University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

A Color Sequencer

Review the Six-Step Process

Recall our six-step process for FSM Design:

1. develop an abstract model
2. specify I/O behavior
3. complete the specification
4. choose a state representation
5. calculate logic expressions
6. implement with flip-flops and gates

Let's Build a Color Sequencer

Let's do another example.	RGB	color
Let's build a color sequencer	$\mathbf{0 0 0}$	black
that cycles through a set	001	blue
of colors.	$\mathbf{0 1 0}$	green
Imagine that we have an	$\mathbf{0 1 1}$	cyan
LED light that can output	$\mathbf{1 0 0}$	red
eight colors...	$\mathbf{1 0 1}$	violet
Our FSM will drive this light using the RGB signals. $\mathbf{1 1 0}$	yellow	
	$\mathbf{1 1 1}$	white

Abstract Model for a Color Sequencer Has Five States

1. Our abstract model? A counter that goes through five colors. Like this:

Next, Define Inputs and Outputs
2. Inputs: none (it's a RGB color counter). 000 black Outputs? We can just 001 blue read RGB from the table 010 green for each state. 011 cyan 100 red 101 violet 110 yellow 111 white

Outputs Represent Red, Green, and Blue

Let's add the outputs (as/RGB) to the states.

ECE 120: Introduction to Computin
2016 Steven S. Lumetta. All rights reserved
slide

Completing the Specification

3. No inputs, so ... specification is complete!

Use Unique Outputs as the Internal State IDs

4. Outputs are again unique, so use them as state IDs as well.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

Write a Next-State Table

Now Use K-Maps to Express the Next-State Values

Now Use K-Maps to Express the Next-State Values

S_{2}	S	S			S_{1}^{+}	S_{0}^{+}	Now copy into K-maps.				
0	0	0		x	x	x	$\mathrm{S}_{1}^{+}=\mathrm{S}_{2}{ }^{\prime} \mathrm{S}_{1}+\mathrm{S}_{2} \mathrm{~S}_{1}{ }^{\prime}$				
0	0	1		1	0	0					
0	1	0		0	1	1	$=\mathrm{S}_{2} \oplus \mathrm{~S}_{1}$				
0	1	1		1	1	1	$\mathrm{S}_{1}^{+} \quad \mathrm{S}_{1} \mathrm{~S}_{0}$				
1	0	0		0	1	0		00	01	11	10
1	0	1		x	x	x		x	0	1	1
1	1			x	x	x		1	x	0	x
1	1	1		0	0	1					

Now Use K-Maps to Express the Next-State Values

S_{2}	S_{1}	S_{0}	S_{2}^{+}	S_{1}^{+}	S_{0}^{+}	Now copy into K-maps.				
0	0	0	X	x	x					
0	0	1	1	0	0	$\mathrm{S}_{2}^{+}=\mathrm{S}_{2}{ }^{\prime} \mathrm{S}_{0}=\left(\mathrm{S}_{2}+\mathrm{S}_{0}{ }^{\prime}{ }^{\prime}\right.$				
0	1	0	0	1	1					
0	1	1	1	1	1	S_{2}^{+}	$\mathrm{S}_{1} \mathrm{~S}_{0}$			
1	0	0	0	1	0		00	01	11	10
1	0	1	x	x	x	0	X	1	1	0
1	1	0	x	x	x	1	0	X	0	X
1	1	1	0	0	1					

Implement Using Three Flip-Flops and Two Gates

6. Finally, we can implement, as shown to the right.

$$
\begin{aligned}
& \mathbf{S}_{2}^{+}=\left(\mathbf{S}_{2}+\mathrm{S}_{0}{ }^{\prime}\right)^{\prime} \\
& \mathbf{S}_{1}^{+}=\mathrm{S}_{2} \oplus \mathrm{~S}_{1} \\
& \mathbf{S}_{0}^{+}=\mathrm{S}_{1}
\end{aligned}
$$

Behavior Seems to Be Inconsistent

You debug for a while.
You play with wires.
You look at datasheets.
Everything seems right.
Sometimes it works.
Sometimes it flashes yellow or violet, then works.
Sometimes it stays black.
What's going on?

Ready to Build It?

Are you excited?

Imagine that you go get your protoboard out.
You go to the lab.
You build the color sequencer.
You hook it to the LED light.
You turn it on.

It stays black.

Seem familiar?

Our Don't Cares Become 0s for S_{2}

What happened to the "don't care" states?
Let's take a look.
We can use our K-maps or our equations.
For S_{2}, the x 's became 0s.

$$
\begin{aligned}
& 000 \rightarrow \mathbf{0} ? ? \\
& 101 \rightarrow 0 ? ? \\
& 110 \rightarrow 0 ? ?
\end{aligned}
$$

One x Becomes a 1 for S_{1}

For S_{1}, the x for state 101 became a 1 , and the others became 0s.

$$
\begin{aligned}
& 000 \rightarrow 00 \text { ? } \\
& 101 \rightarrow 01 \text { ? } \\
& 110 \rightarrow 00 \text { ? }
\end{aligned}
$$

One x Becomes a 1 for S_{0}

For S_{0}, the x for state 110 became a 1 , and the others became 0s.

So what comes

S_{0}^{+}	$\mathrm{S}_{1} \mathrm{~S}_{0}$			
	00	01	11	10
0	x	0	1	1
$\mathrm{S}_{2} 1$	0	x	1	x

$$
\text { Black again! } \quad \begin{array}{ll}
000 & \rightarrow 000 \\
101 & \rightarrow 010 \\
110 & \rightarrow 001
\end{array}
$$

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 18

Full Transition Diagram Illustrates Buggy Behavior

We can add these states to our diagram.

Avoid Bad States by Initializing the Counter State

What can we do? Let's add a way to initialize.
We can...

- choose a specific (hardwired) initial state at power-on (one from our loop*),
- use muxes to enable ourselves to set the state arbitrarily at any time,
- or use one signal to force the system into the loop, such as $\mathbf{S}_{0}^{+}=\left(\mathbf{S}_{1}{ }^{\prime} \mathbf{I N I T}^{\prime}\right)$ ' (active low).
*Forcing all flip-flops to 0 doesn't help!

One Can Always Backtrack in the Design Process
Alternatively,

- we can go back to our K-maps and add loops.
- We may need to iterate a couple of times to find a design that always works.
We could also just choose specific next states for the states outside of our loop.

These approaches require more logic.

