
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Finite State Machines (FSMs)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 1

A Finite State Machine (FSM) Models a System

A model of a system
system moves among a finite set of states
motion based on external inputs
produces external outputs

Examples include:
coin/bill-operated machines,
many vehicle control systems, and
computers executing programs.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

An FSM Consists of Five Parts

1. a finite set of states

2. a set of possible inputs

3. a set of possible outputs

4. a set of transition rules

5. methods for calculating outputs

When implemented as a digital system, all
parts of an FSM must be mapped to …

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

bits!

(bits)

(bits)

(bits)

(Boolean
expressions)

(Bool.
expr’s)

A Digital FSM Must be Complete

We implement FSMs as clocked synchronous
sequential circuits. (So state ID bits are
stored in flip-flops.)

Given any state and any combination of
inputs, a transition rule from the given
state to a next state must be defined.

Self-loops–transitions from a state to itself–
are acceptable.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

Use Keyless Entry as a Motivating Example

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

meaning state
driver’s

door
other
doors

alarm
on?

Table is a list of abstract states.

vehicle
locked LOCKED locked locked no

driver door
unlocked DRIVER unlocked locked no

all doors
unlocked UNLOCKED unlocked unlocked no

alarm
sounding ALARM locked locked yes

A List of Abstract States Need Only List States

In a list of abstract states,
we can just list the states.
Adding human meanings is optional
(good to have if state names are generic).

Including outputs
is also optional,
and implies that
outputs depend only on state.*
*An extra assumption that we will always make in our class.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

An Abstract Next-State Table Captures Expected Behavior

To specify transitions, we use a next-state
table, which maps combinations of states and
inputs into next states.

This is an abstract next-state table.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

state action/input next state

LOCKED push “unlock” DRIVER

DRIVER push “unlock” UNLOCKED

(any) push “lock” LOCKED

(any) ALARMpush “panic”

Abstract Next-State Table Does Not Answer All Questions

We wrote transitions for typical use cases, but
the table can be incomplete, ambiguous,
and even inconsistent.

For example, what happens if the user pushes
“lock” and “unlock” at the same time?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

state action/input next state

LOCKED push “unlock” DRIVER

DRIVER push “unlock” UNLOCKED

(any) push “lock” LOCKED

(any) push “panic” ALARM

Many Design Decisions are Usually Needed

All such design decision questions should
eventually be considered, and preferably
answered.
Be aware: any digital logic
implementation will define answers.
Only when any possible answer is acceptable
should you make use of “don’t cares.”
Typically, you should review the final
implementation to determine how any
questions left open are answered.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

Abstract State Transition Diagram: the Same Information

We can
represent the
same
information
as a graph
called an
abstract state
transition
diagram.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

push “unlock”

pu
sh

 “
u

n
lo

ck
”

pu
sh

 “
lo

ck
”

push “lock”

pu
sh

 “
pa

n
ic

”

push
“lock”

push
“panic”

push
“lock”

push “panic”

push
“panic”

ALARM

LOCKED DRIVER

UN-
LOCKED

It’s Time to Make Our Design Complete and Concrete

The abstract next-state table and the abstract
state transition diagram (can) contain
exactly the same information.

They answer the same questions.

And neither is complete.

So. It’s time for …

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

bits!

Let’s Start with the State Identifiers

How many bits do we need
to identify a state?

There are 4 states.

() = .

Call them S1S0.

“S” is for “S(tate).”

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

All Outputs and Inputs Must Also Use Bits

What about outputs?
D driver door; 1 means unlocked
R remaining doors; 1 means unlocked
A alarm; 1 means alarm is sounding
And inputs?
U unlock button; 1 means it’s been pressed
L lock button; 1 means it’s been pressed
P panic button; 1 means it’s been pressed

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13

We Next Choose a Representation for States

Now we can choose a representation for states
and rewrite our list of states.

The order of states in the list doesn’t matter.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

meaning state S1S0 D R A

vehicle locked LOCKED 00 0 0 0
driver door unlocked DRIVER 10 1 0 0

all doors unlocked UNLOCKED 11 1 1 0
alarm sounding ALARM 01 0 0 1

Choice of Representation Affects Amount of Logic Needed

As you may realize
from your experience with bit-sliced designs,
the representation does matter
(for the amount of logic needed).

We will talk more later about ways to choose.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15

Use to Denote the Next State (in Next Clock Cycle)

The +’s in indicate that these are values
in the next clock cycle.

