
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Vending Machine Implementation

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 1

Use Abstraction to Design a Vending Machine FSM

Let’s build a more realistic vending machine.
We’ll use several components:

registers,
adders,
muxes, and
decoders.

We’ll also develop a new component,
priority encoders.
And one module specific to this FSM design.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

Let’s Assume that Our Machine Sells Three Items

How many items should our
vending machine sell?
Each item has

a price,
an input to identify it (such as a button), and
an output to release it.

Three items makes the problem
large enough to be interesting, but
small enough to allow detailed illustration.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

General Protocol for a Vending Machine

1. A user sees an item that they want to buy.
2. The user puts money into the machine.

3. The machine (FSM) keeps track of how much
money has been inserted.

4. When the user has inserted enough money for
the item, the user pushes a button.

5. The machine releases the item and
deducts the price from the stored money.

6. The machine returns change.
[Ours won’t.]

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

Components Needed for the General Protocol

What makes up the state
of our vending machine?

Simplest answer: money stored.

Let’s use a register to record
the amount of money.

When money is inserted, use an adder.

When a purchase is made, use a subtractor
(that is, an adder).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

What is the Unit of Money Stored?

How much do products cost?

How much money can the machine store?

Enough for a product, so $2 to $4.

Should we accept coins or bills or both?

Realistic answer: both.

Our answer: coins…but no pennies ($0.01)!

Let’s count money in nickels ($0.05).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

$1 to $2

How Big is the Register for Storing Money Inserted?

State is a register N, the number of nickels.

How many bits do we need for N?

The machine should store $2 to $4.

The value in N is in units of $0.05.

So N should hold at most around 40 to 80.

Use a 6-bit register as an unsigned value.

The maximum is then 63, or $3.15.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

What about Item Prices?

Prices should be easy to change.
Instead of using fixed values, let’s
use more 6-bit registers: P1, P2, and P3.

Machine owner can set the prices.

Prices are also state, but we
abstract them away.

Design the FSM assuming that
prices are constant, but
not known in advance
(must read registers).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

Abstract State Table Entries for Coin Insertion

Initial state is always STATE<N>

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

final state

input
event

cond. state
accept

coin
release
product

none always STATE<N> x none

quarter
inserted

N < 59 STATE<N+5> yes none

quarter
inserted

STATE<N> no none

Abstract State Table for Product Selection

Initial state is always STATE<N>

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

final state

input
event

cond. state
accept

coin
release
product

item 1
selected 1 STATE<N – P1> x 1

item 1
selected N < P1 STATE<N> x none

Bits of Input and Output

Inputs include:
coin inserted: a 3-bit value C = C2C1C0
(assume representation provided to us)
product selection buttons:
one for each product: B1, B2, and B3

Outputs include:
coin accept A (1 means accept, 0 reject)
item release signals: R1, R2, R3

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

The Input Representation is Provided for Us

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

coin type value # of nickels C2C1C0

(none) N/A N/A 110

nickel $0.05 1 010

dime $0.10 2 000

quarter $0.25 5 011

half dollar $0.50 10 001

dollar $1.00 20 111

Outputs Correspond to Inputs in the Previous Cycle

In our class,
FSM outputs do not depend on input, so
the FSM cannot respond in the same cycle.

Instead, the FSM’s outputs
are calculated based on state and inputs,
then stored for a cycle in flip-flops.

The coin mechanism designer must know that
the accept signal comes in the next cycle.

These stored outputs are also state!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13

Our Abstract Model and I/O are Specified

We have an abstract model.

We have I/O in bits.

What’s next?

Complete the specification!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

Let’s Calculate the Size of Our FSM

How many bits of state do we have?

Ignoring prices, we have
a 6-bit register, and
four bits of stored output, so
a total of 10 bits, or 1024 states.

How many input bits do we have?

Three bits of coin, three buttons, so 6 bits.

1024 states, each with 64 arcs. Good luck!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15

Ignore Output “State” and Unused Input Combinations

Obviously, we need to simplify.
First,

four stored output bits do not affect our
transitions, so we can ignore them.
Each STATE<N> thus represents
16 equivalent states.

Second, two bit patterns are unused in the
C (coin) representation, so we need only
48 (8 × 6) arcs.

But 48 arcs × 64 states is still too much.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

Choose a Strategy to Handle Multiple Inputs

How can we simplify further?

The abstract model has nine input events:
no input,
five types of coins, and
three types of purchases.

Where do the other 39 arcs come from?

Multiple inputs!

Let’s choose a strategy to handle them.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 17

Ignore Output “State” and Unused Input Combinations

Let’s prioritize input events strictly,
meaning that we ignore lower-priority events.

Our strategy is as follows:
purchases have highest priority:
item 3, then item 2, then item 1;
coin type inputs are distinct,
so they can’t occur at the same time.

Now we can write a complete next state table
(for a given set of prices).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 18

Let’s Look at STATE50 with P3 = 60, P2 = 10, P1 = 35

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 19

B3 B2 B1 C2C1C0 final state A R3 R2 R1

1 x x xxx STATE50 0 0 0 0

0 1 x xxx STATE40 0 0 1 0

0 0 1 xxx STATE15 0 0 0 1

0 0 0 010 STATE51 1 0 0 0

0 0 0 000 STATE52 1 0 0 0

0 0 0 011 STATE55 1 0 0 0

0 0 0 001 STATE60 1 0 0 0

0 0 0 111 STATE50 0 0 0 0

0 0 0 110 STATE50 0 0 0 0

Use a Priority Encoder to Resolve Conflicting Purchases

Purchases have priority, so start with those.

