
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

FSM Design Process

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 1

We Follow a Six-Step Process to Design an FSM

Here is a structured methodology that
you can use to develop an FSM.

There are six steps:
1. develop an abstract model
2. specify I/O behavior
3. complete the specification
4. choose a state representation
5. calculate logic expressions
6. implement with flip-flops and gates

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

Step 1: Develop an Abstract Model

First, we translate our ideas and thoughts
from human language
into a model with states and desired
behavior.

For now, just capture intended use
(no need to be thorough nor complete).

What are the different states of the system?

How do we expect it to move amongst these
states?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

Step 2: Specify I/O Behavior

Start to formalize a little by specifying input
and output behavior.
Input and output must consist of bits.
How many inputs are needed?
What representation is used?
And the same questions for outputs.
Sometimes, the FSM I/O must match other
systems, so representations (using bits) are
already defined.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

Step 3: Complete the Specification

We are now ready to resolve any ambiguities
by making design decisions
(in other words, choosing behavior).

Implicit assumptions should also be made
clear and written down.

We may choose to leave some behavior as
“don’t care,” but such a decision should be
made carefully (and checked later).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

Step 4: Choose a State Representation

The FSM state representation will affect logic for
both next states and outputs.

Some ways to choose
match state to output
(output patterns must be unique),
map states to hypercube such that transitions
are mostly along edges, or
use human meaning for state bits.

The last is a good way to choose because it
separates bits into meaningful groups that may
not affect each other (thus simplifying logic).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

Step 5: Calculate Logic Expressions

Once you have completed the specification of
state IDs, next states, and outputs in bits, all
that’s left is to build combinational logic.

If you have a lot of variables, breaking the
truth tables up may help.

State bits that have human meaning also
helps to simplify here: bits may be ignored if
they are not relevant.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

Step 6: Implement with Flip-Flops and Gates

State bits are stored in flip-flops.*
Next-state and output logic are built
in the same way that you build any
other combinational logic.
There’s nothing special about it.
Hook the next-state logic outputs to
the D inputs of the flip-flops.
Output bits are functions of the flip-flop state.

*Registers, shift registers, and counters are fine, too.
We’ll use those in a week or so.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

A Quick Example: A 2-Bit Gray Code Counter

Let’s design a 2-bit Gray code counter using
our methodology.

1. Our abstract model? A counter that goes
through four states. Like this:

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

COUNT DCOUNT CCOUNT BCOUNT A

Defining I/O and Completing the Specification

2. Inputs: none (it’s a counter).

Outputs? 00, then 01, then 11, then 10,
then back to 00.

3. No inputs, so … specification is complete!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

COUNT DCOUNT CCOUNT BCOUNT A

Choose Output Bits as the State IDs

4. What about the representation?

The outputs are unique, so let’s use them
as state IDs as well. Then we need no
output logic.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

COUNT D
10/10

COUNT C
11/11

COUNT B
01/01

COUNT A
00/00

Solve the Next-State Equations

5. Now we can write
equations from a truth table.

= S0

= S1’

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

COUNT D
10/10

COUNT C
11/11

COUNT B
01/01

COUNT A
00/00

S1 S0

0 0

0 1

1 0

1 1

0 1

1 0

1 1

0 0

Implement Using Two Flip-Flops

6. Finally, we can implement, as shown below.

= S0

= S1’

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13

