University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Static Hazards*

ECE 120: Introduction to Computing
O 2016 Steven S. Lumetta. All rights reserved.
slide 1

$* ~$

Circuit Timing Can Cause Problems with Functionality

For our class, you need understand only the basics of timing:

- how to estimate delay (as gate delays), - and how to check for stable states (trace changes until nothing changes).
In later classes, you will need to understand timing more deeply.
So let's take a look at how timing matters, just as a preview.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 2

```
***********************************
    Hazards, Glitches, and Errors
```

When a circuit may have a problem due to timing, we say that the circuit has a hazard.
If a combinational circuit's output is temporarily incorrect, we say that its output exhibits a glitch.
When a sequential circuit enters a state (a set of stored bits) that it should not enter by design, we say that the circuit has an error.
Typically, an error implies a glitch, which in turn implies a hazard, but not vice-versa.

*
 Static Hazards Allow for Change in Constant Output

The notes (Section 2.6.3* and following) discuss three types of hazards.

Static hazards

- allow a combinational circuit's output to change when moving between input combinations that should produce the same output.
- With a static-1 hazard, for example, both input combinations should produce a constant output of 1 , but the output may drop to 0 briefly because of timing.

*

Dynamic Hazards Allow Bouncing in Changing Output
Dynamic hazards

- occur when an input combination changes from one that should produce an output of 0 to a combination that should produce an output of 1 (or vice-versa).
- In these cases, the output should change exactly once.
- If a dynamic hazard is present, the output may bounce between 0 and 1 before settling to its final value.

********************************** Essential Hazards Cannot be Eliminated

Essential hazards

- are related to the function implemented by the circuit.
- Unlike static and dynamic hazards, they cannot be eliminated.

In clocked synchronous sequential circuits (and, thus, in the designs in our class), all essential hazards are mapped to clock skew.

$* *$
 Removing Static Hazards

If glitches in a circuit's output can cause problems, one can eliminate all static hazards.
Consider the circuit below. What is S ?

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 7
$* *$
The Output S Should Stay at 1
So $\mathrm{S}=\mathrm{AB}+\mathrm{B}^{\prime} \mathrm{C}^{\prime}$.
Let's see what happens when we move from $\mathrm{ABC}=110$ to $\mathrm{ABC}=100 . \quad$ 2. AND output
Both should produce $\mathrm{S}=1$.

ECE 120: Introduction to Computing

```
*****************
The Output S Drops to 0
```

The output glitches because the inverter for B delays the change in the lower AND gate.

* Fix Static Hazards by Adding More Gates

What can we do?
Take a look at the K-map.

The loops represent the AND gates.
$\mathrm{ABC}=110$ to 100 moves between loops.
Let's add a new loop

(and a new AND gate).

The new AND gate will stay at 1 .

$* ~$

See Notes Sections 2.6.3* through 2.6.6* if you want to learn more.

