but smaller).

Complex components reduce the number of
states needed (larger, but may be faster).

For example, if we design a 10-operand
comparator, our task is fairly simple!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

Choice of Components Affects the FSM Design

How we select components affects
how we choose FSM states, and
how the FSM moves between those states.

That’s why we started by thinking
about components.

In a real design process, one goes back
and forth, tuning components to FSM,
and tuning FSM to components.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

We Can Sometimes Merge Several Boxes into One State

So how do we pick states?

Break the flow chart into pieces.

Not every flow chart box becomes a state.

For example, in our flow chart, we can
Initialize min
Initialize idx, and
Perform the first comparison (10 > 1)

all in one cycle!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13

The First FSM State is INIT

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

min =
values[0]

START

idx = 1 10 > idx?

INIT

We Can Predicate Execution with Logic

Predication means that something
happens only under certain conditions.

For example: If you give me an apple,
I will give you a peach.

When our comparator is done, we can
use the comparator output to determine
whether min copies values[idx], and
increment idx

in the same cycle.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15

The Second FSM State May Copy a New Min Value

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

START

idx = 1 10 > idx?

INIT

COPY

idx =
idx + 1

min =
values[idx]

min =
values[0]

Sometimes the FSM Just Needs to Wait

How can we use our FSM?

Other logic must control the FSM.

Using the FSM works as follows:
1. Fill the memory with ten integers.
2. Execute the FSM “code.”
3. Read out the answer.

Let’s
create a state for the FSM
to occupy during steps 1 and 3, and
create a START input to begin Step 2.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 17

The Third FSM State is for Waiting

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 18

START

idx = 1 DONE
FALSE

10 > idx?

INIT

COPYWAIT

(also
WAIT)

min =
values[0]

idx =
idx + 1

min =
values[idx]

Some Flow Chart Boxes May Require Multiple States

What’s left? Just the if statement.

Sometimes
we may need more than one state
to implement a simple step in the flow chart.

Our serial comparator
takes bits from two shift registers, A and B,
and uses a counter to measure 32 cycles.

We need to prepare A, B, and the counter
for the comparison!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 19

Preparing for the Serial Comparison Requires a State

In the PREP state, the FSM
Copies min to shift register A,
Copies values[idx] to shift register B, and
Resets the counter to 0.

In the COMPARE state (for 32 cycles), the
serial comparator performs the comparison.

When the counter has value 31,
the FSM moves to the COPY state.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 20

Comparison Becomes Two High-Level States

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 21

START

idx = 1

TRUE

FALSE

min >
values
[idx]?

TRUE

DONE
FALSE

10 > idx?

INIT

COPYWAIT

(also
WAIT)

PREP

COMPARE

min =
values[0]

idx =
idx + 1

min =
values[idx]

Redraw the Abstract State Transition Diagram

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 22

WAIT

START
signal

INIT PREP
always

COMPARE

al
w

ay
s

COPY
counter

is 31

IDX is a Binary Counter with CNT and RST Inputs

Let’s think again about the
components.
idx is a 32-bit 2’s complement

value
used to count from 0 to 9, so
let’s use a 4-bit binary counter, IDX.

In COPY, we increment IDX.
Let’s use a CNT input to control the counting.
If we reset the counter to 0 in WAIT,

it can count to 1 in INIT,
but we need a reset input, RST.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 23

The Memory VALUES Can Use IDX as ADDR Input

values
ten 32-bit 2’s complement values, so
let’s use a 16×32-bit memory, VALUES.

Notice that
we only read from memory, and
we always read values[idx].

So we can
make the memory always read,*
and connect the IDX counter to ADDR.

*Whatever logic controls the FSM will have
to override this simplification, of course.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 24

MIN Only Needs to Load ARRAY[IDX]

min is a 32-bit 2’s complement value
used to store the current minimum
let’s use a 32-bit register, MIN.

Load input LD controls changes to MIN.
In COPY, we load VALUES[IDX] into MIN.
In INIT, we load VALUES[0] into MIN.
But in INIT, IDX is 0!
So we connect VALUES’ data
output to MIN’s data input.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 25

Shift Registers A and B Need Parallel Load Control LD

What about the shift registers A and B?
In PREP, we set A to MIN and
B to VALUES[IDX].
We need LD inputs on both A and B
to enable parallel load.
But the parallel load inputs
can be wired directly

from MIN to A , and
from VALUES’ data
output to B.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 26

Use a Binary Counter to Control the Comparator

Finally, we need a counter to drive the serial
comparator for 32 cycles.

Let’s use a 5-bit binary counter, CNT.

To reset the counter, use a reset input, RST.

Comparator has an F / “first bit” input.
CNT should generate a zero output Z.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 27

The Datapath Consists of the Interconnected Components

Let’s take a look
at the components.

