University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering
ECE 120: Introduction to Computing

Bit-Sliced Designs

What's the Theory Behind a Ripple Carry Adder?

Think for a moment about addition.

> Can you add 2-digit numbers?

What about 5-digit numbers?
What about 5,000-digit numbers?
Does it matter if I add more digits?

Have you ever seen a proof that you're correct?

What kind of proof would you need?
ECE 120: Introduction to Computing \quad S

ECE 120: Introduction to Computing $\quad \bigcirc 2016$ Steven S. Lumetta. All rights reserved.
slide 2

Multi-Digit Addition is Correct by Induction

Probably a proof by induction...

1. You know how to add 1-digit numbers.

Verifying an addition table suffices.
2. GIVEN that you can add N-digit numbers, show (based, for example, on place value) that you can add ($\mathrm{N}+1$)-digit numbers.
But you didn't know about proof by induction

- when you learned how to add,
- so you've probably never seen a proof.

The Ripple Carry Adder is Also Correct by Induction

When we designed a ripple carry adder, we also assumed proof by induction.

1. We know how to add one bit. We made a truth table (a binary addition table).
2. GIVEN that we can build an N -bit adder, show that we can build an ($\mathrm{N}+1$)-bit adder by attaching a full (1-bit) adder to an (N-bit) adder.

Build an Addition Device Based on Human Addition

In ECE220, you will write recursive functions.
These functions call themselves.
And you will use the same idea...

1. The answer for some base case (one or more stopping conditions) is known.
2. GIVEN that we can write a function that works for input of size \mathbf{N}, show that we can write a function that works for size ($\mathrm{N}+1$) by handling the extra " 1 " and calling the function recursively for the " N ".

The Three Contexts are the Same Mathematically

The approach is the same.
The part that sometimes confuses people (particularly for software/recursion, but sometimes also for hardware/bit slicing) is the ASSUMPTION in the inductive step.
You must assume that the design works for \mathbf{N} pieces (bits, input size, or whatever).

All Three Approaches Require a "Leap of Faith"

You don't need to design the system all at once for N (other than some base case).

In other words,

- you must make a "leap of faith" and - assume that your answer works
- before you actually design it!

People sometimes have trouble making such an assumption, but it's just a standard part of an inductive proof.

Bit Slicing Requires Problem Decomposition

Bit slicing works for problems that

- allow us to break off a small part of the problem,
- say 1 bit (or a few bits),
- and be able to solve the full problem using the solution for the remaining part and the 1 bit.
(That's the inductive step.)

Signals Between Bit Slices Must be Fixed (and Few)

For hardware, we also need

- to be able to express the "answer" for the remaining part
- in a (small!) fixed number of bits.

Otherwise, the number of inputs and outputs to the bit slice changes from slice to slice!

Examples of Problems that Allow Bit Slicing

- Addition / subtraction
- Comparison
- Check for power of 2
- Check for multiples (of 3, 7, and so forth)
- Division by constants
- Pattern matcher
- Bitwise logic operation

When Can't We Used Bit Slicing?

One example: when the answer depends on ALL of the other bits (can't summarize an answer for N bits).
For example, can you create a
bit-sliced prime number identifier?

$$
\mathrm{A}_{\mathrm{N}-1} \mathrm{~A}_{\mathrm{N}-2} \ldots \mathrm{~A}_{5} \leftarrow \text { (summary) } 01001
$$

What information do you pass to bit 5 ?
All 5 bits? 01001? I have no idea!

