

Change C_5 to C_5 to Obtain L(C) from U(C)

Let's again say that the ASCII character is in $\mathbf{C} = \mathbf{C}_6 \mathbf{C}_5 \mathbf{C}_4 \mathbf{C}_3 \mathbf{C}_2 \mathbf{C}_1 \mathbf{C}_0$. By breaking up the truth table, we obtained $\mathbf{U}(\mathbf{C}) = \mathbf{C}_6 \mathbf{C}_5' \mathbf{C}_4' (\mathbf{C}_3 + \mathbf{C}_2 + \mathbf{C}_1 + \mathbf{C}_0) + \mathbf{C}_6 \mathbf{C}_5' \mathbf{C}_4 (\mathbf{C}_3' + \mathbf{C}_2') (\mathbf{C}_3' + \mathbf{C}_1' + \mathbf{C}_0')$ But lower-case characters are only different from upper-case in \mathbf{C}_5 , which is 1 instead of 0. $\mathbf{L}(\mathbf{C}) = \mathbf{C}_6 \mathbf{C}_5' \mathbf{C}_4' (\mathbf{C}_3 + \mathbf{C}_2 + \mathbf{C}_1 + \mathbf{C}_0) + \mathbf{C}_6' \mathbf{C}_5' \mathbf{C}_4' (\mathbf{C}_3' + \mathbf{C}_2') (\mathbf{C}_3' + \mathbf{C}_1' + \mathbf{C}_0')$

Change Comparator Input to Calculate L(C)

Or just change the comparators' inputs.

Want Logic to Choose Between Two Signals	Truth Tables for a 2-to-1 Multiplexer
What if we want one design to check for either upper-case or lower-case letters? In a few examples, • we added a control signal S • to select between functions.	A full truth table for such logic appears to the right.S D_1 D_0 Q But we could shorten it as shown below0011S D_1 D_0 Q Unselected011
Can we design logic • that uses a control signal S to select • between two arbitrary signals, D_1 (when S = 1) and D_0 (when S = 0)?	0 x 0 Inputs do not matter (marked 1 1 0 0 0 x 1 1 (marked with "x"). 1 1 0 1 0 x 0 with "x"). 1 1 0
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5	1 1 1 1 1 1 ECE 120: Introduction to Computing 0 2016 Steven S. Lumetta. All rights reserved. slide 6

Expression for a 2-to-1 Multiplexer

Can Use Sets of Muxes to Select Amongst Groups of Bits We can also generalize the idea of multiplexers by • using a common control signal • to select between groups of inputs. Generally, • an N-to-M multiplexer • represents M separate (N/M)-to-1 muxes • each with log ₂ (N/M) select bit inputs • (typically N/M = 2 ^K for some integer K).	 Example of a Set of Muxes with Common Select Input For example, recall the design of the N-bit adder and subtractor. We could have used a 2N-to-N mux to choose between B_i and B_i' for the adder's B input based on a common (one-bit) control signal S. (Previously, we used the nature of the mux' data inputs, B_i versus B_i', to simplify each mux' logic to an XOR gate.)

ECE 120: Introduction to Computing

slide 15

ECE 120: Introduction to Computing