This figure shows
the datapath for
our FSM.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 28

The FSM Delivers Control Signals to the Datapath

How does the datapath relate to the
FSM?
Not all signals into the datapath are fixed.
Remaining input signals to the components in
the datapath are called control signals.
Control signals are outputs of the FSM.
Using these signals, each state of the FSM
causes the elements of the datapath to
perform actions associated with the state.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 29

Our Datapath Has Six Control Signals

IDX.RST

IDX.CNT

MIN.LD

A.LD

B.LD

CNT.RST

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 30

FSM State Transitions Use Datapath Outputs

The datapath also produces output signals
that affect FSM state transitions.
Our datapath has three such signals:
DONE the last loop iteration has finished
LAST raised in the last cycle of serial

comparison
THEN a new minimum value has been

found (A > B)
These signals are inputs to the FSM.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 31

Our Datapath Produces Three Outputs for the FSM

For our FSM, the
datapath outputs
are produced using
simple logic.

The THEN output
depends on the
representation
used by the
comparator; Z1
means A > B.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 32

RTL Describes How Bits Move from Register to Register

Let’s make an abstract next state table.
We’ll use register transfer language (RTL)
notation to describe the state’s actions on the
datapath.
RTL describes how bits move from register to
register.
Start with the WAIT state.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 33

state actions (simultaneous) condition next state

WAIT

What Happens in the WAIT State?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 34

WAIT

START
signal

INIT PREP
always

COMPARE

al
w

ay
s

COPY
counter

reaches 31

WAIT stalls the FSM while the
controlling logic fills the memory.

IDX must be 0 in INIT, so
set IDX to 0 in WAIT.

The FSM stays in WAIT until it
sees the START signal.

Write the Information for WAIT

The WAIT state sets IDX to 0.

In RTL, we to indicate
that the register IDX is filled with the
value 0 (all 0 bits).

What about the next state(s)?

On START, move to INIT.
Otherwise, stay in WAIT.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 35

state actions (simultaneous) condition next state

WAIT START INIT
START’ WAIT

What Happens in the INIT State?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 36

WAIT

START
signal

INIT PREP
always

COMPARE

al
w

ay
s

COPY
counter

reaches 31

INIT performs two actions:

• copy VALUES[0] to MIN,

• and set IDX to 1 (actually
by setting IDX to IDX + 1).

The FSM always moves from INIT to PREP.

Write the Information for INIT

INIT does two things.

Unlike languages like C, RTL actions for a
state occur in parallel, in the same cycle.

After INIT, the FSM moves to PREP.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 37

state actions (simultaneous) condition next state

WAIT
START
START’

INIT
WAIT

INIT (always) PREP

IMPORTANT: The order of actions here does not matter!

What Happens in the PREP State?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 38

WAIT

START
signal

INIT PREP
always

COMPARE

al
w

ay
s

COPY
counter
iis 31

PREP performs three actions:
• copy MIN to A,
• copy VALUES[IDX] to B,
• and reset CNT to 0.

The FSM always moves from
PREP to COMPARE.

Write the Information for PREP

Again, RTL actions occur in parallel,
all in one cycle.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 39

state actions (simultaneous) condition next state

WAIT
START
START’

INIT
WAIT

INIT (always) PREP

PREP (always) COMPARE

What Happens in the COMPARE State?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 40

WAIT

START
signal

INIT PREP
always

COMPARE

al
w

ay
s

COPY
counter

is 31

COMPARE allows the serial
comparator to do its work,
requiring no direct actions
on the datapath.

The FSM stays in COMPARE
until it sees the LAST signal
(a datapath output).

Write the Information for COMPARE

What are the next states?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 41

state actions (simultaneous) condition next state

WAIT
START
START’

INIT
WAIT

INIT (always) PREP

PREP B (always) COMPARE

COMPARE run serial comparator LAST’ COMPARE
LAST COPY

What Happens in the COPY State?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 42

WAIT

START
signal

INIT PREP
always

COMPARE

al
w

ay
s

COPY
counter

is 31

The FSM moves to PREP or
WAIT based on datapath
output DONE.

COPY increments
IDX. It also copies
VALUES[IDX]
into MIN iff the
THEN signal is 1.

Write the Information for COPY

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 43

state actions (simultaneous) condition next state

WAIT
START
START’

INIT
WAIT

INIT (always) PREP

PREP B (always) COMPARE

COMPARE run serial comparator
LAST
LAST’

COPY
COMPARE

COPY DONE WAIT
DONE’ PREP

Use a One-Hot Encoding to Represent States

It’s time for...
bits!

What representation should we use?

How many bits do we need (5 states)?

Only 3 bits?

Let’s use 5.

Let’s use a one-hot encoding:
each state has exactly one 1 bit.

You’ll see why soon.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 44

Fill in the Table of FSM Outputs Based on RTL

WAIT

What are the control signals?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 45

state S4S3S2S1S0
IDX.
RST

IDX.
CNT

MIN.
LD

A.
LD

B.
LD

CNT.
RST

WAIT 10000

INIT 01000

PREP 00100

COMPARE 00010

COPY 00001

1 0 0 0 0 0

Just set the other
register inputs to 0

instead of don’t care.

