University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing

A Comparator for 2's Complement

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 1

Comparing 2's Complement Is Different from Unsigned
Let's design a comparator for 2's complement numbers.
Is the function the same as with unsigned (like addition)?
For unsigned, $1001>0101$.
Is the same true with 2 's complement?
No.
Should we just start over?

ECE 120: Introduction to Computing $\quad \bigcirc 2016$ Steven S. Lumetta. All rights reserved.
slide 2

Start with the Sign Bits

Let's try a little harder first...
If we compare two non-negative numbers,

- the approach IS the same.
- Right?

Maybe we can just use some extra logic to handle the sign bits?

Consider All Possible Combinations of Sign Bits

Let's make a table based on the sign bits:

$\mathbf{A}_{\mathbf{s}}$	$\mathbf{B}_{\mathbf{s}}$	interpretation	solution
$\mathbf{0}$	$\mathbf{0}$	$\mathrm{A} \geq 0$ AND $\mathrm{B} \geq 0$	use unsigned
			comparator
$\mathbf{0}$	$\mathbf{1}$	$\mathrm{A} \geq 0$ AND $\mathrm{B}<0$	$\mathrm{~A}>\mathrm{B}$
$\mathbf{1}$	$\mathbf{0}$	$\mathrm{A}<0$ AND $\mathrm{B} \geq 0$	$\mathrm{~A}<\mathrm{B}$
$\mathbf{1}$	$\mathbf{1}$	$\mathrm{A}<0$ AND $\mathrm{B}<0$	unknown

solution
use unsigned
A>

A $<$ B
unknown

Interpret 2's Complement as Unsigned

Remember our "simple" rule for translating 2's complement bit patterns to decimal?
The pattern $\mathrm{A}=\mathrm{a}_{\mathrm{N}-1} \mathrm{a}_{\mathrm{N}-2} \ldots \mathrm{a}_{1} \mathrm{a}_{0}$
has value $\mathrm{V}_{\mathrm{A}}=-\mathrm{a}_{\mathrm{N}-1} 2^{\mathrm{N}-1}+\mathrm{a}_{\mathrm{N}-2} 2^{\mathrm{N}-2}+\ldots+\mathrm{a}_{0} 2^{0}$
Let A be negative ($\mathrm{a}_{\mathrm{N}-1}=1$).
Interpreted as unsigned, the same bits have value $V_{A}+2^{\mathrm{N}}$. .
*The statement is true by definition of 2's complement, actually.

Negative Numbers Can be Compared Directly

What happens if we feed two negative 2's complement numbers into our unsigned comparator?
We compare $\mathrm{V}_{\mathrm{A}}+2^{\mathrm{N}}$ with $\mathrm{V}_{\mathrm{B}}+2^{\mathrm{N}}$.
And we get an answer: $<,=$, or $>$.
Let's say that we find $\mathrm{V}_{\mathrm{A}}+2^{\mathrm{N}}<\mathrm{V}_{\mathrm{B}}+2^{\mathrm{N}}$.
In that case, $\mathrm{V}_{\mathrm{A}}<\mathrm{V}_{\mathrm{B}}$, so we have the right answer for 2's complement.
The same result holds for other answers.

We Need Special Logic for the Sign Bits

Now we can complete our table:

$\mathbf{A}_{\mathbf{s}} \mathbf{B}_{\mathbf{s}}$	interpretation	solution	
$\mathbf{0}$	$\mathbf{0}$	$\mathrm{A} \geq 0$ AND B ≥ 0	use unsigned comparator
$\mathbf{0}$	$\mathbf{1}$	$\mathrm{A} \geq 0$ AND B <0	$\mathrm{~A}>\mathrm{B}$
1	0	$\mathrm{~A}<0$ AND $\mathrm{B} \geq 0$	$\mathrm{~A}<\mathrm{B}$
1	$\mathbf{1}$	$\mathrm{~A}<0$ AND B <0	use unsigned
comparator			

Simply Flip the Wires on the Most Significant Bit

Can we just flip the wires on the sign bits?
For $\mathrm{A}_{\mathrm{s}}=0$ and $\mathrm{B}_{\mathrm{s}}=1$,
\circ we feed in $\mathrm{A}_{\mathrm{N}-1} \stackrel{5}{=} 1$ and $\mathrm{B}_{\mathrm{N}-1}=0$, and

- the unsigned comparator produces $\mathbf{A}>\mathbf{B}$.

For $A_{s}=1$ and $B_{s}=0$,
${ }^{\circ}$ we feed in $\mathbf{A}_{\mathrm{N}-1}=0$ and $\mathbf{B}_{\mathrm{N}-1}=1$, and
\circ the unsigned comparator produces $\mathrm{A}<\mathrm{B}$.

$$
\text { What about when } A_{s}=B_{s} \text { ? }
$$

Flipping the bits then has no effect!
Answers are also correct in those cases.

One Comparator with a Control Signal can Do Both
Can we use a single comparator
to perform both kinds of comparisons?
Yes, if we

- add a control signal S
- to tell the comparator whether to do unsigned ($\mathrm{S}=0$) or 2's complement $(\mathrm{S}=1$) comparison.
Simply XOR'ing the most significant bits
of A and B with S suffices.
- This approach leverages flexibility in the
problem to reduce the logic needed.
Analyze the design to understand how it works.

