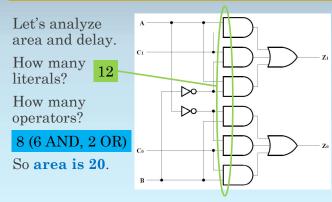
University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

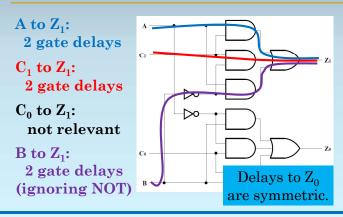

Analyzing and Optimizing the Bit-Sliced Comparator

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 1

Area Heuristic for One Comparator Bit Slice is 20

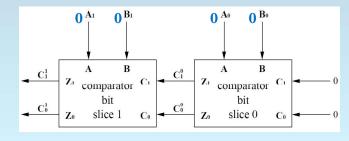


ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 2

How Many Gate Delays to Z₁?



ECE 120: Introduction to Computing

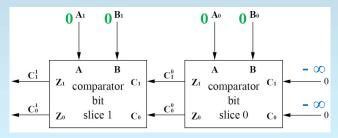
Extending from One Bit Slice to N Bit Slices

What happens in an N-bit design?

Say that A and B are available at time 0.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved


slide 3

© 2016 Steven S. Lumetta. All rights reserved.

Constant Inputs are Available Arbitrarily Early

What about the 0s on the right?

Available "forever" ... (time $-\infty$).

ECE 120: Introduction to Computing

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 5

slide 7

Use Bit Slice Timing to Calculate Times Between Slices

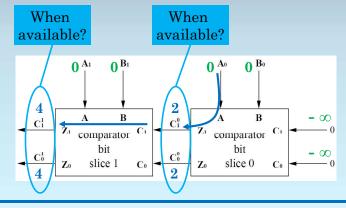
Now we must

- use the delays that we found for one bit slice
- to calculate times for inter-slice C values.

Recall that

- all **A** and **B** bits are available at **time 0**,

We found


- \circ C₁ to Z₁: 2 gate delays
- \circ C₀ to Z₀: 2 gate delays

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved.

slide 6

Calculate the Time at Which C^M Becomes Available

© 2016 Steven S. Lumetta. All rights reserved.

A More Detailed Version of Our Calculations

Grey is "not relevant," and green is maximum (time at which \mathbf{Z}_i is available).

(bit slice 0)	A	В	$\mathbf{C_1}$	$\mathbf{C_0}$
input available at	0	0	-∞	8
delay from input to \mathbf{Z}_1	+2	+2	+2	
\mathbf{Z}_1 not available until	2	2	-∞	
delay from input to Z_0	+2	+2		+2
${ m Z}_0$ not available until	2	2		-8

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

A More Detailed Version of Our Calculations

Grey is "not relevant," and green is maximum (time at which \mathbf{Z}_i is available).

(bit slice 1)	A	В	$\mathbf{C_1}$	$\mathbf{C_0}$
input available at	0	0	2	2
delay from input to \mathbf{Z}_1	+2	+2	+2	
\mathbb{Z}_1 not available until	2	2	4	
delay from input to Z_0	+2	+2		+2
${ m Z}_0$ not available until	2	2		4

Generalize the Result to an N-Bit Comparator

 C_1^0 and C_0^0 are available at time 2 (2 gate delays).*

 C_1^1 and C_0^1 are available at time 4.

When are C_1^{N-1} and C_0^{N-1} available (these are the answer for an N-bit comparator)?

N-bit answer is available at time 2N.

*In the notes, the inverters are counted, so paths from A and B are slightly longer, and all timings are increased by 1.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 9

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved

slide 10

We May be Able to Improve Our Comparator Design

Can we do better?

(You should ask: better in what sense?)

Can we reduce delay?

- Unlikely with a bit-sliced design.
- Not easy to implement most functions with one gate.

Can we reduce area?

- Maybe ...
- · Let's do some algebra.

