University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing

Analyzing and Optimizing the Bit-Sliced Comparator

Area Heuristic for One Comparator Bit Slice is 20

How Many Gate Delays to Z_{1} ?

Extending from One Bit Slice to N Bit Slices

What happens in an N-bit design?
Say that A and B are available at time 0 .

Constant Inputs are Available Arbitrarily Early

What about the 0s on the right?
Available "forever" ... (time - ∞).

Use Bit Slice Timing to Calculate Times Between Slices

Now we must

- use the delays that we found for one bit slice
- to calculate times for inter-slice \mathbf{C} values.

Recall that

- all A and B bits are available at time 0,
- so the \mathbf{C} to \mathbf{Z} delays are the most important.

We found

- C_{1} to Z_{1} : 2 gate delays
$\circ \mathrm{C}_{0}$ to Z_{0} : 2 gate delays

Calculate the Time at Which C^{M} Becomes Available

ECE 120: Introduction to Computing

A More Detailed Version of Our Calculations

Grey is "not relevant," and green is maximum (time at which $\mathbf{Z}_{\mathbf{i}}$ is available).

(bit slice 0)	A	B	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$
input available at	0	0	$-\infty$	$-\infty$
delay from input to Z_{1}	+2	+2	+2	
Z_{1} not available until	2	2	$-\infty$	
delay from input to Z_{0}	+2	+2		+2
Z_{0} not available until	2	2		$-\infty$

A More Detailed Version of Our Calculations

Grey is "not relevant," and green is maximum (time at which $\mathbf{Z}_{\mathbf{i}}$ is available).

(bit slice 1)	A	B	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$
input available at	0	0	2	2
delay from input to Z_{1}	+2	+2	+2	
Z_{1} not available until	2	2	4	
delay from input to Z_{0}	+2	+2		+2
Z_{0} not available until	2	2		4

Generalize the Result to an N-Bit Comparator

C_{1}^{0} and C_{0}^{0} are available at time 2
(2 gate delays).*
\mathbf{C}_{1}^{1} and \mathbf{C}_{0}^{1} are available at time 4.
When are $\mathrm{C}_{1}^{\mathrm{N}-1}$ and $\mathrm{C}_{0}^{\mathrm{N}-1}$ available (these are the answer for an N -bit comparator)?

N -bit answer is available at time 2 N .
*In the notes, the inverters are counted, so paths from A and B are slightly longer, and all timings are increased by 1.

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 10

We May be Able to Improve Our Comparator Design

Can we do better?

(You should ask: better in what sense?)
Can we reduce delay?

- Unlikely with a bit-sliced design.
- Not easy to implement most functions with one gate.
Can we reduce area?
- Maybe ...
- Let's do some algebra.

Use Algebra to Find Common Subexpressions ($\mathrm{A}^{\prime} \mathrm{B}, \mathrm{AB}^{\prime}$)
Start with $\mathrm{Z}_{1}=\mathrm{AB}^{\prime}+\mathrm{AC}_{1}+\mathrm{B}^{\prime} \mathrm{C}_{1}$
then use distributivity to pull out C_{1} :

$$
\mathrm{Z}_{1}=A \mathrm{~B}^{\prime}+\left(\mathrm{A}+\mathrm{B}^{\prime}\right) \mathrm{C}_{1}
$$

and rewrite the $\left(\mathbf{A}+\mathbf{B}^{\prime}\right)$ factor as a NAND:

$$
\mathrm{Z}_{1}=\mathrm{AB}{ }^{\prime}+\left(\mathrm{A}^{\prime} \mathrm{B}\right)^{\prime} \mathrm{C}_{1}
$$

Similarly, $\quad Z_{0}=A^{\prime} B+\left(A B^{\prime}\right)^{\prime} \mathrm{C}_{0}$
Notice that we now reuse AB^{\prime} and $\mathrm{A}^{\prime} \mathrm{B}$.

The New Implementation Uses Fewer Gates

The diagram below shows the new equations using NAND gates. $\mathbf{Z}_{1}=\left[\left(\mathbf{A B}^{\prime}\right)^{\prime}\left(\left(\mathbf{A}^{\prime} \mathbf{B}\right)^{\prime} \mathbf{C}_{1}\right)^{\prime}\right]^{\prime}$ The single-bit core is here. $\quad=\mathbf{A B}+\left(\mathbf{A}^{\prime} \mathbf{B}\right)^{\prime} \mathbf{C}_{\mathbf{1}}$

Delay Analysis for the New Design

A to Z_{1} : 3 gate delays (ignoring NOT)
C_{1} to $\mathrm{Z}_{1}: 2$ gate delays
50\% slower?!
B to $Z_{1}: 3$ gate delays

Area Heuristic for the New Design is 12

Let's analyze area for the new design.
How many literals? 6

ECE 120: Introduction to Computing
2018

A More Detailed Version of Our Calculations

Grey is "not relevant," and green is maximum (time at which \mathbf{Z}_{i} is available).

(bit slice 0)	A	B	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$
input available at	0	0	$-\infty$	$-\infty$
delay from input to Z_{1}	+3	+3	+2	
Z_{1} not available until	3	3	$-\infty$	
delay from input to Z_{0}	+3	+3		+2
Z_{0} not available until	3	3		$-\infty$

A More Detailed Version of Our Calculations

Grey is "not relevant," and green is maximum (time at which $\mathbf{Z}_{\mathbf{i}}$ is available).

(bit slice 1)	A	B	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$
input available at	0	0	3	3
delay from input to Z_{1}	+3	+3	+2	
Z_{1} not available until	3	3	5	
delay from input to Z_{0}	+3	+3		+2
$\mathrm{Z}_{\mathbf{0}}$ not available until	3	3		5

ECE 120: Introduction to Computing $\quad \bigcirc 2016$ Steven S. Lumetta. All rights reserved.
slide 18

The Slice-to-Slice Paths are the Important Ones

C_{1}^{0} and C_{0}^{0} are available at time 3
(2 gate delays).*
C_{1}^{1} and C_{0}^{1} are available at time 5 .
When are $\mathrm{C}_{1}^{\mathrm{N}-1}$ and $\mathrm{C}_{0}^{\mathrm{N}-1}$ available (these are the answer for an N -bit comparator)?

N-bit answer is available at time $2 \mathrm{~N}+1$.
*In the notes, the inverters are counted, so paths from A and B are slightly longer, and all timings are increased by 1.

Overall: Much Better Area for Slightly More Delay

So the new design

${ }^{\circ}$ reduces area by about 40% (area 12 N compared to area 20 N).

- increases delay by 1
($2 \mathrm{~N}+1$ gate delays compared to 2 N gate delays).

Can We Do Even Better?

Yes, but it's not as easy.
For example, we can design a slice

- that compares multiple bits of A and B.
- See Notes 2.4.6 for an example.

We can also solve the full N-bit problem.
In other words, trade more human work and complexity for better area and delay.

