
University of Illinois at Urbana-Champaign
Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Bit-Sliced Designs

ECE 120: Introduction to Computing © 2016,2017 Steven S. Lumetta. All rights reserved. slide 1

What’s the Theory Behind a Ripple Carry Adder?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 2

Think for a moment about addition.
Can you add 2-digit numbers?
What about 5-digit numbers?

What about 5,000-digit numbers?
Does it matter if I add more digits?

Have you ever seen a proof
that you’re correct?

What kind of proof would you need?

Multi-Digit Addition is Correct by Induction

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

Probably a proof by induction…
1. You know how to add 1-digit numbers.

Verifying an addition table suffices.
2. GIVEN that you can add N-digit

numbers, show (based, for example, on
place value) that you can add
(N+1)-digit numbers.

But you didn’t know about proof by induction
when you learned how to add,
so you’ve probably never seen a proof.

The Ripple Carry Adder is Also Correct by Induction

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 4

When we designed a ripple carry adder,
we also assumed proof by induction.

1. We know how to add one bit. We made
a truth table (a binary addition table).

2. GIVEN that we can build an N-bit
adder, show that we can build an
(N+1)-bit adder by attaching a
full (1-bit) adder to an (N-bit) adder.

Build an Addition Device Based on Human Addition

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 5

In ECE220, you will write recursive functions.
These functions call themselves.

And you will use the same idea…
1. The answer for some base case (one or more

stopping conditions) is known.
2. GIVEN that we can write a function that

works for input of size N, show that we
can write a function that works for
size (N+1) by handling the extra “1”
and calling the function recursively
for the “N”.

The Three Contexts are the Same Mathematically

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 6

The approach is the same.

The part that sometimes confuses people
(particularly for software/recursion, but
sometimes also for hardware/bit slicing) is the
ASSUMPTION in the inductive step.

You must assume that the design works
for N pieces (bits, input size, or whatever).

All Three Approaches Require a “Leap of Faith”

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 7

You don’t need to design the system
all at once for N (other than some base case).

In other words,
you must make a “leap of faith” and
assume that your answer works
before you actually design it!

People sometimes have trouble making such
an assumption, but it’s just a standard part
of an inductive proof.

Bit Slicing Requires Problem Decomposition

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 8

Bit slicing works for problems that
allow us to break off
a small part of the problem,
say 1 bit (or a few bits),
and be able to solve the full problem
using the solution for the remaining
part and the 1 bit.

(That’s the inductive step.)

Signals Between Bit Slices Must be Fixed (and Few)

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 9

For hardware, we also need
to be able to express the “answer”
for the remaining part
in a (small!) fixed number of bits.

Otherwise, the number of inputs and outputs
to the bit slice changes from slice to slice!

Examples of Problems that Allow Bit Slicing

ECE 120: Introduction to Computing © 2016-2017 Steven S. Lumetta. All rights reserved. slide 10

Addition / subtraction
Comparison
Check for power of 2
Check for multiples (of 3, 7, and so forth)
Division by constants
Pattern matcher
Bitwise logic operation

When Can’t We Used Bit Slicing?

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 11

One example: when the answer depends
on ALL of the other bits (can’t summarize
an answer for N bits).

For example, can you create a
bit-sliced prime number identifier?

AN-1 AN-2 … A5

What information do you pass to bit 5?

All 5 bits? 01001? I have no idea!

