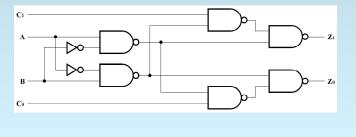
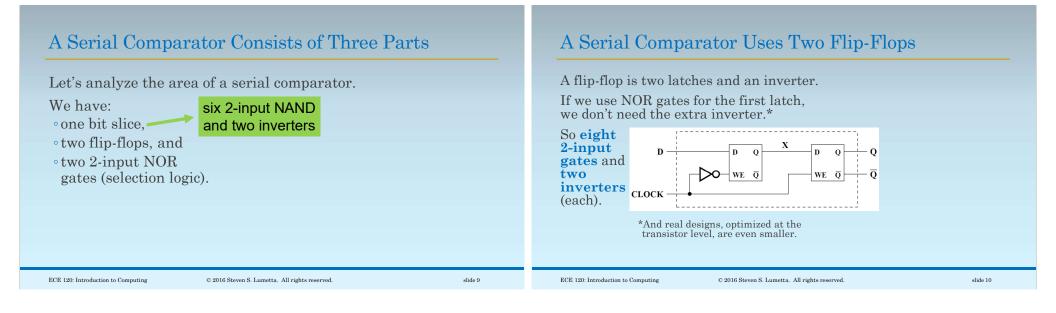


A Serial Comparator Consists of Three Parts

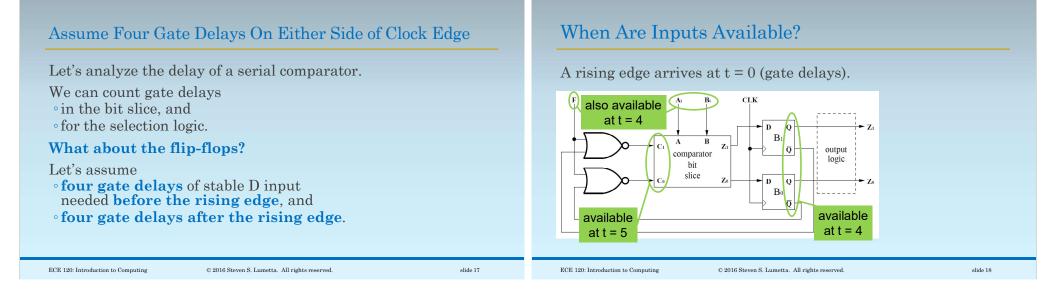

Let's analyze the area of a serial comparator.

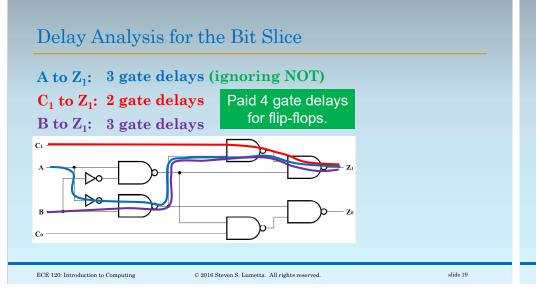
We have:


- one bit slice,
- ° two flip-flops, and
- two 2-input NOR gates (selection logic).

A Serial Comparator Contains One Bit Slice

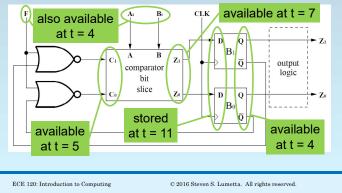
Assume the smaller version of the bit slice. So we need **six 2-input NAND gates** and **two inverters**.


ECE 120: Introduction to Computing



A Serial Comparator Consists of Three Parts	Serial Design is Smaller for $N \ge 4$
Let's analyze the area of a serial comparator. We have: • one bit slice, • two flip-flops, and • two 2-input NOR gates (selection logic). Total: 6+16+2 = 24 2-input gates and 2+4 = 6 inverters.	To handle N-bit operands, a bit-sliced design requires: • 6N 2-input gates, and • 2N inverters. A serial design (independent of N) requires • 24 2-input gates, and • 6 inverters. The serial design is smaller for N ≥ 4.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

 Serial Designs are Slower than Bit-Sliced Designs The tradeoff? Serial designs are slower than bit-sliced designs. Why? There are three reasons: All paths matter. Selection logic and flip-flops add to delay. Other logic may further reduce the speed of the common clock. Let's look at each in more detail. 	 All Paths Matter in a Serial Design In an N-bit bit-sliced design, All external inputs appear at time 0, So only the slice-to-slice paths in the bit slice contribute to the multiplier on N. Other paths contribute only constant time to the overall delay in the design. In a serial design, all paths matter. All input bits arrive in the cycle in which they are consumed, so long paths from any input can slow down the design overall.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14


 Flip-Flops and Selection Logic Add to Delay Flip-flops take time To store values, To produce values. And the selection logic sits between the flip-flops and the bit-slice inputs. The clock cycle must be long enough to account for all of these delays. 	Clock Speed is Determined by the Slowest Logic The longest path through combinational logic determines the speed of the common clock. In practice, • engineers identify complex and/or important elements and • work hard to make them fast or • to split them into several cycles. Even if a serial design's logic needs only 0.1 clock cycles, operating on N-bit operands still takes N clock cycles.
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

When Are Results Stored?

A rising edge arrives at t = 0 (gate delays).

Serial Design is At Least 5.5x Slower To handle N-bit operands, a bit-sliced design requires 2N + 1 gate delays. For a serial design, • the clock cycle must be at least 11 gate delays, and • we must execute for N cycles, so • N-bit operands require at least 11N gate delays. The serial design is at least 5.5x slower. (And may be even slower!)	 Bit-Sliced and Serial Designs are Extrema Both designs are simple. Serial designs are relatively small, but slow. Bit-sliced designs are fast, but large. But we can build anything in between: 2 bit slices per cycle, 3 bit slices per cycle, and so forth. And/or optimize more than one bit slice (increase complexity).
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 21	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 22

An Example of Partial Serialization in Practice

In one generation of Intel processors, • the designers included **16-bit adders** • clocked at twice the main clock speed (6 GHz instead of 3 GHz). These adders could be used to ... • perform a single 32-bit add (two cycles at 6 GHz), or • perform two 16-bit adds for multimedia codes.

slide 23