

 We Consider Both Synchronous and Ripple Counters We focus mainly on synchronous counters, for which the flip- flops use a common clock signal. In other words, they are clocked synchronous sequential circuits, and allow us to pretend that time is discrete. We will also look briefly at ripple counters, in which flip-flop outputs are used to clock other flip-flops. Such designs can save significant power. 	<section-header>Example: 3-Bit Binary Counter Let's do an example. The state transition diagram to the right defines a 3-bit binary counter. The states correspond to unsigned numbers 0 to 7, after which the counter returns to the 000 state.</section-header>
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

Write a Next-State Table						No	
S ₂ 0	S ₁ 0	S ₀ 0	S ₂ ⁺ 0	S ₁ ⁺ 0	S ₀ ⁺ 1	Start by writing a next-state table.	<u>S₂</u> 0
0 0	0 1	1 0	0	1 1	0 1		0 0
0	1	1	1	0	0	3-bit	0
1	0	0	1	0	1	(110) binary counter avala	1
1	0	1	1	1	0		1
1	1	0	1	1	1		1
1	1	1	0	0	0		1
ECE 190	0. Introdu	ation to C	monting			© 2016 Steven S. Lumetta, All rights reserved slide 7	ECE 15

Now Use K-Maps to Express the Next-State Values

	\mathbf{S}_2	\mathbf{S}_1	\mathbf{S}_{0}	S ⁺ ₂	S ⁺ ₁	S_0^+	Now copy into K-maps.
	0	0	0	0	0	1	
	0	0	1	0	1	0	$s^{+} - s^{2} - s \oplus 1$
	0	1	0	0	1	1	$S_0 - S_0 - S_0 \cup I$
	0	1	1	1	0	0	\mathbf{s}^+ $\mathbf{S}_1\mathbf{S}_0$
	1	0	0	1	0	1	S ₀ 00 01 11 10
	1	0	1	1	1	0	0 1 0 0 1
	1	1	0	1	1	1	\mathbf{S}_2 1 1 0 0 1
	1	1	1	0	0	0	
_	ECE 120: Introduction to Computing © 20						© 2016 Steven S. Lumetta. All rights reserved. slide 8

When Do Place Values Change in Decimal Counting?	Can We Use Counting to Generalize the Counter Design?
When you count in decimal, when does a place value change? For example, when does the number of thousands change? $0999 \rightarrow 1000$ $1999 \rightarrow 2000$ $2999 \rightarrow 3000$ What about the number of ten thousands? $09999 \rightarrow 10000$ $19999 \rightarrow 20000$ $29999 \rightarrow 30000$ Only when the lower digits are all 9.	So what about in binary? Only when the lower digits are all 1. We have $S_0^+ = S_0' = S_0 \oplus 1$ $S_1^+ = S_1S_0' + S_1'S_0 = S_1 \oplus S_0$ $S_2^+ = S_2'S_1S_0 + S_2S_1' + S_2S_0'$ Can you simplify the last equation? How about $S_2^+ = S_2 \oplus (S_1S_0)$?

Ripple Counters are Slower

What's the tradeoff?

Changes to internal state

- ripple through the counter from bit to bit, so
- they are slower than synchronous counters.

What about clock skew?

In general, it may be an issue, but

- we will only **consider one simple design**, and
- more complex ripple counters can usually be designed in isolation from other logic.

Binary Ripple Counters are Built from Bit Slices

ECE 120: Introduction to Computing

