University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing

Bit-Sliced Comparator

How Do You Compare Unsigned Numbers?

Let's develop a bit-sliced design to compare two unsigned numbers.

Which 8-bit unsigned number is bigger?

01101000
01010111
How did you know?
Did you start on the left or the right?

ECE 120: Introduction to Computing \quad O2016 Steven S. Lumetta. All rights reserved.
slide 2

Humans Go from Left to Right

Usually, humans start on the left. Why?
As soon as we notice a difference, we're done!

humans compare this way

$$
\begin{aligned}
& \hline 011 \mathrm{a}_{4} \mathrm{a}_{3} \mathrm{a}_{2} \mathrm{a}_{1} \mathrm{a}_{0} \\
& 010 \mathrm{~b}_{4} \mathrm{~b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}
\end{aligned}
$$

Bit-sliced hardware cannot stop in the middle.
The information flows from one end to the other.
Output wires produce the answer (in bits).

Our Design Compares from Right to Left

Our comparator design will start on the right.
humans compare this way
$\overrightarrow{a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}}$
$\mathrm{b}_{7} \mathrm{~b}_{6} \mathrm{~b}_{5} \mathrm{~b}_{4} \mathrm{~b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}$
our design will compare this way
From least significant to most significant bit.

Three Possible Answers for Comparison of A and B

When comparing two numbers, A and B , we have three possible outcomes:

$$
\begin{aligned}
& \mathrm{A}<\mathrm{B} \\
& \mathrm{~A}=\mathrm{B} \\
& \mathrm{~A}>\mathrm{B}
\end{aligned}
$$

To decide the answer for $\mathrm{N}+1$ bits, we need: - the answer for \mathbf{N} (less significant) bits,

- one bit of A, and
${ }^{\circ}$ one bit of \mathbf{B}.

An Abstract Model of the Comparator Bit Slice

A question for you:
How many bits must pass between slices?
Two!
This figure shows an abstract model of our bit slice.

ECE 120: Introduction to Computing $\quad \bigcirc 2016$ Steven S. Lumetta. All rights reserved.
slide 6

We Need a Representation for Answers

Another question for you:
How do we represent the three possible answers?
Any way we want!
Our choice of representation will affect the amount of logic we need.
Here's a good one...

\mathbf{C}_{1}	$\mathbf{C}_{\mathbf{0}}$	meaning
0	0	A $=\mathrm{B}$
0	1	A $<\mathrm{B}$
1	0	A $>\mathrm{B}$
1	1	not used

A Single Bit Requires Two Minterms on A, B

Let's start by solving a single bit.
In this case, there are no less significant bits.
So we consider
only A and B.
Fill in the meanings,
then the bits.

A	\mathbf{B}	Z_{1}	Z_{0}	meaning
$\mathbf{0}$	$\mathbf{0}$	0	0	$\mathrm{~A}=\mathrm{B}$

Note that Z_{1} and Z_{0} are minterms.
$\begin{array}{lllll}1 & 0 & 1 & 0 & \mathrm{~A}>\mathrm{B} \\ 1 & 1 & 0 & 0 & \mathrm{~A}=\mathrm{B}\end{array}$

Comparing Two Bits is Fairly Easy

An implementation for a single bit appears below.
This structure forms the core of our bit slice, since it compares one bit of A with one bit of B.

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved.

When A and B are Equal, Pass Along the Answer

Now for the full problem.
We'll start with the case of $\mathbf{A}=0$ and $\mathbf{B}=0$.

A B	\mathbf{C}_{1}	\mathbf{C}_{0}	meaning	Z_{1}	Z_{0}	meaning	
0	0	0	0	$\mathrm{~A}=\mathrm{B}$	0	0	$\mathrm{~A}=\mathrm{B}$
0	0	0	1	$\mathrm{~A}<\mathrm{B}$	0	1	$\mathrm{~A}<\mathrm{B}$
0	0	1	0	$\mathrm{~A}>\mathrm{B}$	1	0	$\mathrm{~A}>\mathrm{B}$
0	0	1	1	???	\mathbf{x}	\mathbf{x}	don't care

ECE 120: Introduction to Computing $\quad \bigcirc 2016$ Steven S. Lumetta. All rights reserved.
slide 10

When A and B are Equal, Pass Along the Answer

Is there any difference when $\mathrm{A}=1$ and $\mathrm{B}=1$?
No, outputs are the same as the last case.

A	B	C_{1}	C_{0}	meaning	Z_{1}	Z_{0}	meaning
1	1	0	0	$\mathrm{~A}=\mathrm{B}$	0	0	$\mathrm{~A}=\mathrm{B}$
1	1	0	1	$\mathrm{~A}<\mathrm{B}$	0	1	$\mathrm{~A}<\mathrm{B}$
1	1	1	0	$\mathrm{~A}>\mathrm{B}$	1	0	$\mathrm{~A}>\mathrm{B}$
1	1	1	1	???	\mathbf{x}	\mathbf{x}	don't care

When A and B Differ, Override the Previous Answer

What about case of $\mathrm{A}=0$ and $\mathrm{B}=1$?
Always output $A<B$ (for valid inputs).

A	B	C_{1}	C_{0}	meaning	Z_{1}	Z_{0}	meaning
0	1	0	0	$\mathrm{~A}=\mathrm{B}$	0	1	$\mathrm{~A}<\mathrm{B}$
0	1	0	1	$\mathrm{~A}<\mathrm{B}$	0	1	$\mathrm{~A}<\mathrm{B}$
0	1	1	0	$\mathrm{~A}>\mathrm{B}$	0	1	$\mathrm{~A}<\mathrm{B}$
0	1	1	1	???	\mathbf{x}	\mathbf{x}	don't care

When A and B Differ, Override the Previous Answer

And the case of $\mathrm{A}=1$ and $\mathrm{B}=0$?
Always output A > B (for valid inputs).

A	B	\mathbf{C}_{1}	\mathbf{C}_{0}	Meaning	Z_{1}	Z_{0}	meaning
1	0	0	0	$\mathrm{~A}=\mathrm{B}$	1	0	$\mathrm{~A}>\mathrm{B}$
1	0	0	1	$\mathrm{~A}<\mathrm{B}$	1	0	$\mathrm{~A}>\mathrm{B}$
1	0	1	0	$\mathrm{~A}>\mathrm{B}$	1	0	$\mathrm{~A}>\mathrm{B}$
1	0	1	1	$? ? ?$	\mathbf{x}	\mathbf{x}	don't care

ECE 120: Introduction to Computing

Z_{1} is a Majority Function

Let's use a K-map to solve \mathbf{Z}_{1}.
What are the loops?
AB'
AC_{1}
$\mathrm{B}^{\prime} \mathrm{C}_{1}$
$\stackrel{\mathrm{So}}{\mathrm{Z}_{1}}=\mathrm{AB}^{\prime}+\mathrm{AC}_{1}+\mathrm{B}^{\prime} \mathrm{C}_{1}$

Z_{1}	AB			
	00	01	11	10
00	0	0	0	1
01	0	0	0	1
$\mathrm{C}_{1} \mathrm{C}_{0}$	x	x	x	x
10	1	0	1	1

ECE 120: Introduction to Computing
© 2016 Steven S. Lumetta. All rights reserved.
slide 14

Full Implementation as SOP Expressions