Let’s rewrite the next-state table with bits.
The table gives us as a function of
current state S1S0 and inputs ULP.
Such tables typically use binary order for
states (vertical) and inputs (horizontal).
We use Grey code order on both axes for
convenience (in copying to K-maps).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

How to Fill in the Next-State Table

Where should we start?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 17

current
state
S1S0

ULP
000 001 011 010 110 111 101 100

00

01

11

10

What about
multiple buttons?

Let’s make
some design

decisions first…

Completing the Design Requires Decisions

To fill in the next-state table
starting with only the abstract design,
we need to make many design decisions,
including some that we haven’t even
recognized yet.

For example,
What happens when the user presses more
than one button?
What happens when the user presses
“unlock” in the UNLOCKED state?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 18

Make Design Decisions Early When Possible

Let’s try to make decisions first.

Design decisions can shape the design,
and may conflict with one another.

Making decisions early and writing them
down ensures that

any issues are raised early, and that
known decisions are not overlooked
(in which case the final design answers them
implicitly, with no human guidance).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 19

Start by Deciding How to Handle Multiple Buttons

We’re going to start by
prioritizing the buttons.

Our rules:
Panic has priority!
Lock has second priority.
Unlock only matters when
neither of the others is pressed.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 20

Start with the Panic Button (Highest Priority)

The next-state table gives us .

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 21

current
state
S1S0

ULP
000 001 011 010 110 111 101 100

00

01

11

10

panic button pushed

01

01

01

01

01

01

01

01

01

01

01

01

01

01

01

01

Continue with the Lock Button (Second Priority)

The next-state table gives us .

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 22

current
state
S1S0

ULP
000 001 011 010 110 111 101 100

00 01 01 01 01

01 01 01 01 01

11 01 01 01 01

10 01 01 01 01

lock button pushed

00

00

00

00

00

00

00

00

No Buttons? No Change. All Self-Loops

What if the user pushes nothing?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 23

current
state
S1S0

ULP
000 001 011 010 110 111 101 100

00 01 01 00 00 01 01

01 01 01 00 00 01 01

11 01 01 00 00 01 01

10 01 01 00 00 01 01

no buttons pushed

00

01

10

11

Finally, Unlock … But are We Done?

Two transitions were defined for Unlock.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 24

current
state
S1S0

ULP
000 001 011 010 110 111 101 100

00 00 01 01 00 00 01 01

01 01 01 01 00 00 01 01

11 11 01 01 00 00 01 01

10 10 01 01 00 00 01 01

10

11

from LOCKED

from DRIVER

What about
these?

We Have More Design Decisions to Make!

What should happen if we press “unlock”
when the car is already fully unlocked
(in the UNLOCKED state)?

Maybe just stay UNLOCKED.

What should happen if we press “unlock”
while the alarm is sounding?

Continue to lock out an attacker / thief?
Or open the doors so that the owner can
climb inside quickly?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 25

Let’s Implement Our Decisions

Ignore Unlock in both other cases.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 26

current
state
S1S0

ULP
000 001 011 010 110 111 101 100

00 00 01 01 00 00 01 01 10

01 01 01 01 00 00 01 01

11 11 01 01 00 00 01 01

10 10 01 01 00 00 01 01 11

01

11

from ALARM

from UNLOCKED

The Rest You Know How to Do

The rest is K-maps, expressions, and logic.
1. Express and in terms

of S1, S0, U, L, and P.
2. Express D, R, and A in terms of S1, S0.
3. Build the combinational logic.
4. Put the next state expressions and

into the D inputs of two flip-flops.
You should do it as an exercise. Break up the
truth tables or use 5-variable K-maps.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 27

One Last Tool: the Complete State Transition Diagram

The complete state transition diagram
contains the information in both the
state list and the next-state table.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 28

ULP = _ _ _

STATE
S1S0/DRA

state ID / outputs

inputs for this transition

ULP=000
or 100

Complete State Transition Diagram

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 29

ULP=100

U
L

P
=

10
0

U
L

P
=

x1
0

ULP=x10

U
L

P
=

xx
1

ULP=
x10

ULP=xx1,x0x

ULP=000,x10

ULP=xx1

ULP=xx1

ALARM
01/001

LOCKED
00/000

DRIVER
10/100

UN-
LOCKED
11/110

abbreviate as
ULP = x00

ULP=000

Be Careful with Input Abbreviations

Input abbreviations can render
a state transition diagram

incomplete (if labels fail to
cover all input combinations), or
inconsistent (if labels indicate
multiple next states).

For example,
self-loop from ALARM labeled ULP=xx1,x0x:
the patterns x01 match both labels!
In this case, these two combinations go
to the same next state, so it’s ok.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 30

