ECE 120: Introduction to Computing

Multiplexers (Muxes)

ASCII character is a lower-case letter.

In ASCII, 'a' is 1100001 (0x61),
and 'z'is 1111010 (0x7A).

Recall that 'A' is 1000001 (0x41),
and 'Z'is 1011010 (0x5A).

Can we reuse our solutions
for upper-case letters?

Of course we can!

ECE 120: Introduction to Computing © 2016-2018 Steven S. Lumetta. All rights reserved.

slide 1

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

isin C = C4,C,C,C,;C,C,C,.
By breaking up the truth table, we obtained
UC) = C +C,+C, + C0

Cs + Cz’)sz, +Cy +Cyp)
But lower-case characters are only different
from upper-case in C;, which is 1 instead of 0.

L(C) = CCC (C +C,+C,+Cp) +
C,(Cy ¥ CHCy +Cy + Cp)

A B A B
discard -—— 7, 7—bit 1 0 A 7—bit C [0
comparator comparator
Zo Co fe—0 ~~— Ze Co fe——0
discard
Z,=1 Z, =1
implies implies
C < (x41 C > Q%54 0x7A
0x61 »

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

What if we want one design to check for
either upper-case or lower-case letters?
In a few examples,

owe added a control signal S

°to select between functions.

Can we design logic
othat uses a control signal S to select

obetween two arbitrary signals,
D, (when S = 1) and D, (when S = 0)?

A full truth table for such
logic appears to the right.

But we could shorten it as
shown below...

"

H KL R OoOOOOoOW
H Hoor r o o|lC
H oror or ol

=

HHOOI—!OHO|,O

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

In this case, we can even write outputs
in terms of other inputs, as shown here.

S| Q
0 (D,
S D, D, 1D,
o(:)o
0 (x 1|
10@
11@

Let’s solve with a K-map.

Q=SD, + SD,
D,D,
Q 00 01 1 10

ol 0 [[1]

0

1100 |[1]

1]

—

H KRk KB OOOOoOW
H Hookrr o ol
mH oror or ol

=

HHOOI—!OHO|,®

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

Q=SD, + SD, S| Q
0|p,
Could we have just written 1|D,
this expression using the table
to the right?

Qis D, when S =0, and D, when S=1...

(multiplexer), for which the symbolic form
appears to the right.

S

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

slide 10

between four expressions,

D;, Dy, D,, and D,?

One answer 1s to use muxes
hierarchically:

o start by using one D, or D,

2-to-1 mux (signal S,)

o to decide between
D; or D, and D, or D,

D, or D,

deliver two
expressions to each
mux input?

Use more muxes

(both controlled by S)!

Notice that S;S, then
allows us to choose
from four expressions.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

slide 12

common as a mux, |
we typically build ! §

For something as I ;
directly from gates.

Notice that 7| |
each AND gate | L ‘
produces a i — e
minterm of S;, S, § i
ANDed with the | =T D;S/S,
corresponding D;. - D,S ,‘SO,

The diagram to the right shows S
the symbolic form of a

4-to-1 mux. Ds
We can, of course, further extend D:
this idea to build 8-to-1 muxes, e

16-to-1 muxes, and so forth.

When selecting amongst P = 2N
inputs Dp; ... D, we need N bits
of select input, Sy ... S,.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

slide 13

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

slide 14

We can also generalize the idea
of multiplexers by

ousing a common control signal
°to select between groups of inputs.

Generally,
can N-to-M multiplexer

crepresents M separate
(N/M)-to-1 muxes

ceach with log,(N/M) select bit inputs
o (typically N/M = 2K for some integer K).

For example, recall the design of
the N-bit adder and subtractor.

We could have used a 2N-to-N mux
°to choose between B, and B;’
for the adder’s B input

°based on a common (one-bit)
control signal S.

(Previously, we used the nature of the mux’
data inputs, B; versus B;’, to simplify each
mux’ logic to an XOR gate.)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

slide 15

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

slide 16

Say that we want four kinds of comparison:
o control characters (0x00 to 0x1F),

o lower-case letters (0x41 to 0x5A),
supper-case letters (0x61 to 0x7A), and

0x00 0x41 0x61 0x30 0x1F 0x5A 0x7A 0x39

B
Z T—bit C —0

discard=—— z, o o

. . comparator comparator
o digits (0x30 to 0x39). 7 L o —o
How can we design logic to check
for any of the four types?
R
ECE 120: Introduction to Computing © 2016-2018 Steven S. Lumetta. All rights reserved. slide 17 ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 18

