University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Multiplexers (Muxes)

Task: Checking for a Lower-Case Letter

What if we also need logic to check whether an ASCII character is a lower-case letter.
In ASCII, 'a' is 1100001 (0x61), and ' z ' is $1111010(0 \mathrm{x} 7 \mathrm{~A})$.
Recall that ' A ' is 1000001 (0×41), and ' Z ' is 1011010 ($0 \times 5 \mathrm{~A}$).

Can we reuse our solutions for upper-case letters?

Of course we can!

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 2

Change C_{5} ' to C_{5} to Obtain $\mathrm{L}(\mathrm{C})$ from $\mathrm{U}(\mathrm{C})$

Let's again say that the ASCII character is in $\mathbf{C}=\mathrm{C}_{6} \mathrm{C}_{5} \mathrm{C}_{4} \mathrm{C}_{3} \mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C}_{0}$.
By breaking up the truth table, we obtained

But lower-case characters are only different
from upper-case in C_{5}, which is 1 instead of 0 .

Want Logic to Choose Between Two Signals

What if we want one design to check for either upper-case or lower-case letters?
In a few examples,

- we added a control signal S
- to select between functions.

Can we design logic

- that uses a control signal S to select
- between two arbitrary signals,
$D_{1}($ when $S=1)$ and $D_{0}($ when $S=0)$?

ECE 120: Introduction to Computing

Truth Tables for a 2-to-1 Multiplexer

A full truth table for such logic appears to the right.
But we could shorten it as shown below...

S	D_{1}	D_{0}	\mathbf{Q}
0	\mathbf{x}	0	0
0	\mathbf{x}	1	1
1	0	x	0
1	1	x	1

Unselected inputs do not matter (marked with " x ").

ECE 120: Introduction to Computing
2016 Steven S. Lumetta. All rights reserved
slide 6

We Normally Use the Most Compact Truth Table

In this case, we can even write outputs in terms of other inputs, as shown here.

Expression for a 2-to-1 Multiplexer

ECE 120: Introduction to Computing

Expression for a 2-to-1 Multiplexer

But \mathbf{Q} just selects D_{0} or D_{1} (as desired)!

$$
\mathrm{Q}=\mathrm{S}^{\prime} \mathrm{D}_{0}+\mathrm{SD}_{1}
$$

Could we have just written

$$
\begin{array}{c|c}
\mathbf{S} & \mathbf{Q} \\
\hline 0 & \mathrm{D}_{0} \\
\mathbf{1} & \mathrm{D}_{1}
\end{array}
$$ to the right?

Q is D_{0} when $S=0$, and D_{1} when $S=1 \ldots$

Selecting from More than Two Expressions

What if we want to select
between four expressions,
$\mathrm{D}_{3}, \mathrm{D}_{2}, \mathrm{D}_{1}$, and D_{0} ?
One answer is to use muxes hierarchically:

$$
\begin{aligned}
& \text { - start by using one } \\
& \text { 2-to- } 1 \text { mux (signal } \mathrm{S}_{1} \text {) } \\
& \text { o to decide between } \\
& \mathbf{D}_{3} \text { or } \mathbf{D}_{2} \text { and } \mathbf{D}_{1} \text { or } \mathbf{D}_{0} \text {. }
\end{aligned}
$$

Implementation and Symbolic Form of a 2-to-1 Mux

The circuit below shows a 2 -to- 1 mux (multiplexer), for which the symbolic form appears to the right.

For the Second Level, Use More Muxes

But how do we deliver two expressions to each mux input?
Use more muxes (both controlled by S_{0})!
Notice that $\mathrm{S}_{1} \mathrm{~S}_{0}$ then allows us to choose from four expressions.

AND Gates Represent Minterms ANDed with Data Inputs

For something as common as a mux, we typically build directly from gates.
Notice that
each AND gate produces a minterm of S_{1}, S_{0} ANDed with the corresponding D_{i}.

Can Use Sets of Muxes to Select Amongst Groups of Bits

We can also generalize the idea
of multiplexers by

- using a common control signal
- to select between groups of inputs.

Generally,
${ }^{\circ}$ an N-to-M multiplexer

- represents M separate
(N/M)-to-1 muxes
- each with $\log _{2}(\mathbf{N} / \mathbf{M})$ select bit inputs
-(typically $\mathbf{N} / \mathbf{M}=2^{\mathrm{K}}$ for some integer K).

A $2^{\text {N}}$-to- 1 Mux Requires N Select Bits

The diagram to the right shows the symbolic form of a
4-to-1 mux.
We can, of course, further extend this idea to build 8 -to- 1 muxes, 16-to-1 muxes, and so forth.
When selecting amongst $P=2^{\mathrm{N}}$ inputs $\mathrm{D}_{\mathrm{P}-1} \ldots \mathrm{D}_{0}$ we need N bits of select input, $\mathrm{S}_{\mathrm{N}-1} \ldots \mathrm{~S}_{0}$.

Example of a Set of Muxes with Common Select Input

For example, recall the design of the N-bit adder and subtractor.
We could have used a 2 N -to- N mux

- to choose between B_{i} and $B_{i}{ }^{\prime}$
for the adder's B input
- based on a common (one-bit) control signal S.
(Previously, we used the nature of the mux' data inputs, \mathbf{B}_{i} versus \mathbf{B}_{i}, to simplify each mux' logic to an XOR gate.)

Another Design Problem: Checking Four Types of ASCII

Now think again about our ASCII checker.
Say that we want four kinds of comparison: ${ }^{\circ}$ control characters (0×00 to $0 \times 1 \mathrm{~F}$), - lower-case letters (0×41 to $0 x 5 \mathrm{~A}$),

- upper-case letters ($0 x 61$ to $0 x 7 \mathrm{~A}$), and - digits ($0 x 30$ to 0×39).

How can we design logic to check for any of the four types?

The Answer? Use Muxes! Two 28-to-7 Muxes

ECE 120: Introduction to Computing

