
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Registers

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 1

A Register Stores a Set of Bits

Most of our representations use sets of bits:
unsigned, 2’s complement, floating-point,
ASCII.

Even messages between bit slices often require
more than one bit to convey a given meaning.

A flip-flop stores a single bit.

A register is
a storage element
composed from one or more flip-flops
operating on a common clock.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

Add an Input to Control Changing a Register’s Bits

A flip-flop stores a new bit every cycle.

With registers, we want to control
when the bits change value.

So we add a LOAD (or LD) input.

When LOAD = 1 on a rising clock edge, the
register stores a new set of bits.

When LOAD = 0, the
register retains its currently stored bits.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

Clock Gating Uses Extra Gates to Hide the Clock Signal

How should we implement the LOAD input?

The approach below may seem attractive.

It’s called clock gating.

Generally, you should avoid this technique.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

Changes to LOAD Must be Timed Carefully

From previous figure, c = LOAD’ + CLK.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

Clock Gating Contributes to Clock Skew

More importantly,
the extra gates in front of CLK
contribute to clock skew!

So clock gating adds further complexity
to the problem of distributing the clock
signal to all of the flip-flops.
Except for one application (ripple counters, in
a couple of weeks), you should always use and
assume a common clock signal in our class (no
clock gating).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

LOAD Controls Whether a Register Loads a New Value

So the question remains: How should we
implement the LOAD input?

Use a mux!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

A 1-Bit Register with a LOAD Input

The design below is a 1-bit register.

How can we create an N-bit register?

Use this design as a bit slice.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

The LOAD Signal Controls All Bits of the Register

A 4-bit register with parallel load.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

A Shift Register Shifts Bits from Flip-Flop to Flip-Flop

If we need to load registers one bit at a time,
we can construct a shift register, as shown
below (this one is a right shift register).

In every cycle, bits shift in from serial input
SI and shift out through serial output SO.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

Simple Shift Registers Have Many Applications

For example, optical networks can transmit
bits at rates above 100 × 109 / second
(100 Gbps), but CMOS clock speeds rarely
exceed 4-5 GHz.

Deserialization (and serialization,
SERDES) can be done with shift registers:

shift into a 25-bit shift register at
100 GHz,
then read 25 bits out in parallel at 4 GHz.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

Shift Registers Provide Fixed Delay

My postdoc is currently working on
acceleration of a particular code for
computational genomics.

Data arrive from memory in a block (in a
single cycle), but different parts of the data
are needed in different cycles.

Solution? Use shift registers to deliver
each part of the data to the computation
elements in the correct cycle.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

Shift Registers Can Also Be Designed to Stop Shifting

A shift register need not shift in every cycle.
Below, we use the SHIFT input to make the
register hold its current value (SHIFT = 0).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13

Shift Registers Also Require Fewer Wires

Serial load (shift registers) is also useful
when wires are the limiting resource,
as is usually the case with pins on a chip.
Recall that parallel load of an N-bit register
requires N input wires (not counting LOAD).

Examples of such applications include
configuration of reconfigurable hardware
such as Field-Programmable Gate Arrays
(FPGAs, which you will use in ECE385),
and testing of digital systems (shift bits in,
run for a cycle, shift bits out for testing).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

Many Options for the Design of Shift Registers

direction (meaningful for some representations):
right: from most significant bit (MSB) to least
significant bit (LSB)
left: from LSB to MSB.

boundaries: how to manage serial input
exposed: input signal for serial input SI
logical: shift in 0s (serial input)
arithmetic: shift based on representation
cyclic: connect SO back to SI, possibly through
another register (allows building of bigger shifts
from smaller ones).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15

We Can Combine Several Types

But we don’t have to pick one design.

Let’s build one register that performs one of
four distinct operations based on control
inputs C1C0.

For example…

How can we
build it?

With a mux!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

C1C0 meaning

00 retain current value

01 shift left (low to high)

10 load new value (from INi)

11 shift right (high to low)

We Can Combine Several Types

Each bit of the register uses a 4-to-1 mux.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 17

C1C0 meaning

00 retain current value

01 shift left (low to high)

10 load new value (from INi)

11 shift right (high to low)

