
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Multiplexers (Muxes)

ECE 120: Introduction to Computing © 2016-2018 Steven S. Lumetta. All rights reserved. slide 1

Task: Checking for a Lower-Case Letter

What if we also need logic to check whether an
ASCII character is a lower-case letter.
In ASCII, 'a' is 1100001 (0x61),
and 'z' is 1111010 (0x7A).
Recall that 'A' is 1000001 (0x41),
and 'Z' is 1011010 (0x5A).

Can we reuse our solutions
for upper-case letters?

Of course we can!

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

Change C5’ to C5 to Obtain L(C) from U(C)

Let’s again say that the ASCII character
is in C = C6C5C4C3C2C1C0.
By breaking up the truth table, we obtained
U(C) = C6C5’C4’ (C3 + C2 + C1 + C0) +

C6C5’C4 (C3’ + C2’)(C3’ + C1’ + C0’)
But lower-case characters are only different
from upper-case in C5, which is 1 instead of 0.
L(C) = C6C5C4’ (C3 + C2 + C1 + C0) +

C6C5C4 (C3’ + C2’)(C3’ + C1’ + C0’)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

Change Comparator Input to Calculate L(C)

Or just change the comparators’ inputs.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

Z0 = 1
implies

C < 0x41

Z1 = 1
implies

C > 0x5A
0x61

0x61

L

0x7A

0x7A

Want Logic to Choose Between Two Signals

What if we want one design to check for
either upper-case or lower-case letters?

In a few examples,
we added a control signal S
to select between functions.

Can we design logic
that uses a control signal S to select
between two arbitrary signals,
D1 (when S = 1) and D0 (when S = 0)?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

Truth Tables for a 2-to-1 Multiplexer

A full truth table for such
logic appears to the right.

But we could shorten it as
shown below…

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

S D1 D0 Q
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

S D1 D0 Q
0 x 0 0

0 x 1 1

1 0 x 0

1 1 x 1

Unselected
inputs do

not matter
(marked
with “x”).

We Normally Use the Most Compact Truth Table

In this case, we can even write outputs
in terms of other inputs, as shown here.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

S Q
0 D0
1 D1S D1 D0 Q

0 x 0 0

0 x 1 1

1 0 x 0

1 1 x 1

Unselected
inputs do

not matter
(marked
with “x”).

Expression for a 2-to-1 Multiplexer

Let’s solve with a K-map.

Q = S’D0 + SD1

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

S D1 D0 Q
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Q
D1D0

00 01 11 10

S
0

1

1

0

1 00

1 10

Expression for a 2-to-1 Multiplexer

But Q just selects D0 or D1 (as desired)!

Q = S’D0 + SD1

Could we have just written
this expression using the table
to the right?

Q is D0 when S = 0, and D1 when S = 1…

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

S Q
0 D0
1 D1

Implementation and Symbolic Form of a 2-to-1 Mux

The circuit below shows a 2-to-1 mux
(multiplexer), for which the symbolic form
appears to the right.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10

Selecting from More than Two Expressions

What if we want to select
between four expressions,
D3, D2, D1, and D0?

One answer is to use muxes
hierarchically:

start by using one
2-to-1 mux (signal S1)
to decide between
D3 or D2 and D1 or D0.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

D3 or D2

D1 or D0

D3 or D2

D1 or D0

For the Second Level, Use More Muxes

But how do we
deliver two
expressions to each
mux input?

Use more muxes
(both controlled by S0)!

Notice that S1S0 then
allows us to choose
from four expressions.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

AND Gates Represent Minterms ANDed with Data Inputs

For something as
common as a mux,
we typically build
directly from gates.

Notice that
each AND gate
produces a
minterm of S1, S0
ANDed with the
corresponding Di.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 13

D3S1S0

D2S1S0’

D1S1’S0

D0S1’S0’

A 2N-to-1 Mux Requires N Select Bits

The diagram to the right shows
the symbolic form of a
4-to-1 mux.

We can, of course, further extend
this idea to build 8-to-1 muxes,
16-to-1 muxes, and so forth.

When selecting amongst P = 2N

inputs DP-1 … D0 we need N bits
of select input, SN-1 … S0.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 14

Can Use Sets of Muxes to Select Amongst Groups of Bits

We can also generalize the idea
of multiplexers by

using a common control signal
to select between groups of inputs.

Generally,
an N-to-M multiplexer
represents M separate
(N/M)-to-1 muxes
each with log2(N/M) select bit inputs
(typically N/M = 2K for some integer K).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 15

Example of a Set of Muxes with Common Select Input

For example, recall the design of
the N-bit adder and subtractor.
We could have used a 2N-to-N mux

to choose between Bi and Bi’
for the adder’s B input
based on a common (one-bit)
control signal S.

(Previously, we used the nature of the mux’
data inputs, Bi versus Bi’, to simplify each
mux’ logic to an XOR gate.)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 16

Another Design Problem: Checking Four Types of ASCII

Now think again about our ASCII checker.

Say that we want four kinds of comparison:
control characters (0x00 to 0x1F),
lower-case letters (0x41 to 0x5A),
upper-case letters (0x61 to 0x7A), and
digits (0x30 to 0x39).

How can we design logic to check
for any of the four types?

ECE 120: Introduction to Computing © 2016-2018 Steven S. Lumetta. All rights reserved. slide 17

The Answer? Use Muxes! Two 28-to-7 Muxes

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 18