Fill in the Table of FSM Outputs Based on RTL

INIT state:

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 46

state S4S3S2S1S0
IDX.
RST

IDX.
CNT

MIN.
LD

A.
LD

B.
LD

CNT.
RST

WAIT 10000 1 0 0 0 0 0

INIT 01000

PREP 00100

COMPARE 00010

COPY 00001

0 1 1 0 0 0

Fill in the Table of FSM Outputs Based on RTL

PREP state:

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 47

state S4S3S2S1S0
IDX.
RST

IDX.
CNT

MIN.
LD

A.
LD

B.
LD

CNT.
RST

WAIT 10000 1 0 0 0 0 0

INIT 01000 0 1 1 0 0 0

PREP 00100

COMPARE 00010

COPY 00001

0 0 0 1 1 1

Fill in the Table of FSM Outputs Based on RTL

COMPARE state: no RTL.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 48

state S4S3S2S1S0
IDX.
RST

IDX.
CNT

MIN.
LD

A.
LD

B.
LD

CNT.
RST

WAIT 10000 1 0 0 0 0 0

INIT 01000 0 1 1 0 0 0

PREP 00100 0 0 0 1 1 1

COMPARE 00010

COPY 00001

0 0 0 0 0 0

Fill in the Table of FSM Outputs Based on RTL

COPY

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 49

state S4S3S2S1S0
IDX.
RST

IDX.
CNT

MIN.
LD

A.
LD

B.
LD

CNT.
RST

WAIT 10000 1 0 0 0 0 0

INIT 01000 0 1 1 0 0 0

PREP 00100 0 0 0 1 1 1

COMPARE 00010 0 0 0 0 0 0

COPY 00001 0 1 THEN 0 0 0

We Need Expressions for the Control Signals

Now we can see the value of our one-hot
state encoding. Express IDX.RST.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 50

state S4S3S2S1S0
IDX.
RST

IDX.
CNT

MIN.
LD

A.
LD

B.
LD

CNT.
RST

WAIT 10000 1 0 0 0 0 0

INIT 01000 0 1 1 0 0 0

PREP 00100 0 0 0 1 1 1

COMPARE 00010 0 0 0 0 0 0

COPY 00001 0 1 THEN 0 0 0

Quickly now!

We Need Expressions for the Control Signals

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 51

state S4S3S2S1S0
IDX.
RST

IDX.
CNT

MIN.
LD

A.
LD

B.
LD

CNT.
RST

WAIT 10000 1 0 0 0 0 0

INIT 01000 0 1 1 0 0 0

PREP 00100 0 0 0 1 1 1

COMPARE 00010 0 0 0 0 0 0

COPY 00001 0 1 THEN 0 0 0

IDX.RST = S4 IDX.CNT = S3 + S0

MIN.LD = S3 + THEN · S0 (others) = S2

And Expressions for Next-State Logic

Expressions for next-state logic
are similarly trivial.

However, must look at incoming arcs
to write them.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 52

Look at the Incoming Arcs for WAIT

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 53

WAIT

START
signal

INIT PREP
always

COMPARE

al
w

ay
s

COPY
counter

is 31

WAIT stays in WAIT on START’
(self-loop not shown), and comes
from COPY on the DONE signal.

= S4 · START’ + S0 · DONE

Look at the Incoming Arcs for COPY

ECE 120: Introduction to Computing © 2016-2018 Steven S. Lumetta. All rights reserved. slide 54

WAIT

START
signal

INIT PREP
always

COMPARE

al
w

ay
s

COPY
counter

is 31

INIT comes from WAIT on START.

= S4 · START

Look at the Incoming Arcs for PREP

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 55

WAIT

START
signal

INIT PREP
always

COMPARE

al
w

ay
s

COPY
counter

is 31

PREP comes from INIT,
and from COPY on DONE’.

= S3 + S0 · DONE’

Look at the Incoming Arcs for COMPARE

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 56

WAIT

START
signal

INIT PREP
always

COMPARE

al
w

ay
s

COPY
counter

is 31

COMPARE comes from PREP,
and stays in COMPARE on
LAST’ (self-loop not shown).

= S2 + S1 · LAST’

Look at the Incoming Arcs for COPY

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 57

WAIT

START
signal

INIT PREP
always

COMPARE

al
w

ay
s

COPY
counter

is 31

COPY comes from
COMPARE on LAST.

= S1 · LAST

Finally, We are Done!

And we’re done!

Whew!

We can design an FSM for any code,
for any computation.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 58

If We Generalize the Instructions, We Have a Computer!

What if, instead, we design an FSM to execute
some number of different statements.
We can use a datapath to manage bits.
We can use memory to give the FSM
instructions as to what it should do
(in terms of the FSM’s built-in statements).
We can use sequences of FSM states to
execute each instruction.

That’s a computer!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 59

