

Humans Go from Left to Right

Usually, humans start on the left. Why? As soon as we notice a difference, we're done!

humans compare this way

$0 \ 1 \ 1 \ a_4 a_3 a_2 a_1 a_0 \\ 0 \ 1 \ 0 \ b_4 b_3 b_2 b_1 b_0$

Bit-sliced hardware cannot stop in the middle. The information flows from one end to the other. Output wires produce the answer (in bits).

Our Design Compares from Right to Left

Our comparator design will start on the right.

humans compare this way

 $a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0$ $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$

our design will compare this way

From least significant to most significant bit.

ECE 120: Introduction to Computing

We Need a Representation for Answers	A Single Bit Requires Two Minterms on A, B
Another question for you:How do we represent the three possible answers?Any way we want! $C_1 C_0$ meaning 0 0 A = BOur choice of representation will affect the amount of logic we need.0 1 A < B 1 0 A > B 1 1 not used	Let's start by solving a single bit.In this case, there are no less significant bits.So we consider only A and B.Fill in the meanings, then the bits. $A \ B \ Z_1 \ Z_0 \ meaning$ Fill in the meanings, then the bits. $0 \ 0 \ 0 \ 0 \ A = B$ Note that Z_1 and Z_0 are minterms. $1 \ 0 \ 1 \ 0 \ A > B$ I 1 $0 \ 0 \ A = B$
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved slide 7	ECE 120 Introduction to Commuting © 2016 Steven S. Lumetta. All rights reserved slide 8

Comparing Two Bits is Fairly Easy	When A and B are Equal, Pass Along the Answer		
An implementation for a single bit appears below. This structure forms the core of our bit	Now for the full problem. We'll start with the case of $\mathbf{A} = 0$ and $\mathbf{B} = 0$.		
slice, since it compares one bit of \mathbf{A} with one bit of \mathbf{B} .	A B $C_1 C_0$ meaning $Z_1 Z_0$ meaning 0 0 0 0 0 A = B 0 0 A = B 0 0 0 1 A < B 0 1 A < B 0 0 1 0 A > B 1 0 A > B 0 0 1 1 ??? x x don't care		
ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9	ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 10		

When A and B are Equal, Pass Along the Answer

Is there any difference when A = 1 and B = 1? No, outputs are the same as the last case.

ABC ₁	C ₀	meaning	$\mathbf{Z}_1 \ \mathbf{Z}_0$	meaning
110	0	A = B	0 0	A = B
110	1	A < B	0 1	A < B
111	0	A > B	1 0	A > B
111	1	???	хх	don't care

When A and B Differ, Override the Previous Answer

What about case of $A = 0$ and $B = 1$?
Always output A < B (for valid inputs).

ABC ₁ C ₀				
0100	A = B	0	1	A < B
0101	A < B	0	1	A < B
0110	A > B	0	1	A < B
0111	???	x	x	don't care

