
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Extending Keyless Entry

ECE 120: Introduction to Computing © 2016-2018 Steven S. Lumetta. All rights reserved. slide 1

Combinational Logic Design Allows Use of Abstraction

Recall combinational logic design.
One can always design from gates
(or even transistors),
but it’s often easier to build with
components such as adders,
comparators, muxes, and decoders.

We use common functionality
addition, comparison, selection, and
identifying encoded values (respectively)
to abstract away details of low-level logic.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

FSM Designs Also Allow Use of Abstraction

The same holds for FSMs:
one can always design every state,
but often we want to organize
an FSM hierarchically,
and analyze states in groups
rather than individually.

We can use both combinational logic
components and sequential logic
components such as registers and shift
registers to simplify the design task.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

Let’s Extend Our Keyless Entry FSM

As you may recall, our FSM design only
reacted to user input (the ULP buttons).
For example,

if a user pushes the panic button P,
and then does nothing more,
the FSM stays in the ALARM state,
and the alarm sounds forever
(until the car battery dies).

Let’s modify the design to make the FSM
turn the alarm off after some time.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

刘培源

刘培源

刘培源

A Quick Review of I/O for Keyless Entry

Outputs are as follows:
D driver door; 1 means unlocked
R remaining doors; 1 means unlocked
A alarm; 1 means alarm is sounding
And inputs are as follows:
U unlock button; 1 means it’s been pressed
L lock button; 1 means it’s been pressed
P panic button; 1 means it’s been pressed

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

Also Review the State Table

The state table below gives the state IDs and
the outputs for each state.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

meaning state S1S0 D R A

vehicle locked LOCKED 00 0 0 0
driver door unlocked DRIVER 10 1 0 0

all doors unlocked UNLOCKED 11 1 1 0
alarm sounding ALARM 01 0 0 1

ULP=x00

And, Finally, the State Transition Diagram

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

ULP=100

U
L

P
=

10
0

U
L

P
=

x1
0

ULP=x10

U
L

P
=

xx
1

ULP=
x10

ULP=xx1,x0x

ULP=000,x10

ULP=xx1

ULP=xx1

ALARM
01/001

LOCKED
00/000

DRIVER
10/100

UN-
LOCKED
11/110

ULP=000

Start by Extending the Abstract Model

So what exactly do we want to change?

After a user turns on the alarm,
the FSM should start measuring time.

Once a certain amount of time has passed,
the FSM should turn off the alarm.

In what unit can an FSM measure time?

In clock cycles.

What component can we use?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

A counter.

Use a Binary Counter to Measure Time

Let’s use a binary down
counter with a load input LD.

When LD = 1, the counter
loads a new value (from the
above in the figure).
The counter bits represent an unsigned value.
The count (stored value) goes down towards 0.
When the count reaches 0,
the counter outputs Z = 1.

You know how to build one.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

new value
to load

The Counter Creates New I/O Signals

The counter gives our FSM
new inputs and outputs.

Counter output Z is an input to the FSM.

To control the counter, the FSM must output
LD, the counter load signal, and
the counter input value.

Since we only want to use a
fixed timeout, let’s hardwire
the value input.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

How Big is the Counter?

The number of bits in the counter depends on
T, which in turn depends on the clock speed.

For example,
if we want a 5-minute timeout
(300 seconds),
and the clock speed is 16 MHz
(1.6 × 107 cycles / second),
we need T = 4.8 × 109 cycles,
and a 33-bit counter.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

The Counter Bits are FSM State

Let’s use the counter bits (denoted timer) to
split the ALARM states into many states.

Whenever the user turns on the ALARM, the
system will enter the ALARM(0) state by
setting timer = T – 1 (by setting LD = 1).

Then the counter counts down…

ECE 120: Introduction to Computing © 2016-2017 Steven S. Lumetta. All rights reserved. slide 12

ALARM(0)
timer=T-1

ALARM(1)
timer=T-2

ALARM
(T-1)

timer=0…

S1S0 = 01
in all of
these
states.

Replicate Outgoing Arcs

We replicate outgoing arcs from ALARM.

So each of the states below has an arc labeled
ULP=x10 to the LOCKED state.

ECE 120: Introduction to Computing © 2016-2017 Steven S. Lumetta. All rights reserved. slide 13

ALARM(0)
timer=T-1

ALARM(1)
timer=T-2

ALARM
(T-1)

timer=0… LOCKED

ULP=x10ULP=x10
ULP=x10

Time for Some Design Decisions

What if the user pushes panic (P)?

Just keep counting? Or reset the timer?

Let’s reset the timer. So all transitions
with ULP=xx1 (not shown) enter ALARM(0).

ECE 120: Introduction to Computing © 2016-2017 Steven S. Lumetta. All rights reserved. slide 14

ALARM(0)
timer=T-1

ALARM(1)
timer=T-2

ALARM
(T-1)

timer=0…
ULP=x00 ULP=x00

ULP=x10ULP=x10
ULP=x10

LOCKED

When the Timeout Happens, the FSM Turns Off the Alarm

What happens when timer reaches 0?

The counter outputs Z = 1, which the
FSM can use to leave the ALARM state.

Where should it go?

ECE 120: Introduction to Computing © 2016-2017 Steven S. Lumetta. All rights reserved. slide 15

ALARM(0)
timer=T-1

ALARM(1)
timer=T-2

ALARM
(T-1)

timer=0
LOCKED…

ULP=x00 ULP=x00

ULP=x10ULP=x10
ULP=x10

Let’s say LOCKED.

ULP=x00

Treat the Other Three States as Single States

The timer bits are part of the FSM state.
What about the other three states in the
original design (LOCKED, DRIVER,
and UNLOCKED)?
These states are also split into
many new states!
But their behavior is independent
of the timer bits.
So we continue to treat them
as single states.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

Two Issues Need to be Addressed by the Implementation

Now let’s think about implementation.

Can we reuse the old design? Yes!

We have two issues to address:
1. Set timer = T-1 when entering

ALARM(0).
2. Move from ALARM to LOCKED

when Z = 1.

The counter handles the transitions from
ALARM(t) to ALARM(t+1).

ECE 120: Introduction to Computing © 2016-2018 Steven S. Lumetta. All rights reserved. slide 17

When Should the Counter Load a New Value?

1. Set timer = T-1 when entering
ALARM(0).

Recall that we enter ALARM(0) iff
the P button is pressed. So…

(What should we do?)

…and we’re done!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 18

P

Simplify the Implementation with a Mux

2. Move from ALARM to LOCKED
when Z = 1.

ALARM is S1S0 = 01.

LOCKED is S1S0 = 00.

So we only need to change . How?

Let’s use a mux:
the 0 input comes from the original logic.
the 1 input is 0 (to reach S1S0 = 00).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 19

Calculating the Mux Select is the Hardest Part

What controls the mux select?
We want to force the ALARM to LOCKED
transition when …

The system is in ALARM (S1S0 = 01),
AND ULP = x00,
AND Z = 1.

So the mux select signal is S1’S0L’P’Z.
But if we press L, we also move to LOCKED.
So we can simplify to S1’S0P’Z.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 20

Here’s the Extended Implementation

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 21

Output
logic is
also the
same.