Use Algebra to Find Common Subexpressions (A'B, AB')

Start with $\mathbf{Z}_1 = \mathbf{AB'} + \mathbf{AC}_1 + \mathbf{B'C}_1$

then use distributivity to pull out C_1 :

$$Z_1 = AB' + (A + B')C_1$$

and rewrite the (A + B') factor as a NAND:

$$Z_1 = AB' + (A'B)'C_1$$

Similarly, $Z_0 = A'B + (AB')'C_0$

Notice that we now reuse AB' and A'B.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11 ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

The New Implementation Uses Fewer Gates

The diagram below shows the new equations using NAND gates. $\mathbf{Z}_1 = [\ (AB')'\ ((A'B)'C_1)'\]'$ The single-bit core is here. $= AB' + (A'B)'C_1$ C1

((A'B)'C1)'

(AB')'

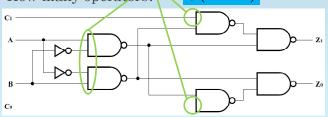
(AB')'

(A'B)'

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 13


slide 15

Area Heuristic for the New Design is 12

Let's analyze area for the new design.

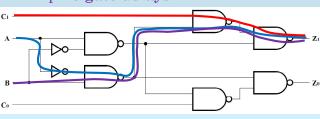
How many literals? 6

How many operators? 6 (NAND)

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

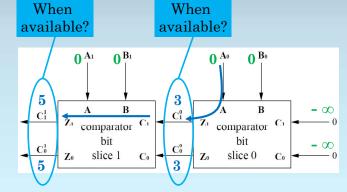
Calculate the Time at Which C^M Becomes Available


slide 14

Delay Analysis for the New Design

A to Z_1 : 3 gate delays (ignoring NOT)

 C_1 to Z_1 : 2 gate delays


B to Z_1 : 3 gate delays

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

50% slower?!

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

A More Detailed Version of Our Calculations

Grey is "not relevant," and green is maximum (time at which \mathbf{Z}_i is available).

(bit slice 0)	A	В	$\mathbf{C_1}$	$\mathbf{C_0}$
input available at	0	0	-∞	-∞
delay from input to \mathbf{Z}_1	+3	+3	+2	
\mathbf{Z}_1 not available until	3	3	-∞	
delay from input to Z_0	+3	+3		+2
${ m Z}_0$ not available until	3	3		-∞

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved

slide 17

A More Detailed Version of Our Calculations

Grey is "not relevant," and green is maximum (time at which \mathbf{Z}_i is available).

(bit slice 1)	A	В	$\mathbf{C_1}$	$\mathbf{C_0}$
input available at	0	0	3	3
delay from input to \mathbf{Z}_1	+3	+3	+2	
${\bf Z}_1$ not available until	3	3	5	
delay from input to Z_0	+3	+3		+2
${ m Z}_0$ not available until	3	3		5

ECE 120: Introduction to Computing

 $\ensuremath{\mathbb{C}}$ 2016 Steven S. Lumetta. All rights reserved

slide 18

The Slice-to-Slice Paths are the Important Ones

 C_1^0 and C_0^0 are available at time 3 (2 gate delays).*

 C_1^1 and C_0^1 are available at time 5.

When are C_1^{N-1} and C_0^{N-1} available (these are the answer for an N-bit comparator)?

N-bit answer is available at time 2N+1.

*In the notes, the inverters are counted, so paths from A and B are slightly longer, and all timings are increased by 1.

Overall: Much Better Area for Slightly More Delay

So the new design

- reduces area by about 40% (area 12N compared to area 20N).
- increases delay by 1 (2N+1 gate delays compared to 2N gate delays).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 19 ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

Can We Do Even Better?

Yes, but it's not as easy.

For example, we can design a slice

- that compares multiple bits of A and B.
- See Notes 2.4.6 for an example.

We can also solve the full **N-bit** problem.

In other words, trade more human work and complexity for better area and delay.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

