ECE 120: Introduction to Computing

Binary Counters

What happens if an FSM has no inputs?

(no inputs) (no inputs)

The FSM moves
from state to state.

(no inputs)

But there are
finite many
states...
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So the FSM eventually returns to some state.

(no inputs) (no inputs)

(no inputs)

An FSM without inputs is called a counter.

A counter may sometimes have inputs
°to start/stop the counter
o to reset the counter to a known state

o and sometimes to make the counter
count in different ways (for example,
up or down).

But the basic idea is the same: the normal
operation of a counter is a loop of states.
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We Consider Both Synchronous and Ripple Counters

We focus mainly on

osynchronous counters, for which the flip-
flops use a common clock signal.

o In other words, they are clocked
synchronous sequential circuits, and
allow us to pretend that time is discrete.

We will also look briefly at

cripple counters, in which flip-flop outputs
are used to clock other flip-flops.

> Such designs can save significant power.

Example: 3-Bit Binary Counter

Let’s do an example.

The state transition
diagram to the right
defines a 3-bit binary
counter.

The states correspond to
unsigned numbers 0 to 7,
after which the counter
returns to the 000 state.
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Write a Next-State Table

S, S; So[Sz Si So Start by writing a

0O 0[O0 O 1 next-state table.

P P PR R OO O O

H B OoOORBKEO
H OKRrOBROHR
O KRB R K KL O O
OB KB OOMR R
ORr oOokr O KR o

Now Use K-Maps to Express the Next-State Values

Sy 81 So|S; ST S¢ Now copy into K-maps.

0O 0 0|0 O 1

0 0 1|0 1 0 St =S,=S,®1

01 0l0 1 1 oo

01 1)1 0 0 S,S,

1 0 0|1 0 1 0 00 01 11 10

1 0 1|1 1 0 0—1\ 0|o0|1]
Sy

1 1 01 1 1 1JJ ol oll1

1 1 1,0 0 O
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S; Si So|Sz ST So Now copy into K-maps.
0 0 0[0 0 1 St =8,8,+S,'S,
0 0 1|0 1 0 —5 88
01 0/0 1 1 P
0O 1 1|1 0 O g+ S,S,
1 0 0|1 o0 1 1 00 o1 11 10
1 0 1|1 1 O ol 0 |1 0 (1
11 0/1 11 5 —] m
1 0 1] o U]
1 1 1,0 0 O

S; Si So|Sz ST So Now copy into K-maps.

0 0 0/0 0 1  g_gu5q 48,5,

0 0 1|0 1 O +S,S,y

0 1 o0 1 1

0O 1 1|1 0 O = S,S,

10 0|1 0 1 * 0 o1 11 10

1 0 1|1 1 0 0/ 0|0 0
S

1 1 0|1 1 1 Z 1|13 1 l 0 CZ

1 1 1/,0 O O

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

slide 10

When you count in decimal,
when does a place value change?

For example, when does the
number of thousands change?

0999 — 1000 1999 — 2000 2999 — 3000
What about the number of ten thousands?

09999 — 10000
19999 — 20000
29999 — 30000

Only when the lower digits are all 9.

So what about in binary?

Only when the lower digits are all 1.
We have ...

St =Sy’=S,®1

ST =8S,S,+S,’S,=5,8 S,

Sy =8S,°S;S, + S,S,” + S,y

Can you simplify the last equation?
How about S3 =S, ® (S;S,)?
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>do you need to draw a K-map?
> Or can you write S3 from our generalization?

So 5,5,
S3 =S; @ (S,5,Sy) TU_L 55,5

What about S;?
S: =S, (S5S,S:Sy) — | — ol

And S;? J— Sﬂa S‘a Sza 336
St =S, ® (S,5,5,5,5) L A

1
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> bigger gates (more area) and
o less delay.

S,8,S, Serial gating gives
o smaller gates (less area) but
o more delay.

In practice,
o gate sizes are limited, so

o counters use a combination of the two
approaches.

o Z V3
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We just designed a

Now, let’s take a look at a binary ripple
counter, in which the clock is not shared.

In a ripple counter,
coutputs from some flip-flops

oare used to clock other flip-flops
(used as the clock signal input).

Why?
°Recall that changing gate output values
implies electric current, which implies
power consumption.
> Clocking flip-flops more slowly
reduces energy consumption.
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What’s the tradeoff?

Changes to internal state
o ripple through the counter from bit to bit, so
o they are slower than synchronous counters.

What about clock skew?
In general, it may be an issue, but

owe will only consider one simple design, and

o more complex ripple counters can usually be
designed in isolation from other logic.

The figure below shows a
4-bit binary ripple counter.

As you can see, the design
uses a simple bit slice.

Lo | Lo | Lo | L
So Si S» Ss

CLK — 6

2l
o\
Ql

Zo 1 Z:
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