University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing Memory	Let's Name Some Groups of Bits I need your help. The computer we're going to design has a lot of places to store bits. Each place stores 32 bits. We need names for the places. I came up with A, B, and C. Any ideas? D? E? F? Those are perfect! You're really good at this!
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 1	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

We Just Need a Few More	We J	ust	Need	a Few	More
-------------------------	------	-----	------	-------	------

Let's see. That's 6.	
We need 65,536.	
So 65,530 more.	
Please get out a sheet of paper.	
I'd like each of you to come up with 1,000 names.	
Be sure not to use the same names	
as anyone else.	
A	

Anyone have a better idea?

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 3

ECE 120: Introduction to Computing

You Want to Use What as Names?!

Bits? Really? Well, ok. So ... 16-bit names for 65,536 places? Kind of boring, no? At least we save some paper!

Let's Build a Circuit to Manage Our Bits	Protocol for Reading and Writing Bits
 If we use bits for names, • we can probably build a circuit • that lets us read and write the bits stored in each place. Let's call one of our "names" an address. So we have 65,536 = 2¹⁶ addresses. At each address, we have 32 bits, which we call the addressability. 	 When we want to read the bits at an address: Tell the circuit the address we want, ADDR Then wait for bits to come out. DATA-OUT When we want to write bits to an address: Tell the circuit the address we want, ADDR And give the circuit the new bits. DATA-IN And we need to tell the circuit whether we want to read or write (write enable). WE
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

Properties of Memory Discussed in ECE120	RAM Divides into Two Main Types: SRAM and DRAM
The memory that we discuss in our class is called Random Access Memory , or RAM . "Random access" means that • addresses can be read/written (accessed) in any order, and • the time required to read/write an address does not depend (much) on the address. We consider only volatile forms of RAM, which lose their bits if electrical power is turned off.	 Static RAM (SRAM) uses a two-inverter loop to store a bit retains bit indefinitely while powered Dynamic RAM (DRAM) uses a capacitor to store a bit loses bit over time (even with electricity!), so must be refreshed (rewritten) periodically. Both types are volatile. In other words, both lose their bits when powered off.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

What's the Difference Between SRAM and DRAM?

SRAM is

- faster, and
- \circ uses the **same** semiconductor **process** as logic,
- but is **much less dense**.

DRAM is

- \circ \mathbf{slower} (refresh also interferes with use), and
- uses a **separate process** (different chips!)*,
- $^\circ$ but is **much more dense** (more bits/chip area).

 $^{\rm *IBM}$ has hybrid processes, and the industry is investigating 3D die-stacking, which allows mixing semiconductor processes.

What's in Real Systems? Usually Both SRAM and DRAM.

SRAM is prevalent on chip for **small**, **fast memory close to the processor(s)**, such as caches.

DRAM is almost always **used for main memory**.

If your desktop/laptop has **16GB** of memory, that's **DRAM**.

Many systems also have **non-volatile memory**: Flash/SSD, magnetic storage/hard drives, and/or optical storage/DVD drives.

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 11

ECE 120: Introduction to Computing

Changing a bit means short circuits, so these analog systems must be designed carefully!

When **SELECT** = 0, this cell is disconnected.

This 16×1 memory is a **bit slice**.

The number of bits in a real bit slice is larger.

They balance speed (few bits) against size (few copies of the read/write logic).

slide 27

Another major cost for long bit slices: the decoder. How many gates in an N-to-2^N decoder? Around 2^N (one AND gate per output).

Using Two Dimensions Means Sqrt(# gates)

How does sharing two decoders across bit slices help? A decoder for 2²⁰ cells implies 2²⁰ gates in decoder. Two 10-to-1024 decoders require only 2048 gates.

Performing a Write: CS = 1, WE = 1, set ADDR ...

Tri-State Buffers Can Implement a Distributed Mux

Using tri-state buffers, we can instead • gate each output with tri-state buffers (4N buffers, 4 wires to carry EN signals), • connect all outputs with N wires. We call these N wires a bus.

We call these N wires a bus.

The **4 EN** wires ensure that only one of the four groups of outputs is written to the **N** wires.

In other words, they act as a **distributed mux**.

The LC-3 computer datapath in Patt & Patel uses a bus to move data from component to component.

Tri-State Buffers also Allow Us to Reuse Wires

For our memory design,
DATA-OUT is gated with tri-state buffers,
so these lines float whenever
CS = 0 or WE = 1.
In real memory chips, the same pins (wires) can be used for DATA-IN and DATA-OUT.

For **writes**, the pins accept bits to store.

For **reads**, the tri-state buffers write the bits from the memory cells onto the pins.

slide 43

Building a Memory with Wider Addressability

© 2016 Steven S. Lumetta. All rights reserved.

Given two $2^k \times N$ -bit memories, how can we construct a $2^k \times (2N)$ -bit memory?

That is, twice as many bits at each address?

ECE 120: Introduction to Computing

Notice again that each $2^{k} \times N$ -bit memory contains $2^{k} \times N$ memory cells, so two such memories contain $2^{k}(2N)$ cells.

Building a Memory with Wider Addressability