Item 3 has priority, then item 2.

We’ll use a priority encoder.

Given four input lines, a 4-input priority
encoder produces

a signal P indicating that at least one
input is active (1), and
a 2-bit signal S encoding the
highest priority active input.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 20

The Truth Table Requires Only a Few Lines

Let’s write a truth
table.

If B3 = 1, no other
inputs matter.

Similarly, if B3 = 0,
but B2 = 1, the output

is determined.

And so forth.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 21

B3 B2 B1 B0 P S
1 x x x 1 11

0 1 x x 1 10

0 0 1 x 1 01

0 0 0 1 1 00

0 0 0 0 0 xx

Solve K-Maps to Find Output Expressions

And now for K-maps.

P = B3 + B2 + B1 + B0

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 22

B3 B2 B1 B0 P S
1 x x x 1 11

0 1 x x 1 10

0 0 1 x 1 01

0 0 0 1 1 00

0 0 0 0 0 xx

P
B3B2

00 01 11 10

B1B0

00 0 1 1 1

01 1 1 1 1

11 1 1 1 1

10 1 1 1 1

Solve K-Maps to Find Output Expressions

Next is S1.

S1 = B3 + B2

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 23

B3 B2 B1 B0 P S
1 x x x 1 11

0 1 x x 1 10

0 0 1 x 1 01

0 0 0 1 1 00

0 0 0 0 0 xx

S1
B3B2

00 01 11 10

B1B0

00 x 1 1 1

01 0 1 1 1

11 0 1 1 1

10 0 1 1 1

Solve K-Maps to Find Output Expressions

And, finally, S0.

S0 = B3 + B2’B1

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 24

B3 B2 B1 B0 P S
1 x x x 1 11

0 1 x x 1 10

0 0 1 x 1 01

0 0 0 1 1 00

0 0 0 0 0 xx

S0
B3B2

00 01 11 10

B1B0

00 x 0 1 1

01 0 0 1 1

11 1 0 1 1

10 1 0 1 1

Implementation of a 4-Input Priority Encoder

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 25

Vending Machine FSM (Purchases Only)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 26

Now, we’re ready to
design the FSM for
purchases.

Register N,
the number
of nickels.

Priority
encoder

for
purchases.

Vending Machine FSM (Purchases Only)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 27

S output of priority
encoder selects
which price to

deliver to adder.

Registers
store negative

prices, so
PRICE1 = -P1

Adder subtracts
price from N,

current money.

Vending Machine FSM (Purchases Only)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 28

If R = 1, store difference
as new N. Otherwise,

keep old N value.

R = 1 iff purchase
was requested (P)
AND machine has

enough money (Cout).

Cout = 1
iff

Vending Machine FSM (Purchases Only)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 29

Release signals are
stored in flip-flops and
held high in next cycle.

If purchase approved (R),
decode selected item (S)

and allow release.

We Need to Know the Value of an Inserted Coin

We can’t buy anything unless we insert coins!
There’s already an adder that we can use:

when a coin is inserted,
add the current state N
to the value of the inserted coin,
and write the sum back to register N
if the sum doesn’t overflow.

But we don’t have the value of an inserted
coin.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 30

Use Logic to Convert Coin Input Bits to Coin Value

Remember this table? Let’s build a converter.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 31

coin type value V4V3V2V1V0 C2C1C0

(none) N/A 00000 110

nickel $0.05 00001 010

dime $0.10 00010 000

quarter $0.25 00101 011

half dollar $0.50 01010 001

dollar $1.00 10100 111

Solve K-Maps for Our Coin Value Module

Let’s do the K-maps.

V4 = C2C0

V3 = C1’C0

V2 = C1C0

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 32

V2
C2C1

00 01 11 10

C0

0 0 0 0 x

1 0 1 1 x

V3
C2C1

00 01 11 10

C0

0 0 0 0 x

1 1 0 0 x

V4
C2C1

00 01 11 10

C0

0 0 0 0 x

1 0 0 1 x

Solve K-Maps for Our Coin Value Module

Let’s do the K-maps.

V1 = C1’

V0 = C2’C1

(C2 C1 is ok, too.)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 33

V0
C2C1

00 01 11 10

C0

0 0 1 0 x

1 0 1 0 x

V1
C2C1

00 01 11 10

C0

0 1 0 0 x

1 1 0 0 x

And we can
implement as
shown here.

Implementation of the Coin Value Module

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 34

The blue elements
extend the design from
the earlier (purchase-
only) version.

Vending Machine Full Implementation

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 35

Zero-extended coin
value calculation.

Mux selects price
when purchase is
requested (P=1),

or coin value (P=0).

The blue elements
extend the design from
the earlier (purchase-
only) version.

Vending Machine Full Implementation

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 36

Calculation of coin accept
signal A: no purchase requested
(P = 0) and adding coin’s value
does not overflow N (Cout = 0).

Accept signal is stored
in flip-flop and held
high for next cycle.

The blue elements
extend the design from
the earlier (purchase-
only) version.

Vending Machine Full Implementation

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 37

State is now allowed to
change in two cases:

purchase allowed (R = 1) or
coin insertion accepted (A = 1).

